Oscillation Criteria For Second Order Delay Differential Equations With Mixed Nonlinearities*

Ethiraju Thandapani ${ }^{\dagger}$, Pandurangan Rajendiran ${ }^{\ddagger}$

Received 22 June 2010

Abstract

In this paper we establish oscillation criteria for second order delay differential equations with mixed nonlinearlities. The results obtained here generalize some of the existing results.

1 Introduction

Consider a second order delay differential equation of the form

$$
\begin{equation*}
\left(r(t) \mid x^{\prime \alpha-1} x^{\prime}(t)\right)^{\prime}+q(t)\left|x\left(\tau_{0}(t)\right)\right|^{\alpha-1} x\left(\tau_{0}(t)\right)+\sum_{j=1}^{n} q_{j}(t)\left|x\left(\tau_{j}(t)\right)\right|^{\alpha_{j}-1} x\left(\tau_{j}(t)\right)=0 \tag{1}
\end{equation*}
$$

where $\alpha_{1}>\ldots>\alpha_{m}>\alpha>\alpha_{m+1}>\cdots \alpha_{n}>0, n>m \geq 1$, are constants, $r(t) \in$ $C^{1}\left[t_{0}, \infty\right), r(t)>0, q(t)$ and $q_{j}(t) \in C\left[t_{0}, \infty\right), j=1,2, \ldots, n$, are nonnegative. Here we assume that there exists $\tau(t) \in C^{1}\left[t_{0}, \infty\right)$ such that $\tau(t) \leq \tau_{j}(t), \tau(t) \leq t, \lim _{t \longrightarrow \infty} \tau(t)=$ ∞ and $\tau^{\prime}(t) \geq 0$ for $t \in\left[t_{0}, \infty\right), j=0,1,2, \ldots, n$.

By a solution of equation (1), we mean a function $x \in C^{1}\left[T_{x}, \infty\right), T_{x} \geq t_{0}$, which has the property $r(t) \mid x^{\prime \alpha-1} x^{1}\left[T_{x}, \infty\right)$ and satisfies the equation for all $t \geq T_{x}$. We restrict our attention to those solutions $x(t)$ of equation (1) which satisfy $\sup \{|x(t)|: t>T\}>$ 0 for all $T \geq T_{x}$. Such a solution is said to be oscillatory if it has a sequence of zeros tending to infinity and nonoscillatory otherwise.

Particular cases of equation (1) has been considered in $[1,2,4,5]$ and they established conditions for the oscillation of all solutions under the assumption

$$
\begin{equation*}
\lim _{t \longrightarrow \infty} R(t)=\infty, \text { where } R(t)=\int_{t_{0}}^{t} \frac{1}{r^{\frac{1}{\alpha}}(s)} d s \tag{2}
\end{equation*}
$$

In this paper, we shall further investigate and extend the main results in [4] and [5] to the general equation (1) with mixed nonlinearities and several delays since such type of equation arise in the growth of bacteria population with competitive species.

[^0]
2 Main Results

We first present a lemma which is a generalization of Lemma 1 of Sun and Wong [6].
LEMMA 1. Let $\left\{\alpha_{i}\right\}, i=1,2, \ldots, n$, be the n-tuple satisfying $\alpha_{1}>\cdots>\alpha_{m}>\alpha>$ $\alpha_{m+1}>\cdots \alpha_{n}>0$. Then there is an n-tuple $\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right)$ satisfying

$$
\sum_{i=1}^{n} \alpha_{i} \eta_{i}=\alpha
$$

and

$$
\sum_{i=1}^{n} \eta_{i}=1, \quad 0<\eta_{i}<1
$$

LEMMA 2. Suppose X and Y are nonnegative. Then

$$
X^{\gamma}-\gamma X Y^{\gamma-1}+(\gamma-1) Y^{\gamma} \geq 0, \gamma>1
$$

where equality holds if and only if $X=Y$.
The proof of the lemma can be found in [3].
THEOREM 1. Assume that (2) holds and

