Asymptotic Behaviour Of Solutions For Some Weakly Dissipative Wave Equations Of p-Laplacian Type*

Nour-Eddine Amroun and Salima Mimouni ${ }^{\dagger}$

Received 27 March 2010

Abstract

In this paper we study decay properties of some weakly dissipative wave equations of p-Laplacian type.

1 Introduction

We consider the initial boundary problem for the nonlinear wave equation of p-Laplacian type with a weak nonlinear dissipation of the type

$$
\left\{\begin{array}{l}
u_{t t}-\Delta_{p} u+\sigma(t)\left(u_{t}+\left|u_{t}\right|^{m-2} u_{t}\right)=0 \tag{1}\\
u(x, 0)=u_{0}(x), \quad u^{\prime}(x, 0)=u_{1}(x) \text { in } \Omega
\end{array}\right.
$$

where $\Delta_{p} u=\operatorname{div}\left(\left|\nabla_{x} u\right|^{p-2} \nabla_{x} u\right), p \geq 2, \sigma$ is a positive function and Ω is a bounded domain of $\mathbb{R}^{n}(n \geq 1)$, with a smooth boundary $\Gamma=\partial \Omega$.

For the problem (1), when $p=2$ and $\sigma \equiv 1$, Messaoudi [7] showed that, for any initial data $\left(u_{0}, u_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$, the problem has a unique global solution with energy decaying exponentially. In the case when $g\left(u_{t}\right)=\left|u_{t}\right|^{m-2} u_{t}$, Nakao [9] showed that (1) has a unique global weak solution if $0 \leq \theta-2 \leq 2 /(n-3), n \geq 3$ and a global unique strong solution if $\theta-2>2 /(n-2), n \geq 3$ (of course if $n=1$ or 2 then the only requirement is $\theta \geq 2$). In addition to global existence the issue of the decay rate was also addressed. In both cases it has been shown that the energy of the solution decays algebraically if $m>2$ and decays exponentially if $m=2$. This improves an earlier result by Nakao [10], where he studied the problem in an abstract setting and established a theorem concerning decay of the solution energy only for the case $m-2 \leq 2 /(n-2), n \geq 3$.

Our purpose in this paper is to give an energy decay estimates of the solutions to the problem (1) for a weak nonlinear dissipation, we extend the results obtained by Ye [16], also we prove in some cases an exponential decay when $p>2$ and the dissipative term is not necessarily superlinear near the origin.

We use a new method recently introduced by Martinez [6] (see also [2]) to study the decay rate of solutions to the wave equation $u^{\prime \prime}-\Delta_{x} u+g\left(u^{\prime}\right)=0$ in $\Omega \times \mathbb{R}^{+}$, where

[^0]Ω is a bounded domain of \mathbb{R}^{n}. This method is based on new integral inequality that generalizes a result of Haraux [4].

Throughout this paper the functions considered are all real valued. We omit the space variable x of $u(x, t), u_{t}(x, t)$ and simply denote $u(x, t), u_{t}(x, t)$ by $u(t), u^{\prime}(t)$, respectively, when no confusion arises. Let l be a number with $2 \leq l \leq \infty$. We denote by $\|.\|_{l}$ the L^{l} norm over Ω. In particular, L^{2} norm is denoted $\|.\|_{2}$. (.) denotes the usual L^{2} inner product. We use familiar function spaces $W_{0}^{1, p}$.

2 Preliminaries and Main Results

The function $\sigma(t)$ satisfies the following hypotheses:
(H1) $\sigma: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a nonincreasing function of class C^{1} on \mathbb{R}_{+}satisfying

$$
\int_{0}^{+\infty} \sigma(\tau) d \tau=+\infty
$$

We define the energy associated to the solution of (1) by the following formula

$$
E(t)=\frac{1}{2}\left\|u^{\prime}\right\|_{2}^{2}+\frac{1}{p}\left\|\nabla_{x} u\right\|_{p}^{p}
$$

We first state two well known lemmas, and then we state and prove a lemma that will be needed later.

