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Abstract

It is often demonstrated that Brouwer’s fixed point theorem can not be con-
structively or computably proved. Therefore, Tychonoff’s and Schauder’s fixed
point theorems also can not be constructively proved. On the other hand, how-
ever, Sperner’s lemma which is used to prove Brouwer’s theorem can be construc-
tively proved. Some authors have presented a constructive (or an approximate)
version of Brouwer’s theorem using Sperner’s lemma. We present a constructive
version of Tychonoff’s fixed point theorem for a locally convex space using a con-
structive version of KKM (Knaster, Kuratowski and Mazurkiewicz) lemma, and
a constructive version of Schauder’s fixed point theorem for a Banach space as a
corollary to that of Tychonoff’s theorem. We follow the Bishop style construc-
tive mathematics according to Bishop and Bridges [1], Bridges and Richman [2],
Bridges and Vit [3] and Troelstra and Dalen [10].

1 Introduction

It is often demonstrated that Brouwer’s fixed point theorem can not be constructively
or computably proved (see Potgieter [6]). Indeterminacy of the intermediate value the-
orem is an example of non-constructivity of Brouwer’s fixed point theorem. Therefore,
Tychonoff’s and Schauder’s fixed point theorems also cannot be constructively proved.
On the other hand, however, Sperner’s lemma which is used to prove Brouwer’s theo-
rem can be constructively proved. Some authors have presented a constructive (or an
approximate) version of Brouwer’s theorem using Sperner’s lemma. See Dalen [4] and
Veldman [11].

We present a constructive version of Tychonoff’s fixed point theorem for a lo-
cally convex space using a constructive version of KKM (Knaster, Kuratowski and
Mazurkiewicz) lemma, and a constructive version of Schauder’s fixed point theorem as
a corollary to that of Tychonoff’s theorem'. A constructive version of Tychonoff’s fixed
point theorem states that for any uniformly continuous function from a compact and
convex subset of a locally convex space to itself there is an approximate fixed point,
and that of Schauder’s fixed point theorem states that for any uniformly continuous
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!Formulations of Tychonoff’s and Schauder’s fixed point theorems in this paper follow those in
Istratescu [5].
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Figure 1: Partition and labeling of 2-dimensional simplex

function from a compact and convex subset of a Banach space to itself there is an
approximate fixed point. An approximate fixed point x for a function f is a point
which satisfies |z — f(x)| < € for any € > 0 in terms of the norm in a Banach space, or
satisfies Y, ppi(x — f(x)) <€, i € F for any € > 0 in terms of each finite family F' of
seminorms in a locally convex space.

A Banach space is a locally convex space. Thus, Schauder’s theorem is obtained as a
corollary to Tychonoff’s theorem. We follow the Bishop style constructive mathematics
according to Bishop and Bridges [1], Bridges and Richman [2], Bridges and Vita [3]
and Troelstra and Dalen [10].

2 Constructive Version of KKM Lemma

Let A denote an n-dimensional simplex. n is a positive integer at least 2. For example,
a 2-dimensional simplex is a triangle. We partition the simplex. Let K denote the set
of small n-dimensional simplices of A constructed by partition. The vertices of these
small simplices of K are labeled with the numbers 0, 1, 2, ..., n subject to the following
rules.

1. The vertices of A are respectively labeled with 0 to n. We label a point (1,0,...,0)
with 0, a point (0,1,0,...,0) with 1, a point (0,0,1...,0) with 2, ..., a point
(0,...,0,1) with n. That is, a vertex whose k-th coordinate (k =0,1,...,n)is 1
and all other coordinates are 0 is labeled with k.

2. If a vertex of K is contained in an (n — 1)-dimensional face of A, then that vertex
is labeled with some number which is the same as the number of a vertex of that
face. It may be a vertex of the face of A or a vertex of a small simplex of K
constructed by partition, which is contained in that face of A.
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3. If a vertex of K is contained in an (n — 2)-dimensional face of A, then that vertex
is labeled with some number which is the same as the number of a vertex of that
face. And so on for cases of higher dimension.

4. A vertex contained in inside of A is labeled with arbitrary number among 0, 1,2, ..., n.

A small simplex of K which is labeled with the numbers 0, 1, ..., n is called a fully
labeled simplex.

Figure 1 is an example of partition and labeling of a simplex.

Then, we can get the following lemma.

LEMMA 1 (Sperner’s lemma). If we label the vertices of K following above rules
1 ~ 4, then there are an odd number of fully labeled simplices. Thus, there exists at
least one fully labeled simplex.

For a constructive proof of this lemma see, for example, Su [7].
Now we prove the following lemma.

