ISSN 1607-2510

Asymptotic Behaviour Of Solutions For Some Weakly Dissipative Wave Equations Of p-Laplacian Type*

Nour-Eddine Amroun and Salima Mimouni[†]

Received 27 March 2010

Abstract

In this paper we study decay properties of some weakly dissipative wave equations of p-Laplacian type.

1 Introduction

We consider the initial boundary problem for the nonlinear wave equation of p-Laplacian type with a weak nonlinear dissipation of the type

$$\begin{cases} u_{tt} - \Delta_p u + \sigma(t)(u_t + |u_t|^{m-2} u_t) = 0, \\ u(x, 0) = u_0(x), \quad u'(x, 0) = u_1(x) \text{ in } \Omega. \end{cases}$$
(1)

where $\Delta_p u = div(|\nabla_x u|^{p-2}\nabla_x u), p \ge 2, \sigma$ is a positive function and Ω is a bounded domain of $\mathbb{R}^n (n \ge 1)$, with a smooth boundary $\Gamma = \partial \Omega$.

For the problem (1), when p = 2 and $\sigma \equiv 1$, Messaoudi [7] showed that, for any initial data $(u_0, u_1) \in H_0^1(\Omega) \times L^2(\Omega)$, the problem has a unique global solution with energy decaying exponentially. In the case when $g(u_t) = |u_t|^{m-2}u_t$, Nakao [9] showed that (1) has a unique global weak solution if $0 \leq \theta - 2 \leq 2/(n-3)$, $n \geq 3$ and a global unique strong solution if $\theta - 2 > 2/(n-2)$, $n \geq 3$ (of course if n = 1 or 2 then the only requirement is $\theta \geq 2$). In addition to global existence the issue of the decay rate was also addressed. In both cases it has been shown that the energy of the solution decays algebraically if m > 2 and decays exponentially if m = 2. This improves an earlier result by Nakao [10], where he studied the problem in an abstract setting and established a theorem concerning decay of the solution energy only for the case $m - 2 \leq 2/(n-2)$, $n \geq 3$.

Our purpose in this paper is to give an energy decay estimates of the solutions to the problem (1) for a weak nonlinear dissipation, we extend the results obtained by Ye [16], also we prove in some cases an exponential decay when p > 2 and the dissipative term is not necessarily superlinear near the origin.

We use a new method recently introduced by Martinez [6] (see also [2]) to study the decay rate of solutions to the wave equation $u'' - \Delta_x u + g(u') = 0$ in $\Omega \times \mathbb{R}^+$, where

^{*}Mathematics Subject Classifications: 35B40, 35L70.

[†]Laboratory of Mathematics, Djillali Liabes University, Sidi Bel Abbes 22000, Algeria

 Ω is a bounded domain of \mathbb{R}^n . This method is based on new integral inequality that generalizes a result of Haraux [4].

Throughout this paper the functions considered are all real valued. We omit the space variable x of u(x,t), $u_t(x,t)$ and simply denote u(x,t), $u_t(x,t)$ by u(t), u'(t), respectively, when no confusion arises. Let l be a number with $2 \le l \le \infty$. We denote by $\| \cdot \|_l$ the L^l norm over Ω . In particular, L^2 norm is denoted $\| \cdot \|_2$. (.) denotes the usual L^2 inner product. We use familiar function spaces $W_0^{1,p}$.

2 Preliminaries and Main Results

The function $\sigma(t)$ satisfies the following hypotheses:

(H1) $\sigma : \mathbb{R}_+ \to \mathbb{R}_+$ is a nonincreasing function of class C^1 on \mathbb{R}_+ satisfying

$$\int_0^{+\infty} \sigma(\tau) \, d\tau = +\infty.$$

We define the energy associated to the solution of (1) by the following formula

$$E(t) = \frac{1}{2} \|u'\|_2^2 + \frac{1}{p} \|\nabla_x u\|_p^p.$$

We first state two well known lemmas, and then we state and prove a lemma that will be needed later.