LEMMA 1 (Sobolev-Poincaré inequality). Let q be a number with $2 \leq q<$ $+\infty(n \leq p)$ or $2 \leq q \leq \frac{n p}{n-p}(n \geq p+1)$, then there is a constant $c_{*}=c(\Omega, q)$ such that

$$
\|u\|_{q} \leq c_{*}\|\nabla u\|_{p} \quad \text { for } \quad u \in W_{0}^{1, p}(\Omega)
$$

LEMMA 2 ([5]). Let $E: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a non-increasing function and assume that there are two constants $q \geq 0$ and $A>0$ such that

$$
\int_{S}^{+\infty} E^{q+1}(t) d t \leq \frac{1}{A} E(0)^{q} E(S), \quad 0 \leq S<+\infty
$$

Then we have

$$
E(t) \leq E(0)\left(\frac{1+q}{1+q A t}\right)^{1 / q} \forall t \geq 0, \quad \text { if } \quad q>0
$$

and

$$
E(t) \leq E(0) e^{1-A t} \forall t \geq 0, \quad \text { if } \quad q=0
$$

LEMMA 3 ([6]). Let $E: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a non-increasing function and $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ an increasing C^{2} function such that

$$
\phi(0)=0 \quad \text { and } \quad \phi(t) \rightarrow+\infty \quad \text { as } \quad t \rightarrow+\infty
$$

Assume that there exist $q \geq 0$ and $A>0$ such that

$$
\int_{S}^{+\infty} E(t)^{q+1}(t) \phi^{\prime}(t) d t \leq \frac{1}{A} E(0)^{q} E(S), \quad 0 \leq S<+\infty
$$

Then we have

$$
E(t) \leq E(0)\left(\frac{1+q}{1+q A \phi(t)}\right)^{1 / q} \forall t \geq 0, \quad \text { if } \quad q>0
$$

and

$$
E(t) \leq c E(0) e^{-\omega \phi(t)} \forall t \geq 0, \quad \text { if } \quad q=0
$$

PROOF. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be defined by $f(x):=E\left(\phi^{-1}(x)\right.$), (we remark that ϕ^{-1} has a sense by the hypotheses assumed on $\left.\phi\right)$. The function f is non-increasing, $f(0)=E(0)$ and if we set $x:=\phi(t)$ we obtain

$$
\begin{aligned}
\int_{\phi(S)}^{\phi(T)} f(x)^{q+1} d x & =\int_{\phi(S)}^{\phi(T)} E\left(\phi^{-1}(x)\right)^{q+1} d x \\
& =\int_{S}^{T} E(t)^{q+1} \phi^{\prime}(t) d t \\
& \leq \frac{1}{A} E(0)^{q} E(S) \\
& =\frac{1}{A} E(0)^{q} f(\phi(S)), \quad 0 \leq S<T<+\infty
\end{aligned}
$$

Setting $s:=\phi(S)$ and letting $T \rightarrow+\infty$, we deduce that

$$
\int_{s}^{+\infty} f(x)^{q+1} d x \leq \frac{1}{A} E(0)^{q} f(s), \quad 0 \leq s<+\infty
$$

Thanks to Lemma 2, we deduce the desired results.
Now we recall the following global existence, which can be established by using the argument in [9].

THEOREM 1. Assume that $\left(u_{0}, u_{1}\right) \in \mathcal{W}_{0}^{1, p}(\Omega) \times L^{2}(\Omega)$. Then the problem (1) admits a unique strong solution on $\Omega \times[0, \infty)$ in the class

$$
C\left(\left[0, \infty\left[, \mathcal{W}_{0}^{1, p}(\Omega)\right) \cap C^{1}\left([0, \infty), L^{2}(\Omega)\right)\right.\right.
$$

Our main result is the following.
THEOREM 2. Let $\left(u_{0}, u_{1}\right) \in W_{0}^{1, p} \times L^{2}(\Omega), 2<m \leq \frac{2 n}{(n-2)^{+}}$and suppose that ($H 1$) holds. Then the solution $u(x, t)$ of the problem (1) satisfies the following energy decay estimates.
(1) If $p=2$, then there exists a positive constant ω such that

$$
E(t) \leq C(E(0)) \exp \left(1-\omega \int_{0}^{t} \sigma(\tau) d \tau\right) \quad \forall t>0
$$

(2) If $p>2$, then there exists a positive constant $C(E(0))$ depending continuously on $E(0)$ such that

$$
E(t) \leq\left(\frac{C(E(0))}{\int_{0}^{t} \sigma(\tau) d \tau}\right)^{\frac{p}{p-2}}, \quad \forall t>0 .
$$

EXAMPLES.