LEMMA 2 (Constructive version of KKM lemma). Let A be an n-dimensional sim-
plex, A¥ k =0,1,...,n be k-dimensional faces of A, p®, p’*, ..., p'* be their vertices,
and Ag, A1,..., A, be inhabited subsets of A which satisfy the following condition?.

k
vk AF c ] A,

=0

Then, for any € > 0 we have (;_, V(4;,e) # 0, and we can find a point contained in
Nizo V(Ai,€), where V(4;,¢) is an e-neighborhood of A4;.

The condition of this lemma means that, for example, when the vertices of A3 are
pt,p*, p® and p’, A? is covered by Ay, Ay, A5 and A;. Similarly, when the vertices of
A} are pt, p*, p°, p® and p7, A? is covered by A, Ay, A5, Ag and Az.

PROOF: Let K be the set of small n-dimensional simplices constructed by partition
of an n-dimensional simplex A. The vertices p°,p',...,p" of A are labeled with,
respectively, 0, 1, ... and n. Each vertex of all simplices of K is contained in some face
of A including A itself. If a vertex p is contained in more than one faces of A, we select
a face of least dimension. Denote it by Af. By the assumption p is contained in at least
one of A;y, A;,... and A;, . Denote it by A;,, and label p with ;. By the condition
of this lemma 4; is the number of one of the vertices of AF. This labeling satisfies
the conditions for Sperner’s lemma. Thus, there exists a fully labeled n-dimensional
simplex of K. Denote the vertices of this simplex by q",q',... and q®. We can name
them such that q’ is labeled with i. Then, each q is contained in A;. If partition of A is
sufficiently fine, the size of this fully labeled n-dimensional simplex is sufficiently small,
and we can make all V' (A4;,¢)’s contain this simplex. Then, this simplex is contained
in the intersection of all V/(A;,¢)’s. Therefore, we have (., V(A4;,¢) # 0, and we can
constructively find a point in this set.

2Usually in KKM lemma Ag, A1,..., Ay, are assumed to be closed sets. But in this lemma we do
not assume so.
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3 Constructive Version of Tychonoff’s Fixed Point
Theorem

In this section we will prove a constructive version of Tychonoff’s fixed point theorem
using a constructive version of KKM lemma. The classical Tychonoff’s theorem is
stated as follows;

Tychonoff’s fixed point theorem Let X be a compact and convex subset of a
locally convex space F, and f be a continuous function from X to itself. Then, f has
a fixed point.

A locally convex space consists of a vector space E and a family (p;);cs of seminorms
on X. [ is an index set, for example, a set of positive integers. According to Bridges
and Vita [3] uniform continuity of a function in a locally convex space is constructively
defined as follows;

Uniform continuity of a function in a locally convex space Let X, Y be locally
convex spaces. A function f: X — Y is uniformly continuous on X if for each € > 0
and each finitely enumerable subset G of J, which is also an index set, there exists § > 0
and a finitely enumerable subset F' of I such that if 2,y € X and >, pi(z —y) <9,
then >, q;(f(z) — f(y)) <e, where (gj)jes is a family of seminorms on Y.

Also an approximate fixed point is defined as follows;

Approximate fixed point of a function in a locally convex space =z is an
approximate fixed point of a function f from X to itself if for any € > 0 we have

Zpi(x —fl@) <e
icF
for each finitely enumerable F' € I.
According to Bridges and Vit [3] we define, constructively, total boundedness of a
set in a locally convex space as follows.

Total boundedness of a set in a locally convex space Let X be a subset of
E, F be a finitely enumerable subset of I, and ¢ > 0. By an e-approximation to X
relative to F' we mean a subset T' of X such that for each z € X there exists y € T
with > . cppi(z —y) <e.

X is totally bounded relative to F' if for each ¢ > 0 there exists a finitely enumerable
e-approximation to X relative to F'. It is totally bounded if it is totally bounded relative
to each finitely enumerable subset of I.

The content of our constructive version of Tychonoff’s fixed point theorem is de-
scribed in the following theorem.

THEOREM 1 (Constructive version of Tychonoff’s fixed point theorem). Let X be
a compact, convex subset of a locally convex space E, and f be a uniformly continuous
function from X to itself. Then, f has an approximate fixed point.

PROOF: We prove this theorem through two steps.
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1. First we show the following result.
Let X be a set in a locally convex space. To each x € X, let a set H(z) be given
such that the convex hull of any finite subset {x1,za,...,2;} of X is contained
in U?:l H(z;). Then, ﬂ;nzl V(H(z;),F,e) # 0 for any finite positive integer m
and each finitely enumerable F' € I. Where

V(H(z),F,e) ={y € X| Zpi(y — z) < e for some z € H(x)}.
ieF

It is called a basic neighborhood of H(x).