LEMMA 1 (Sobolev-Poincaré inequality). Let q be a number with $2 \leq q < +\infty$ $(n \leq p)$ or $2 \leq q \leq \frac{np}{n-p}$ $(n \geq p+1)$, then there is a constant $c_* = c(\Omega, q)$ such that

$$||u||_q \le c_* ||\nabla u||_p \quad \text{for} \quad u \in W_0^{1,p}(\Omega).$$

LEMMA 2 ([5]). Let $E : \mathbb{R}_+ \to \mathbb{R}_+$ be a non-increasing function and assume that there are two constants $q \ge 0$ and A > 0 such that

$$\int_{S}^{+\infty} E^{q+1}(t) dt \le \frac{1}{A} E(0)^{q} E(S), \quad 0 \le S < +\infty.$$

Then we have

$$E(t) \le E(0) \left(\frac{1+q}{1+qAt}\right)^{1/q} \quad \forall t \ge 0, \quad \text{ if } q > 0$$

and

$$E(t) \le E(0)e^{1-At} \ \forall t \ge 0, \quad \text{if } q = 0.$$

LEMMA 3 ([6]). Let $E : \mathbb{R}_+ \to \mathbb{R}_+$ be a non-increasing function and $\phi : \mathbb{R}_+ \to \mathbb{R}_+$ an increasing C^2 function such that

$$\phi(0) = 0$$
 and $\phi(t) \to +\infty$ as $t \to +\infty$.

Assume that there exist $q \ge 0$ and A > 0 such that

$$\int_{S}^{+\infty} E(t)^{q+1}(t)\phi'(t) \, dt \le \frac{1}{A} E(0)^{q} E(S), \quad 0 \le S < +\infty.$$

Then we have

$$E(t) \le E(0) \left(\frac{1+q}{1+qA\phi(t)}\right)^{1/q} \quad \forall t \ge 0, \quad \text{ if } q > 0$$

and

$$E(t) \le cE(0)e^{-\omega\phi(t)} \quad \forall t \ge 0, \quad \text{if } q = 0.$$

PROOF. Let $f : \mathbb{R}_+ \to \mathbb{R}_+$ be defined by $f(x) := E(\phi^{-1}(x))$, (we remark that ϕ^{-1} has a sense by the hypotheses assumed on ϕ). The function f is non-increasing, f(0) = E(0) and if we set $x := \phi(t)$ we obtain

$$\int_{\phi(S)}^{\phi(T)} f(x)^{q+1} dx = \int_{\phi(S)}^{\phi(T)} E(\phi^{-1}(x))^{q+1} dx$$
$$= \int_{S}^{T} E(t)^{q+1} \phi'(t) dt$$
$$\leq \frac{1}{A} E(0)^{q} E(S)$$
$$= \frac{1}{A} E(0)^{q} f(\phi(S)), \quad 0 \leq S < T < +\infty$$

Setting $s := \phi(S)$ and letting $T \to +\infty$, we deduce that

$$\int_{s}^{+\infty} f(x)^{q+1} \, dx \le \frac{1}{A} E(0)^{q} f(s), \quad 0 \le s < +\infty.$$

Thanks to Lemma 2, we deduce the desired results.

Now we recall the following global existence, which can be established by using the argument in [9].

THEOREM 1. Assume that $(u_0, u_1) \in \mathcal{W}_0^{1,p}(\Omega) \times L^2(\Omega)$. Then the problem (1) admits a unique strong solution on $\Omega \times [0, \infty)$ in the class

$$C([0,\infty[,\mathcal{W}^{1,p}_0(\Omega))\cap C^1([0,\infty),L^2(\Omega)))$$

Our main result is the following.

THEOREM 2. Let $(u_0, u_1) \in W_0^{1,p} \times L^2(\Omega)$, $2 < m \leq \frac{2n}{(n-2)^+}$ and suppose that (H1) holds. Then the solution u(x, t) of the problem (1) satisfies the following energy decay estimates.

(1) If p = 2, then there exists a positive constant ω such that

$$E(t) \le C(E(0))exp\left(1 - \omega \int_0^t \sigma(\tau) \, d\tau\right) \quad \forall t > 0.$$

(2) If p > 2, then there exists a positive constant C(E(0)) depending continuously on E(0) such that

$$E(t) \le \left(\frac{C(E(0))}{\int_0^t \sigma(\tau) \, d\tau}\right)^{\frac{p}{p-2}}, \quad \forall t > 0.$$

EXAMPLES.