1) Suppose that $\sigma(t)=\frac{1}{t^{\theta}}(0 \leq \theta \leq 1)$, by applying Theorem 2 we obtain

$$
\begin{aligned}
& E(t) \leq C(E(0)) e^{1-\omega t^{1-\theta}} \text { if } \theta \in[0,1), p=2, \\
& E(t) \leq C(E(0)) t^{-\frac{(1-\theta) p}{p-2}} \text { if } 0 \leq \theta<1, p>2
\end{aligned}
$$

and

$$
E(t) \leq C(E(0))(\ln t)^{-\frac{p}{p-2}} \text { if } \theta=1, l<m+1 .
$$

2) Suppose that $\sigma(t)=\frac{1}{t^{\theta} \ln t \ln _{2} t \cdots \ln _{k} t}$, where k is a positive integer and

$$
\left\{\begin{array}{l}
\ln _{1}(t)=\ln (t) \\
\ln _{k+1}(t)=\ln \left(\ln _{k}(t)\right)
\end{array}\right.
$$

by applying Theorem 2, we obtain

$$
\begin{gathered}
E(t) \leq C(E(0))\left(\ln _{k+1} t\right)^{-\frac{p}{p-2}} \text { if } \theta=1, p>2, \\
E(t) \leq C(E(0)) t^{-\frac{(1-\theta) p}{p-2}}\left(\ln t \ln _{2} t \cdots \ln _{k} t\right)^{\frac{p}{p-2}} \text { if } 0 \leq \theta<1, p>2 .
\end{gathered}
$$

3) Suppose that $\sigma(t)=\frac{1}{t^{\theta}(\ln t)^{\gamma}}$, by applying Theorem 2, we obtain

$$
\begin{cases}\left.E(t) \leq C(E(0)) t^{-\frac{(1-\theta) p}{p-2}}(\ln t)\right)^{\frac{\gamma p}{p-2}} & \text { if } 0 \leq \theta<1, p>2, \\ E(t) \leq C(E(0))(\ln t)^{-\frac{-(1-\gamma p}{p-2}} & \text { if } \theta=1,0 \leq \gamma<1, p>2, \\ E(t) \leq C(E(0))\left(\ln _{2} t\right)^{-\frac{p}{p-2}} & \text { if } \theta=1, \gamma=1, \quad p>2 .\end{cases}
$$

3 Proof of Theorem 2

First we have the following energy identity for the problem (1).
LEMMA 4 (Energy identity). Let $u(t, x)$ be a global solution to the problem (1) on $[0, \infty)$ as in Theorem 1. Then we have

$$
E(t)+\int_{\Omega} \int_{0}^{t} \sigma(s) u^{\prime}(s) g\left(u^{\prime}(s)\right) d s d x=E(0)
$$

for all $t \in[0, \infty)$ and where we set $g\left(u^{\prime}\right)=u^{\prime}+\left|u^{\prime}\right|^{m-2} u^{\prime}$.

Now, we shall derive the decay estimate for the solutions in Theorem 1. For this we use the method of multipliers. We denote by c various positive constants which may be different at different occurrences.