$$
\begin{equation*}
\int^{\infty}\left(R^{\alpha}(\tau(t)) Q(t)-\left(\frac{\alpha}{\alpha+1}\right)^{\alpha+1} \frac{\tau^{\prime}(t)}{R(\tau(t)) r^{\frac{1}{\alpha}}(\tau(t))}\right) d t=\infty \tag{3}
\end{equation*}
$$

where

$$
Q(t)=q(t)+k \prod_{i=1}^{n} q_{i}^{\eta_{i}}(t), k=\prod_{i=1}^{n} \eta_{i}^{-\eta_{i}}
$$

and $\eta_{1}, \eta_{2}, \ldots, \eta_{n}$ are positive constants as in Lemma 1. Then every solution of equation (1) is oscillatory.

PROOF . Suppose that $x(t)$ is a nonoscillatory solution of equation (1). Without loss of generality we may assume that $x(t)>0$ for all large t since the case $x(t)<0$ can be considered by the same method. From equation (1) and condition (2) we can easily obtain that there exists a $t_{1}>t_{0}$ such that $x(t)>0, x^{\prime}(t)>0,\left(r(t)\left(x^{\prime}(t)\right)^{\alpha}\right)^{\prime} \leq$ $0, t \geq t_{1}$. Therefore, we have that

$$
r(t)\left(x^{\prime}(t)\right)^{\alpha} \leq\left(r(\tau(t))\left(x^{\prime}(\tau(t))\right)^{\alpha}\right.
$$

for $t \geq t_{1}$ which implies that

$$
\begin{equation*}
\frac{x^{\prime}(\tau(t))}{x^{\prime}(t)} \geq\left(\frac{r(t)}{r(\tau(t))}\right)^{\frac{1}{\alpha}} \text { for } t \geq t_{1} \tag{4}
\end{equation*}
$$

Define

$$
\begin{equation*}
W(t)=R^{\alpha}(\tau(t)) \frac{r(t) x^{\prime}(t)^{\alpha}}{x(\tau(t))^{\alpha}} \text { for } t \geq t_{1} \tag{5}
\end{equation*}
$$

Then $W(t)>0$. From equations (1) and (5) and noting that $x^{\prime}(t)>0$ and hence $x\left(\tau_{j}(t)\right) \geq x(\tau(t))$ for $j=0,1,2, \ldots, n$, we have

$$
\begin{aligned}
W^{\prime}(t) \leq & \frac{\alpha \tau^{\prime}(t) R^{\alpha-1}(\tau(t))}{r^{\frac{1}{\alpha}}(\tau(t))} \frac{r(t)\left(x^{\prime}(t)\right)^{\alpha}}{(x(\tau(t)))^{\alpha}}-R^{\alpha}(\tau(t)) q(t) \\
& -\alpha R^{\alpha}(\tau(t)) \frac{r(t)\left(x^{\prime}(t)\right)^{\alpha}}{x^{\alpha+1}(\tau(t))} x^{\prime}(\tau(t)) \tau^{\prime}(t)-R^{\alpha}(\tau(t)) \sum_{j=1}^{n} q_{j}(t) x^{\alpha_{j}-\alpha}(\tau(t)) .(6)
\end{aligned}
$$

Recall the arithmetic-geometric inequality

$$
\begin{equation*}
\sum_{i=1}^{n} \eta_{i} u_{i} \geq \prod_{i=1}^{n} u_{i}^{\eta_{i}}, u_{i} \geq 0 \tag{7}
\end{equation*}
$$

where $\eta_{1}, \ldots, \eta_{n}$ are chosen according to given $\alpha, \alpha_{1} \ldots, \alpha_{n}$ as in Lemma 1. Now return to (6) and identify $u_{i}=\eta_{i}^{-1} q_{i}(t) x^{\alpha_{i}-\alpha}(\tau(t))$ in (7) to obtain