1) Suppose that $\sigma(t) = \frac{1}{t^{\theta}} \ (0 \le \theta \le 1)$, by applying Theorem 2 we obtain

$$E(t) \le C(E(0))e^{1-\omega t^{1-\theta}} \text{ if } \theta \in [0,1), \ p = 2,$$
$$E(t) \le C(E(0))t^{-\frac{(1-\theta)p}{p-2}} \text{ if } 0 \le \theta < 1, \ p > 2$$

and

$$E(t) \le C(E(0))(\ln t)^{-\frac{p}{p-2}}$$
 if $\theta = 1, \ l < m+1.$

2) Suppose that $\sigma(t) = \frac{1}{t^{\theta} \ln t \ln_2 t \cdots \ln_k t}$, where k is a positive integer and

$$\begin{cases} \ln_1(t) = \ln(t), \\ \ln_{k+1}(t) = \ln(\ln_k(t)) \end{cases}$$

by applying Theorem 2, we obtain

$$E(t) \le C(E(0))(\ln_{k+1} t)^{-\frac{p}{p-2}} \text{ if } \theta = 1, \ p > 2,$$
$$E(t) \le C(E(0))t^{-\frac{(1-\theta)p}{p-2}}(\ln t \ln_2 t \cdots \ln_k t)^{\frac{p}{p-2}} \text{ if } 0 \le \theta < 1, \ p > 2.$$

3) Suppose that $\sigma(t) = \frac{1}{t^{\theta}(\ln t)^{\gamma}}$, by applying Theorem 2, we obtain

$$\left\{ \begin{array}{ll} E(t) \leq C(E(0))t^{-\frac{(1-\theta)p}{p-2}}(\ln t)^{\frac{\gamma p}{p-2}} & \text{if } 0 \leq \theta < 1, p > 2, \\ E(t) \leq C(E(0))(\ln t)^{-\frac{(1-\gamma)p}{p-2}} & \text{if } \theta = 1, \ 0 \leq \gamma < 1, p > 2, \\ E(t) \leq C(E(0))(\ln_2 t)^{-\frac{p}{p-2}} & \text{if } \theta = 1, \ \gamma = 1, \qquad p > 2. \end{array} \right.$$

3 Proof of Theorem 2

First we have the following energy identity for the problem (1).

LEMMA 4 (Energy identity). Let u(t, x) be a global solution to the problem (1) on $[0, \infty)$ as in Theorem 1. Then we have

$$E(t) + \int_{\Omega} \int_0^t \sigma(s) u'(s) g(u'(s)) ds dx = E(0)$$

for all $t \in [0, \infty)$ and where we set $g(u') = u' + |u'|^{m-2} u'$.

178

N. E. Amroun and S. Mimouni

Now, we shall derive the decay estimate for the solutions in Theorem 1. For this we use the method of multipliers. We denote by c various positive constants which may be different at different occurrences.

We multiply the first equation of (1) by $E^q \phi' u$, where ϕ is a function satisfying all the hypotheses of Lemma 3. We obtain

$$0 = \int_{S}^{T} E^{q} \phi' \int_{\Omega} u \left(u'' - \Delta_{p} u + \sigma(t)(u' + |u'|^{m-2} u') \right) dx dt$$

$$= \int_{S}^{T} E^{q} \phi' \int_{\Omega} u u'' dx dt - \int_{S}^{T} E^{q} \phi' \int_{\Omega} u \Delta_{p} u dx dt$$

$$+ \int_{S}^{T} E^{q} \phi' \int_{\Omega} \sigma(t) u(u' + |u'|^{m-2} u') dx dt$$

$$= \left[E^{q} \phi' \int_{\Omega} u u' dx \right]_{S}^{T} - \int_{S}^{T} (q E' E^{q-1} \phi' + E^{q} \phi'') \int_{\Omega} u u' dx dt$$

$$= - \int_{S}^{T} E^{q} \phi' \int_{\Omega} |u'|^{2} dx dt + \int_{S}^{T} E^{q} \phi' \int_{\Omega} |\nabla u|^{p} dx dt$$

$$+ \int_{S}^{T} E^{q} \phi' \int_{\Omega} \sigma(t) u(u' + |u'|^{m-2} u') dx dt.$$