We multiply the first equation of (1) by $E^{q} \phi^{\prime} u$, where ϕ is a function satisfying all the hypotheses of Lemma 3. We obtain

$$
\begin{aligned}
0= & \int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega} u\left(u^{\prime \prime}-\Delta_{p} u+\sigma(t)\left(u^{\prime}+\left|u^{\prime}\right|^{m-2} u^{\prime}\right)\right) d x d t \\
= & \int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega} u u^{\prime \prime} d x d t-\int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega} u \Delta_{p} u d x d t \\
& +\int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega} \sigma(t) u\left(u^{\prime}+\left|u^{\prime}\right|^{m-2} u^{\prime}\right) d x d t \\
= & {\left[E^{q} \phi^{\prime} \int_{\Omega} u u^{\prime} d x\right]_{S}^{T}-\int_{S}^{T}\left(q E^{\prime} E^{q-1} \phi^{\prime}+E^{q} \phi^{\prime \prime}\right) \int_{\Omega} u u^{\prime} d x d t } \\
= & -\int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega}\left|u^{\prime}\right|^{2} d x d t+\int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega}|\nabla u|^{p} d x d t \\
& +\int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega} \sigma(t) u\left(u^{\prime}+\left|u^{\prime}\right|^{m-2} u^{\prime}\right) d x d t .
\end{aligned}
$$

We deduce that

$$
\begin{align*}
2 \int_{S}^{T} E^{q+1} \phi^{\prime} d t= & -\left[E^{q} \phi^{\prime} \int u u^{\prime} d x\right]_{S}^{T}+\int_{S}^{T}\left(q E^{\prime} E^{q-1} \phi^{\prime}+E^{q} \phi^{\prime \prime}\right) \int_{\Omega} u u^{\prime} d x d t \\
& +2 \int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega} u^{\prime 2} d x d t+\left(\frac{2}{p}-1\right) \int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega}|\nabla u|^{p} d x d t \\
& +\int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega} \sigma(t) u\left(u^{\prime}+\left|u^{\prime}\right|^{m-2} u^{\prime}\right) d x d t \tag{2}
\end{align*}
$$

Define

$$
\phi(t)=\int_{0}^{t} \sigma(s) d s
$$

It is clear that ϕ is a non decreasing function of class C^{2} on \mathbb{R}_{+}. Hypothesis (H1) ensures that

$$
\begin{equation*}
\phi(t) \rightarrow+\infty \text { as } t \rightarrow+\infty \tag{3}
\end{equation*}
$$

Since E is non-increasing, ϕ^{\prime} is a bounded non-negative function on \mathbb{R}_{+}(and we denote by μ its maximum), we find that

$$
\begin{aligned}
& \left|E(t)^{q} \phi^{\prime} \int_{\Omega} u u^{\prime} d x\right| \leq\left[-c E^{q+\frac{1}{p}+\frac{1}{2}} \phi^{\prime}\right]_{S}^{T} \leq c \mu E(S)^{q+\frac{1}{2}+\frac{1}{p}}, \quad \forall t \geq S \\
& \left|\left(q E^{\prime} E^{q-1} \phi^{\prime}+E^{q} \phi^{\prime \prime}\right) \int_{\Omega} u u^{\prime} d x\right| \leq c \mu \int_{S}^{T}\left(-E^{\prime}(t)\right) E(t)^{q-\frac{1}{2}+\frac{1}{p}} d t
\end{aligned}
$$

$$
\begin{gathered}
+c \int_{S}^{T} E(t)^{q+\frac{1}{2}+\frac{1}{p}}\left(-\phi^{\prime \prime}\right) d t \\
\leq c \mu E(S)^{q+\frac{1}{2}+\frac{1}{p}}, \\
2 \int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega} u^{2} d x d t \leq 2 \int_{S}^{T} E^{q} \frac{\phi^{\prime}}{\sigma(t)} \int_{\Omega} \sigma(t)\left(u^{\prime 2}+\left|u^{\prime}\right|^{m}\right) d x d t \\
\leq-\int_{S}^{T} E^{q}(t) E^{\prime}(t) d t \\
\leq C^{\prime} E^{q+1}(S)
\end{gathered}
$$

where we have also used the Hölder and Sobolev-Poincaré inequalities. Using these estimates we conclude from (2) that

$$
\begin{align*}
2 \int_{S}^{T} E(t)^{1+q} \phi^{\prime}(t) d t \leq & c \mu E(S)^{q+\frac{1}{2}+\frac{1}{p}}+c^{\prime} E(S)^{q+1} \\
& +\int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega} \sigma(t) u\left(u^{\prime}+\left|u^{\prime}\right|^{m-2} u^{\prime}\right) d x d t . \tag{4}
\end{align*}
$$

