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Abstract

Some inequalities of Simpson�s type for quasi-convex functions in terms of
third derivatives are introduced. Applications to Simpson�s numerical quadrature
rule is also given.

1 Introduction

Suppose f : [a; b]! R is fourth times continuously di¤erentiable function on (a; b) andf (4)
1
:= supx2(a;b)

���f (4) (x)��� <1:
Then the following inequality������

bZ
a

f (x) dx� (b� a)
6

�
f (a) + 4f

�
a+ b

2

�
+ f (b)

������� � (b� a)5

2880

f (4)
1

(1)

holds, and in the literature known as Simpson�s inequality. It is well known that if the
function f is neither four times di¤erentiable nor its fourth derivative is bounded on
(a; b), then we cannot apply the classical Simpson quadrature formula.
In [13], Peµcaríc et al. obtained some inequalities of Simpson�s type for functions

whose n-th derivative, n 2 f0; 1; 2; 3g is of bounded variation, as follow:
THEOREM 1.Let n 2 f0; 1; 2; 3g. Let f be a real function on [a; b] such that f (n)

is function of bounded variation. Then������
bZ
a

f (x) dx� (b� a)
6

�
f (a) + 4f

�
a+ b

2

�
+ f (b)

������� � Cn (b� a)n+1
b_
a

�
f (n)

�
; (2)

where,

C0 =
1

3
; C1 =

1

24
; C2 =

1

324
; C3 =

1
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and
Wb
a

�
f (n)

�
is the total variation of f (n) on the interval [a; b].

Here we note that, the inequality (2) with n = 0, was proved by Dragomir [3]. Also,
Ghizzetti et al. [9], proved that if f 000 is an absolutely continuous function with total
variation

Wb
a (f), then (2) holds with n = 3.

In recent years many authors had established several generalizations of the Simp-
son�s inequality for functions of bounded variation and for Lipschitzian, monotonic,
and absolutely continuous functions via kernels. For re�nements, counterparts, gener-
alizations and several Simpson�s type inequalities see [2]�[13] and [15]�[17].
The notion of a quasi-convex function generalizes the notion of a convex functions.

More precisely, a function f : [a; b]! R, is said quasi-convex on [a; b] if

f (�x+ (1� �) y) � max ff (x) ; f (y)g ;

for all x; y 2 [a; b] and � 2 [0; 1]. Clearly, any convex function is a quasi-convex
function. Furthermore, there exist quasi-convex functions which are neither convex
nor continuous, For more details about quasi-convex functions, we refer the reader to
[14].

EXAMPLE 1. The �oor function floor(x) = bxc, is the largest integer not greater
than x, is an example of a monotonic increasing function which is quasi-convex but it
is neither convex nor continuous.

In the same time, one can note that the quasi-convex functions may be not of
bounded variation, i.e., there exist quasi-convex functions which are not of bounded
variation. For example, consider the function f : [0; 2]! R, de�ned by

f (x) =

�
x sin

�
�
x

�
if x 6= 0;

0 if x = 0;

is quasi-convex but not of bounded variation on [0; 2]. Therefore, we cannot apply the
above inequalities. For new inequalities via quasi-convex function see [1, 2].
In this paper, we obtain some inequalities of Simpson type via quasi-convex function.

This approach allows us to investigate Simpson�s quadrature rule that has restrictions
on the behavior of the integrand and thus to deal with larger classes of functions.

2 Inequalities of Simpson�s Type for Quasi-Convex
Functions

Let us begin with the following lemma:

LEMMA 1. Let f 00 : I � R ! R be an absolutely continuous function on I� such
that f 000 2 L[a; b], where a; b 2 I with a < b. If jf 000j is quasi-convex on [a; b], then the
following inequality holds:Z b

a

f (x) dx� (b� a)
6

�
f (a) + 4f

�
a+ b

2

�
+ f (b)

�
= (b� a)4

Z 1

0

p (t) f 000 (ta+ (1� t) b) dt; (3)
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where,

p (t) =

�
1
6 t
2
�
t� 1

2

�
if t 2

�
0; 12
�
;

1
6 (t� 1)

2 �
t� 1

2

�
if t 2

�
1
2 ; 1
�
:

PROOF. We note that

I =

Z 1

0

p (t) f 000 (ta+ (1� t) b) dt =
1

6

Z 1=2

0

t2
�
t� 1

2

�
f 000 (ta+ (1� t) b) dt

+
1

6

Z 1

1=2

(t� 1)2
�
t� 1

2

�
f 000 (ta+ (1� t) b) dt:

Integrating by parts, we get

I =
1

6
t2
�
t� 1

2

�
f 00 (ta+ (1� t) b)

a� b

����1=2
0

� 1

6
t (3t� 1) f

0 (ta+ (1� t) b)
(a� b)2

�����
1=2

0

+

�
t� 1

6

�
f (ta+ (1� t) b)

(a� b)3

�����
1=2

0

�
Z 1=2

0

f (ta+ (1� t) b)
(a� b)3

dt

+
1

6
(t� 1)2

�
t� 1

2

�
f 00 (ta+ (1� t) b)

a� b

����1
1=2

� 1

6
(3t� 2) (t� 1) f

0 (ta+ (1� t) b)
(a� b)2

�����
1

1=2

+

�
t� 5

6

�
f (ta+ (1� t) b)

(a� b)3

�����
1

1=2

�
Z 1

1=2

f (ta+ (1� t) b)
(a� b)3

dt

= � 1

24

f 0
�
a+b
2

�
(a� b)2

+
2

6

f
�
a+b
2

�
(a� b)3

+
1

6

f (b)

(a� b)3
�
Z 1=2

0

f (ta+ (1� t) b)
(a� b)3

dt

+
1

24

f 0
�
a+b
2

�
(a� b)2

+
1

6

f (a)

(a� b)3
+
2

6

f
�
a+b
2

�
(a� b)3

�
Z 1

1=2

f (ta+ (1� t) b)
(a� b)3

dt

Setting x = ta+ (1� t) b, and dx = (a� b)dt, gives

(b� a)4 � I =
Z b

a

f (x) dx� (b� a)
6

�
f (a) + 4f

�
a+ b

2

�
+ f (b)

�
;

which gives the desired representation (3).Therefore, we can state the following result.

THEOREM 2. Let f 00 : I � R ! R be an absolutely continuous function on I�

such that f 000 2 L[a; b], where a; b 2 I with a < b. If jf 000j is quasi-convex on [a; b], then
the following inequality holds:�����

Z b

a

f (x) dx� (b� a)
6

�
f (a) + 4f

�
a+ b

2

�
+ f (b)

������
� (b� a)4
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�
max

�
jf 000 (a)j ;

����f 000�a+ b2
������+max�����f 000�a+ b2

����� ; jf 000 (b)j�� :(4)
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PROOF. From Lemma 2 and quasi-convexity of jf 000j, we have

�����
Z b

a

f (x) dx� (b� a)
6

�
f (a) + 4f

�
a+ b

2

�
+ f (b)

������
� (b� a)4

Z 1

0

jp (t) f 000 (ta+ (1� t) b)j dt

=
(b� a)4

6

Z 1=2

0

����t2�t� 12
����� jf 000 (ta+ (1� t) b)j dt

+
(b� a)4

6

Z 1

1=2

����(t� 1)2�t� 12
����� jf 000 (ta+ (1� t) b)j dt

� (b� a)4

6

Z 1=2

0

t2
�
1

2
� t
�
�max

�
jf 000 (b)j ;

����f 000�a+ b2
������ dt

+
(b� a)4

6

Z 1

1=2

(1� t)2
�
t� 1

2

�
�max

�����f 000�a+ b2
����� ; jf 000 (a)j� dt

=
(b� a)4

1152

�
max

�
jf 000 (a)j ;

����f 000�a+ b2
������+max�����f 000�a+ b2

����� ; jf 000 (b)j�� ;
which completes the proof.

The corresponding version of the inequality (2.2) for powers in terms of the third
derivative is incorporated as follows:

THEOREM 3. Let f 00 : I � R! R be an absolutely continuous function on I� such
that f 000 2 L[a; b], where a; b 2 I with a < b. If jf 000jq ; q = p=(p � 1); is quasi-convex
on [a; b], for some �xed p > 1, then the following inequality holds:

�����
Z b

a

f (x) dx� (b� a)
6

�
f (a) + 4f

�
a+ b

2

�
+ f (b)

������
� 2�1=p (b� a)4

48

�
� (p+ 1)� (2p+ 1)

� (3p+ 2)

�1=p "�
max

�����f 000�a+ b2
�����q ; jf 000 (b)jq��1=q

+

�
max

�����f 000�a+ b2
�����q ; jf 000 (a)jq��1=q

#

=
2�1=p (b� a)4

48
(B(p+ 1; 2p+ 1))

1=p

"�
max

�����f 000�a+ b2
�����q ; jf 000 (b)jq��1=q

+

�
max

�����f 000�a+ b2
�����q ; jf 000 (a)jq��1=q

#
:
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PROOF. From Lemma 2 and the Hölder�s inequality, we have

�����
Z b

a

f (x) dx� (b� a)
6

�
f (a) + 4f

�
a+ b

2

�
+ f (b)