We deduce that

$$2\int_{S}^{T} E^{q+1}\phi' dt = -\left[E^{q}\phi'\int uu'dx\right]_{S}^{T} + \int_{S}^{T} (qE'E^{q-1}\phi' + E^{q}\phi'')\int_{\Omega} uu'dxdt + 2\int_{S}^{T} E^{q}\phi'\int_{\Omega} u'^{2}dxdt + \left(\frac{2}{p} - 1\right)\int_{S}^{T} E^{q}\phi'\int_{\Omega} |\nabla u|^{p}dxdt + \int_{S}^{T} E^{q}\phi'\int_{\Omega} \sigma(t)u(u' + |u'|^{m-2}u')dxdt$$
(2)

Define

$$\phi(t) = \int_0^t \sigma(s) ds.$$

It is clear that ϕ is a non decreasing function of class C^2 on \mathbb{R}_+ . Hypothesis (H1) ensures that

$$\phi(t) \to +\infty \text{ as } t \to +\infty.$$
 (3)

Since E is non-increasing, ϕ' is a bounded non-negative function on \mathbb{R}_+ (and we denote by μ its maximum), we find that

$$\left| E(t)^{q} \phi' \int_{\Omega} uu' \, dx \right| \leq \left[-cE^{q+\frac{1}{p}+\frac{1}{2}} \phi' \right]_{S}^{T} \leq c\mu E(S)^{q+\frac{1}{2}+\frac{1}{p}}, \qquad \forall t \geq S,$$
$$\left| (qE'E^{q-1}\phi' + E^{q}\phi'') \int_{\Omega} uu' \, dx \right| \leq c\mu \int_{S}^{T} (-E'(t))E(t)^{q-\frac{1}{2}+\frac{1}{p}} dt$$

Weakly Dissipative Wave Equations

$$+c \int_{S}^{T} E(t)^{q+\frac{1}{2}+\frac{1}{p}} (-\phi'') dt$$

$$\leq c \mu E(S)^{q+\frac{1}{2}+\frac{1}{p}},$$

$$\begin{split} 2\int_{S}^{T}E^{q}\phi'\int_{\Omega}u'^{2}dxdt &\leq 2\int_{S}^{T}E^{q}\frac{\phi'}{\sigma(t)}\int_{\Omega}\sigma(t)(u'^{2}+|u'|^{m})dxdt\\ &\leq -\int_{S}^{T}E^{q}(t)E'(t)dt\\ &\leq C'E^{q+1}(S) \end{split}$$

where we have also used the Hölder and Sobolev-Poincaré inequalities. Using these estimates we conclude from (2) that

$$2\int_{S}^{T} E(t)^{1+q} \phi'(t) dt \leq c \mu E(S)^{q+\frac{1}{2}+\frac{1}{p}} + c' E(S)^{q+1} + \int_{S}^{T} E^{q} \phi' \int_{\Omega} \sigma(t) u(u' + |u'|^{m-2} u') dx dt.$$
(4)

Now, we estimate the terms of the right-hand side of (4) in order to apply the results of Lemma 3:

$$\int_{S}^{T} E^{q} \phi' \int_{\Omega} \sigma(t) u(u' + |u'|^{m-2} u') dx dt$$

=
$$\int_{S}^{T} E^{q} \phi' \int_{|u'| \le 1} \sigma(t) u(u' + |u'|^{m-2} u') dx dt$$

+
$$\int_{S}^{T} E^{q} \phi' \int_{|u'| > 1} \sigma(t) u(u' + |u'|^{m-2} u') dx dt$$