Now, we estimate the terms of the right-hand side of (4) in order to apply the results of Lemma 3:

$$
\begin{aligned}
& \int_{S}^{T} E^{q} \phi^{\prime} \int_{\Omega} \sigma(t) u\left(u^{\prime}+\left|u^{\prime}\right|^{m-2} u^{\prime}\right) d x d t \\
= & \int_{S}^{T} E^{q} \phi^{\prime} \int_{\left|u^{\prime}\right| \leq 1} \sigma(t) u\left(u^{\prime}+\left|u^{\prime}\right|^{m-2} u^{\prime}\right) d x d t \\
& +\int_{S}^{T} E^{q} \phi^{\prime} \int_{\left|u^{\prime}\right|>1} \sigma(t) u\left(u^{\prime}+\left|u^{\prime}\right|^{m-2} u^{\prime}\right) d x d t
\end{aligned}
$$

We estimate the first term, we get

$$
\begin{align*}
& \left|\int_{S}^{T} E^{q} \phi^{\prime} \int_{\left|u^{\prime}\right| \leq 1} \sigma(t) u\left(u^{\prime}+\left|u^{\prime}\right|^{m-2} u^{\prime}\right) d x d t\right| \\
\leq & \int_{s}^{t} E^{q} \phi^{\prime} \int_{\left|u^{\prime}\right| \leq 1} \sigma(t)\left|u u^{\prime}\right| d x d t+\int_{S}^{T} E^{q} \phi^{\prime} \int_{\left|u^{\prime}\right| \leq 1} \sigma(t)\left|u u^{\prime}\right|\left|u^{\prime}\right|^{m-2} d x d t \\
\leq & 2 \int_{S}^{T} E^{q} \phi^{\prime} \int_{\left|u^{\prime}\right| \leq 1} \sigma(t)\left|u u^{\prime}\right| d x d t . \tag{5}
\end{align*}
$$

Using the Hölder and Sobolev Poincaré inequalities and the energy identity from Lemma 4, we get

$$
2 \int_{S}^{T} E^{q} \phi^{\prime} \int_{\left|u^{\prime}\right| \leq 1} \sigma(t)\left|u u^{\prime}\right| d x d t
$$

$$
\begin{align*}
& \leq 2 \int_{S}^{T} E^{q} \phi^{\prime} \sigma(t)\left(\int_{\left|u^{\prime}\right| \leq 1}|u|^{p} d x\right)^{\frac{1}{p}}\left(\int_{\left|u^{\prime}\right| \leq 1}\left|u^{\prime}\right|^{\frac{p}{p-1}} d x\right)^{\frac{p-1}{p}} d t \\
& \leq 2 \int_{S}^{T} E^{q} \phi^{\prime} \sigma(t)\|u\|_{L^{p}}\left(\int_{\left|u^{\prime}\right| \leq 1}\left|u^{\prime}\right|^{\frac{p}{p-1}} d x\right)^{\frac{p-1}{p}} d t \\
& \leq C(\Omega) \int_{S}^{T} E^{q+\frac{1}{p}} \phi^{\prime} \sigma(t)\left[\int_{\left|u^{\prime}\right| \leq 1}\left(u^{\prime} g\left(u^{\prime}\right)\right)^{\frac{p}{2(p-1)}} d x\right]^{\frac{p-1}{p}} d t \\
& \leq C(\Omega) \int_{S}^{T} E^{q+\frac{1}{p}} \phi^{\prime} \sigma(t)\left(\int_{\Omega} 1 d x\right)^{\frac{p-2}{2(p-1)}}\left(\int_{\Omega} u^{\prime} g\left(u^{\prime}\right) d x\right)^{\frac{1}{2}} d t \\
& \leq C(\Omega) \int_{S}^{T} E^{q+\frac{1}{p}} \phi^{\prime} \sigma(t)\left(\frac{-E^{\prime}}{\sigma(t)}\right)^{\frac{1}{2}} d t \\
& \leq C^{\prime}(\Omega) \varepsilon \int_{S}^{T} E^{2\left(q+\frac{1}{p}\right)} \phi^{\prime}+C^{\prime \prime}(\Omega) \frac{1}{\varepsilon} \int_{S}^{T}\left(-E^{\prime}\right) d t \\
& \leq C^{\prime}(\Omega) \varepsilon \int_{s}^{t} E^{2\left(q+\frac{1}{p}\right)} \phi^{\prime} d t+C^{\prime \prime} \frac{1}{\varepsilon} E(S) . \tag{6}
\end{align*}
$$