This is an extension to a locally convex space of a constructive version of KKM
lemma (Lemma 2). Consider an (n—1)-dimensional simplex A in Euclidean space
with vertices v; = (1,0,0,...,0), v = (0,1,0,...,0), ..., v, = (0,0,...,1).
Denote a point v € A as v = Z;nzl a;vj, and consider a function g : A — X
by g(v) = Z;n:l ajz;, where Z;”:l aj=1, a; >0, j=1,2,...,m. gis clearly
a uniformly continuous function. g(v;) = z; and g~ !(x;) = v; for all j. Uniform
continuity of g is described as follows;

g is uniformly continuous on A if for each € > 0 and each finitely enumerable
subset F' of I there exists 6 > 0 such that if z,y € A and |z — y| < J, then
Zieri(g(x) - g(y)) <e&.

Consider the following sets.
K; :gilH(%‘), ji=12,...,m.

For any indices 1 < i3 < i3 < -+ < i < m, the (k — 1)-dimensional simplex
(Viy, Vig, - - -, i, ) 1s contained in K;, U K;, U---UK;, . By Lemma 2 this implies
Ny, V(K;,8) # 0 for any § > 0, where V(Kj, d) is an d-neighborhood of K;. Be-
cause g is uniformly continuous, (;2, V(Kj,d) # 0 means (\;_, V(H(z;), F\¢) #
() for any € > 0 and each F € I.

2. Since X is totally bounded, there exists a finitely enumerable n-approximation
{@1,22,...,2m} to X, that is, for each z € X we have ), pi(x — 27) < n with
any 1 > 0 for at least one x;, [ = 1,2,...,m for each F' C I. Note that a point
y* is an approximate fixed point if for any ¢ > 0 we have

S pile - f(2) <.

i€l

for each finitely enumerable F' C I. Define a function @ from X to the set of all
subsets of X by

Q) =y € XIS iy — ) < 3 pile — Fw) + 7},
ieF i€EF
with 7 > 0. =, j = 1,2,...,k, is clearly contained in Q(z;;). Let y =

k L k
> j—1 @jTi; be a point in the convex hull of {z;,, z4,,..., 2, }, where } 5, oy =
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1, a; > 0. Then, since seminorms are subadditive®, we have

k k
Srl—f@) = oo [ Sy, — @) | <30S amiles, — Fw)

icF i€F j=1 ieF j=1
k
= Yy pilwi, — f()
=1 icF

This means that for at least one ¢; we have

sz y—fy) < sz Ti; — )+ T

ieF i€EF

Therefore, y € Q(z;,) U Q(x4,) U---UQ(z4,), and by (1) of this theorem

V(Q(z;), Fie) # 0

-

j=1

for any ¢ > 0. Let y* € ﬂ;n:l V(Q(z;), Fye). Then, Y, ppi(y* —7) < ¢ for some
y such that

szy fly <Zpl )) + 7 for each j.
i€F ieF
Since € may be arbitrarily small, uniform continuity of f implies
S nilfly) - F@) <0
ieF
for any § > 0. Thus,
Sr - ) < Syt —9) +pil - F@) + piF@) — Fly)
i€l i€F

< > pila N4+ 8+7+e
i€F

for each j. Since f(y*) € X and X is totally bounded, Y, npi(z; — f(y*)) <17
for at least one ;. Therefore,

Yowily ) < Y Ipiley — fT) A0l fyT) — F@)] 0T e

i€l i€l
< n+20+7+e.

Since 1+ 20 + 7 + € may be arbitrarily small, y* is an approximate fixed point of
f-

3Subadditivity of a seminorm p; means that for z,y € X p;(z +y) < pi(x) + pi(y).
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A Banach space is a locally convex space. Therefore, as a corollary to the construc-
tive version of Tychonoff’s fixed point theorem we obtain the following theorem.

THEOREM 2 (Constructive version of Schauder’s fixed point theorem). Let X be a
compact (totally bounded and complete) and convex subset of a Banach space E, and
f be a uniformly continuous function from X to itself. Then, f has an approximate
fixed point.

x is an approximate fixed point of f if for any € > 0
|z — f(z)| <e

in terms of the norm in a Banach space.

4 Concluding Remarks

In other papers we studied some problems in economic theory and game theory from
the viewpoint of constructive mathematics as follows.

1. In Tanaka [8] we have proved that the existence of an approximate Nash equilib-
rium in a strategic game is derived from a constructive version of Brouwer’s fixed
point theorem.

2. In Tanaka [9] we have proved that the existence of an approximate equilibrium
in a competitive exchange economy with single-valued excess demand functions
is derived from a constructive version of Brouwer’s fixed point theorem. Also we
have shown that the so-called Uzawa equivalence theorem, which states that the
existence of an equilibrium in a competitive exchange economy and Brouwer’s
fixed point theorem are equivalent, approximately holds.

The results of this paper are extensions of the constructive version of Brouwer’s
fixed point theorem used in these studies to a Banach space and a locally convex space
through a constructive version of KKM lemma.

Acknowledgment. I thank the anonymous referees for constructive remarks and
suggestions that greatly improved the original manuscript of this paper.
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