We estimate the first term, we get

$$\left| \int_{S}^{T} E^{q} \phi' \int_{|u'| \leq 1} \sigma(t) u(u' + |u'|^{m-2} u') dx dt \right|$$

$$\leq \int_{s}^{t} E^{q} \phi' \int_{|u'| \leq 1} \sigma(t) |uu'| dx dt + \int_{S}^{T} E^{q} \phi' \int_{|u'| \leq 1} \sigma(t) |uu'| |u'|^{m-2} dx dt$$

$$\leq 2 \int_{S}^{T} E^{q} \phi' \int_{|u'| \leq 1} \sigma(t) |uu'| dx dt.$$
(5)

Using the Hölder and Sobolev Poincaré inequalities and the energy identity from Lemma 4, we get

$$2\int_{S}^{T} E^{q} \phi' \int_{|u'| \le 1} \sigma(t) |uu'| dx dt$$

$$\leq 2 \int_{S}^{T} E^{q} \phi' \sigma(t) \left(\int_{|u'| \leq 1} |u|^{p} dx \right)^{\frac{1}{p}} \left(\int_{|u'| \leq 1} |u'|^{\frac{p}{p-1}} dx \right)^{\frac{p-1}{p}} dt$$

$$\leq 2 \int_{S}^{T} E^{q} \phi' \sigma(t) ||u||_{L^{p}} \left(\int_{|u'| \leq 1} |u'|^{\frac{p}{p-1}} dx \right)^{\frac{p-1}{p}} dt$$

$$\leq C(\Omega) \int_{S}^{T} E^{q+\frac{1}{p}} \phi' \sigma(t) \left[\int_{|u'| \leq 1} (u'g(u'))^{\frac{p}{2(p-1)}} dx \right]^{\frac{p-1}{p}} dt$$

$$\leq C(\Omega) \int_{S}^{T} E^{q+\frac{1}{p}} \phi' \sigma(t) \left(\int_{\Omega} 1 dx \right)^{\frac{p-2}{2(p-1)}} \left(\int_{\Omega} u'g(u') dx \right)^{\frac{1}{2}} dt$$

$$\leq C(\Omega) \int_{S}^{T} E^{q+\frac{1}{p}} \phi' \sigma(t) \left(\frac{-E'}{\sigma(t)} \right)^{\frac{1}{2}} dt$$

$$\leq C'(\Omega) \varepsilon \int_{S}^{T} E^{2(q+\frac{1}{p})} \phi' + C''(\Omega) \frac{1}{\varepsilon} \int_{S}^{T} (-E') dt$$

$$\leq C'(\Omega) \varepsilon \int_{s}^{t} E^{2(q+\frac{1}{p})} \phi' dt + C'' \frac{1}{\varepsilon} E(S).$$

$$(6)$$

We choose q such that $2(q + \frac{1}{p}) = q + 1$, thus we find q = (p - 2)/p. Using the Hölder inequality and the Sobolev imbedding, we obtain

$$\begin{split} & \int_{S}^{T} E^{q} \phi' \int_{|u'| \ge 1} \sigma(t) ug(u') dx dt \\ \le & \int_{S}^{T} E^{q} \phi' \sigma(t) \left(\int_{\Omega} |u|^{m} dx \right)^{\frac{1}{m}} \left(\int_{|u'| > 1} |g(u')|^{\frac{m}{m-1}} dx \right)^{\frac{m-1}{m}} dt \\ \le & c \int_{S}^{T} E^{q+\frac{1}{p}} \phi'^{\frac{1}{m}}(t) \left(\int_{|u'| > 1} \sigma u'g(u') dx \right)^{\frac{m-1}{m}} dt \\ \le & c \int_{S}^{T} E^{q+\frac{1}{p}} \phi'^{\frac{1}{m}}(t) (-E')^{\frac{m-1}{m}} dt. \end{split}$$

Applying Young's inequality, we obtain

$$\int_{S}^{T} E^{q} \phi' \int_{|u'| \ge 1} \sigma(t) ug(u') dx dt$$

$$\leq C(\Omega) \varepsilon_{2}^{m} \int_{S}^{T} \left(E^{q+\frac{1}{p}} \phi'^{\frac{1}{(m)}}(t) \right)^{m} dt + C(\Omega) \frac{1}{\varepsilon_{2}^{\frac{m}{m-1}}} \int_{S}^{T} (-E') dt$$

$$\leq C(\Omega) \varepsilon_{2}^{m} \mu^{m} E^{\frac{(m-2)(p-1)}{p}}(0) \int_{S}^{T} E^{q+1} \phi' dt + C(\Omega) \frac{1}{\varepsilon_{2}^{\frac{m}{m-1}}} E(S).$$
(7)