$$
\begin{align*}
W^{\prime}(t) \leq & -R^{\alpha}(\tau(t)) Q(t)+\frac{\alpha \tau^{\prime}(t)}{R(\tau(t)) r^{\frac{1}{\alpha}}(\tau(t))} W(t) \\
& -\frac{\alpha \tau^{\prime}(t)}{R(\tau(t)) r^{\frac{1}{\alpha}}(\tau(t))} \frac{R^{\alpha+1}(\tau(t)) r^{\frac{\alpha+1}{\alpha}}(t)\left(x^{\prime}(t)\right)^{\alpha+1}}{(x(\tau(t)))^{\alpha+1}} \\
= & -R^{\alpha}(\tau(t)) Q(t)+\frac{\alpha \tau^{\prime}(t)}{R(\tau(t)) r^{\frac{1}{\alpha}}(\tau(t))}\left[W(t)-W^{\frac{\alpha+1}{\alpha}}(t)\right] \tag{8}
\end{align*}
$$

where $Q(t)$ is the same as in Theorem 1. Set $X=W(t)$ and $Y=\lambda^{\frac{1}{1-\lambda}}$ where $\lambda=$ $\frac{\alpha+1}{\alpha}>1$. Applying Lemma 2 in (8) we obtain

$$
W^{\prime}(t) \leq\left(\frac{\alpha}{\alpha+1}\right)^{\alpha+1} \frac{\tau^{\prime}(t)}{R(\tau(t)) r^{\frac{1}{\alpha}}(\tau(t))}-R^{\alpha}(\tau(t)) Q(t)
$$

Integrating the last inequality from t_{1} to t, we have

$$
\begin{equation*}
0<W(t) \leq W\left(t_{1}\right)-\int_{t_{1}}^{t}\left(R^{\alpha}(\tau(s)) Q(s)-\left(\frac{\alpha}{\alpha+1}\right)^{\alpha+1} \frac{\tau^{\prime}(s)}{R(\tau(s)) r^{\frac{1}{\alpha}}(\tau(s))}\right) d s \tag{9}
\end{equation*}
$$

Letting $t \rightarrow \infty$ in (9), we obtain a contradiction with (3). This completes the proof.

Based on Theorem 1 and the proofs of Corollary 2.1 and the Corollary 2.2 in $[2,5]$, we can easily obtain the following results.

COROLLARY 2. Assume that (2) holds and for $t_{1}>t_{0}$

$$
\lim _{t \rightarrow \infty} \inf \frac{1}{\log R(\tau(t))} \int_{t_{1}}^{t} R^{\alpha}(\tau(s)) Q(s) d s>\left(\frac{\alpha}{\alpha+1}\right)^{\alpha+1}
$$

where $Q(t)$ is the same as in Theorem 1. Then every solution of equation (1) is oscillatory.

COROLLARY 3. Assume that (2) holds, $\tau^{\prime}(t)>0$ and

$$
\lim _{t \rightarrow \infty} \inf \frac{R^{\alpha+1}(\tau(t)) r^{\frac{1}{\alpha}}(\tau(t))}{\tau^{\prime}(t)} Q(t)>\left(\frac{\alpha}{\alpha+1}\right)^{\alpha+1}
$$

where $Q(t)$ is the same as in Theorem 1. Then every solution of equation (1) is oscillatory.

The following examples show the importance of our main results.
EXAMPLE 1. Consider the equation

$$
\begin{equation*}
\left(\left(x^{\prime}(t)\right)^{\frac{3}{5}}\right)^{\prime}+\frac{a}{t^{\frac{8}{5}}} x^{\frac{3}{5}}\left(\lambda_{1} t\right)+\frac{b}{t^{4}} x^{\frac{5}{3}}\left(\lambda_{2} t\right)+\frac{c}{t} x^{\frac{1}{3}}\left(\lambda_{3} t\right)=0, \quad t \geq 1 \tag{10}
\end{equation*}
$$

where $0<\lambda_{i}<1$ for $i=1,2,3$ and $a, b, c>0$ are constants. Set $\tau(t)=\lambda t$ with $\lambda=\min \left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$. Also $\alpha=3 / 5, \alpha_{1}=5 / 3, \alpha_{2}=1 / 3$. By direct computation, we have by choosing $\eta_{1}=\frac{1}{5}, \eta_{2}=\frac{4}{5}$, that

$$
Q(t)=\frac{\left(a+5\left(\frac{1}{4}\right)^{4 / 5} \sqrt[5]{b c^{4}}\right)}{t^{8 / 5}}
$$