������
� (b� a)4

Z 1

0

jp (t) f 000 (ta+ (1� t) b)j dt

=
(b� a)4

6

Z 1=2

0

����t2�t� 12
����� jf 000 (ta+ (1� t) b)j dt

+
(b� a)4

6

Z 1

1=2

����(t� 1)2�t� 12
����� jf 000 (ta+ (1� t) b)j dt

� (b� a)4

6

 Z 1=2

0

�
t2
�
1

2
� t
��p

dt

!1=p Z 1=2

0

jf 000 (ta+ (1� t) b)jq dt
!1=q

+
(b� a)4

6

 Z 1

1=2

�
(t� 1)2

�
t� 1

2

��p
dt

!1=p Z 1

1=2

jf 000 (ta+ (1� t) b)jq dt
!1=q

:

Since f is quasi-convex by Hermite-Hadamard�s inequality, we have

Z 1=2

0

jf 000 (ta+ (1� t) b)jq dt � max
�����f 000�a+ b2

�����q ; jf 000 (b)jq� ;
and Z 1

1=2

jf 000 (ta+ (1� t) b)jq dt � max
�����f 000�a+ b2

�����q ; jf 000 (a)jq� :
A combination of the above numbered inequalities, we get

�����
Z b

a

f (x) dx� (b� a)
6

�
f (a) + 4f

�
a+ b

2

�
+ f (b)

������
� 2�1=p (b� a)4

48

�
� (p+ 1)� (2p+ 1)

� (3p+ 2)

�1=p "�
max

�����f 000�a+ b2
�����q ; jf 000 (b)jq��1=q

+

�
max

�����f 000�a+ b2
�����q ; jf 000 (a)jq��1=q

#
;

which completes the proof.

REMARK 1. Similar inequalities involving third derivative may be stated if one
assumes that jf 000j is convex on [a; b]. The details are left to the interested readers.
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3 Applications to Simpson�s Formula

Let d be a division of the interval [a; b], i.e., d : a = x0 < x1 < ::: < xn�1 < xn = b,
hi = (xi+1 � xi) =2 and consider the Simpson�s formula

S (f; d) =
n�1X
i=0

f (xi) + 4f (xi + hi) + f (xi+1)

6
(xi+1 � xi):

It is well known that if the function f : [a; b] ! R, is di¤erentiable such that f (4) (x)
exists on (a; b) and

M = sup x2(a;b)

���f (4) (x)��� <1;
then

I =

bZ
a

f (x) dx = S (f; d) + ES (f; d) ; (5)

where the approximation error ES (f; d) of the integral I by the Simpson�s formula
S (f; d) satis�es

jES (f; d)j �
M

2880

n�1X
i=0

(xi+1 � xi)5:

However, if the mapping f is not fourth di¤erentiable or the fourth derivative is not
bounded on (a; b), then (5) cannot be applied. In the following we give a new estimation
for the remainder term ES (f; d) in terms of the third derivative.

PROPOSITION 1. Let f 00 : I � R ! R be an absolutely continuous function on
I� such that f 000 2 L[a; b], where a; b 2 I with a < b. If jf 000j is quasi-convex on [a; b],
then for every division d of [a; b], the following holds:

jES (f; d)j � 1

1152

n�1X
i=0

(xi+1 � xi)4
�
max

�
f 000 (xi) ; f

000
�
xi + xi+1

2

��
+max

�
f 000
�
xi + xi+1

2

�
; f 000 (xi+1)

��
:

PROOF. Applying Theorem 2 on the subintervals [xi; xi+1], (i = 0; 1; :::; n � 1) of
the division d, we get������

xi+1Z
xi

f (x) dx� (xi+1 � xi)
6

�
f (xi) + 4f

�
xi + xi+1

2

�
+ f (xi+1)

�������
� (xi+1 � xi)4

1152

�
max

�
jf 000 (xi)j ;

����f 000�xi + xi+12

������
+max

�����f 000�xi + xi+12

����� ; jf 000 (xi+1)j��
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Summing over i from 0 to n� 1 and taking into account that jf 000j is quasi-convex, we
deduce that������
bZ
a

f (x) dx� S (f; d)

������ � 1

1152

n�1X
i=0

(xi+1 � xi)4
�
max

�
jf 000 (xi)j ;

����f 000�xi + xi+12

������

+max

�����f 000�xi + xi+12

����� ; jf 000 (xi+1)j�� ;
which completes the proof.
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