Set $\varepsilon_2 = \frac{\varepsilon''}{E(0)^{\frac{(m-2)(p-1)}{mp}}}$. Choosing ε and ε'' small enough, we deduce from (4), (6) and

(7) that

$$\int_{S}^{T} E(t)^{1+q} \phi'^{q+1} + C'^{q+\frac{1}{2}+\frac{1}{p}} + C'' E(S) + C'''^{\frac{(m-2)(p-1)}{p(m-1)}} E(S)$$

$$\leq \left(\frac{C''^{q} + C'^{q+\frac{1}{p}-\frac{1}{2}} + C'''^{\frac{(m-2)(p-1)}{p(m-1)}}}{E(0)^{q}}\right) E(0)^{q} E(S)$$

where C, C', C'', C''', C'''' are different positive constants independent of E(0). Hence, we deduce from Lemma 3 that

$$E(t) \le \left(\frac{1+q}{q}\right)^{1/q} \left(C''^{q} + C'^{q+\frac{1}{p}-\frac{1}{2}} + C'''^{\frac{(m-2)(p-1)}{p(m-1)}1/q}\right) \left(\int_{0}^{t} \sigma(s) \, ds\right)^{-1/q}.$$

References

- J. Ball, Remarks on blow up and nonexistence theorems for nonlinear evolutions equations, Quart. J. Math. Oxford, 28(1977), 473–486.
- [2] A. Benaissa and S. Mokeddem, Global existence and energy decay of solutions to the Cauchy problem for a wave equation with a weakly nonlinear dissipation, Abs. Appl. Anal., 11(2004), 935–955.
- [3] V. Georgiev and G. Todorova, Existence of solutions of the wave equation with nonlinear damping and source terms, J. Diff. Eq., 109(1994), 295–308.
- [4] A. Haraux, Two remarks on dissipative hyperbolic problems, Research Notes in Mathematics, Pitman, 1985, pp161–179.
- [5] V. Komornik, Exact Controllability and Stabilization, The Multiplier Method, Masson-John Wiley, Paris, 1994.
- [6] P. Martinez, A new method to decay rate estimates for dissipative systems, ESAIM Control Optim. Calc. Var., 4(1999), 419–444.
- [7] S. A. Messaoudi, Decay of the solution energy for a nonlinearly damped wave equation, Arab. J. for Science and Engineering, 26(2001), 63–68.
- [8] M. Nakao, On solutions of the wave equations with a sublinear dissipative term, J. Diff. Eq., 69(1987), 204–215.
- [9] M. Nakao, Remarks on the existence and uniqueness of global decaying solutions of the nonlinear dissipative wave equations, Math. Z., 206(1991), 265–275.
- [10] M. Nakao, Decay of solutions of some nonlinear evolution equations, J. Math. Anal. Appl., 60(1977), 542–549.
- [11] M. Nakao and K. Ono, Global existence to the Cauchy problem of the semilinear wave equation with a nonlinear dissipation, Funkcialaj Ekvacioj, 38(1995), 417– 431.

- [12] L. Payne and D. H. Sattinger, Saddle points and instability on nonlinear hyperbolic equations, Israel J. Math., 22(1975), 273–303.
- [13] D. H. Sattinger, On global solutions for nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30(1968), 148–172.
- [14] G. Todorova, Stable and unstable sets for the Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms, J. Math. Anal. Appl., 239(1999), 213–226.
- [15] G. Todorova, Cauchy problem for a nonlinear wave with nonlinear damping and source terms, C. R. Acad Sci. Paris Ser. I., 326(1998), 191–196.
- [16] Y. J. Ye, On the decay of solutions for some nonlinear dissipative hyperbolic equations, Acta Math. Appl. Sin. Engl. Ser., 20(2004), 93–100.