By Corollary 2 or Corollary 3 we have that all solutions of equation (10) are oscillatory if

$$
\lambda^{3 / 5}\left(a+5\left(\frac{1}{4}\right)^{4 / 5} \sqrt[5]{b c^{4}}\right)>\left(\frac{3}{8}\right)^{8 / 5}
$$

EXAMPLE 2. Consider the equation

$$
\begin{equation*}
x^{\prime \prime}(t)+\frac{a}{t^{2}} x\left(\lambda_{1} t\right)+\frac{b}{t^{3}} x^{\frac{7}{3}}\left(\lambda_{2} t\right)+\frac{c}{t^{2}} x^{\frac{5}{3}}\left(\lambda_{3} t\right)+\frac{d}{t^{\frac{12}{7}}} x^{\frac{1}{3}}\left(\lambda_{4} t\right)=0, \quad t \geq 1 \tag{11}
\end{equation*}
$$

where $0<\lambda_{i}<1$ for $i=1,2,3,4$ and $a, b, c, d>0$ are constants. Set $\tau(t)=\lambda t$ with $\lambda=\min \left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right\}$. Also $\alpha=1, \alpha_{1}=7 / 3, \alpha_{2}=5 / 3, \alpha_{3}=1 / 3$. By direct computation, we have by choosing $\eta_{1}=1 / 6, \eta_{2}=1 / 4, \eta_{3}=7 / 12$, that

$$
Q(t)=\frac{\left(a+k b^{\frac{1}{6}} c^{\frac{1}{4}} d^{\frac{7}{12}}\right)}{t^{2}}, \quad k=\frac{2^{\frac{11}{6}} 3^{\frac{3}{4}}}{7^{\frac{7}{12}}} .
$$

By Corollary 2 or Corollary 3 we have that all solutions of equation (11) are oscillatory if

$$
\lambda\left(a+k b^{\frac{1}{6}} c^{\frac{1}{4}} d^{\frac{7}{12}}\right)>\frac{1}{4}
$$

3 Remark

The main results of this paper can be easily extended to the following neutral differential equation.

$$
\left(r(t) \mid z^{\prime \alpha-1} z^{\prime}(t)\right)^{\alpha-1} x(\tau(t))+\sum_{j=1}^{n} q_{j}(t)\left|x^{\prime}\left(\tau_{j}(t)\right)\right|^{\alpha_{j}-1} x\left(\tau_{j}(t)\right)=0
$$

where $z(t)=x(t)+p(t) x(t-\sigma)$ with $0 \leq p(t)<1$ and $\sigma \geq 0$ and the details are skipped.

References

[1] R. P. Agarwal, S. L. Shieh and C. C. Yeh, Oscillation criteria for second order retarded differential equations, Math. Comput. Model., 26(1997), 1-11.
[2] J. Dzurina and I. P. Stavroulakis, Oscillation criteria for second order delay differential equations, Appl. Math. Comput., 140(2003), 445-453.
[3] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1952.
[4] Y. G. Sun and F. W. Meng, Note on the paper on Dzurina and Stavroulakis, Appl. Math. Comput., 174(2006), 1634-1641.
[5] Y. G. Sun and F. W. Meng, Oscillation of second order delay differential equations with mixed nonlinearities, Appl. Math. Comput., 207(2009), 135-139.
[6] Y. G. Sun and J. S. W. Wong, Oscillation criteria for second order forced ordinary differential equations with mixed nonlinearities, J. Math. Anal. Appl., 334(2007), 549-560.

[^0]: *Mathematics Subject Classifications: 34K11, 34C55.
 ${ }^{\dagger}$ Ramanujan Institute for Advanced Study in Mathematics University of Madras, Chennai 600005 , India
 ${ }^{\ddagger}$ Department of Mathematics, Presidency College, Chennai - 600 005, India