We choose q such that $2\left(q+\frac{1}{p}\right)=q+1$, thus we find $q=(p-2) / p$. Using the Hölder inequality and the Sobolev imbedding, we obtain

$$
\begin{aligned}
& \int_{S}^{T} E^{q} \phi^{\prime} \int_{\left|u^{\prime}\right| \geq 1} \sigma(t) u g\left(u^{\prime}\right) d x d t \\
\leq & \int_{S}^{T} E^{q} \phi^{\prime} \sigma(t)\left(\int_{\Omega}|u|^{m} d x\right)^{\frac{1}{m}}\left(\int_{\left|u^{\prime}\right|>1}\left|g\left(u^{\prime}\right)\right|^{\frac{m}{m-1}} d x\right)^{\frac{m-1}{m}} d t \\
\leq & c \int_{S}^{T} E^{q+\frac{1}{p}} \phi^{\prime \frac{1}{m}}(t)\left(\int_{\left|u^{\prime}\right|>1} \sigma u^{\prime} g\left(u^{\prime}\right) d x\right)^{\frac{m-1}{m}} d t \\
\leq & c \int_{S}^{T} E^{q+\frac{1}{p}} \phi^{\frac{1}{m}}(t)\left(-E^{\prime}\right)^{\frac{m-1}{m}} d t
\end{aligned}
$$

Applying Young's inequality, we obtain

$$
\begin{align*}
& \int_{S}^{T} E^{q} \phi^{\prime} \int_{\left|u^{\prime}\right| \geq 1} \sigma(t) u g\left(u^{\prime}\right) d x d t \\
\leq & C(\Omega) \varepsilon_{2}^{m} \int_{S}^{T}\left(E^{q+\frac{1}{p}} \phi^{\prime \frac{1}{(m)}}(t)\right)^{m} d t+C(\Omega) \frac{1}{\varepsilon_{2}^{\frac{m}{m-1}}} \int_{S}^{T}\left(-E^{\prime}\right) d t \\
\leq & C(\Omega) \varepsilon_{2}^{m} \mu^{m} E^{\frac{(m-2)(p-1)}{p}}(0) \int_{S}^{T} E^{q+1} \phi^{\prime} d t+C(\Omega) \frac{1}{\varepsilon_{2}^{\frac{m}{m-1}}} E(S) . \tag{7}
\end{align*}
$$

Set $\varepsilon_{2}=\frac{\varepsilon^{\prime \prime}}{E(0) \frac{(m-2)(p-1)}{m p}}$. Choosing ε and $\varepsilon^{\prime \prime}$ small enough, we deduce from (4), (6) and
(7) that

$$
\begin{aligned}
& \int_{S}^{T} E(t)^{1+q} \phi^{\prime q+1}+C^{\prime q+\frac{1}{2}+\frac{1}{p}}+C^{\prime \prime} E(S)+C^{\prime \prime \prime \prime \frac{(m-2)(p-1)}{p(m-1)}} E(S) \\
\leq & \left(\frac{C^{\prime \prime q}+C^{\prime q+\frac{1}{p}-\frac{1}{2}}+C^{\prime \prime \prime \prime \prime} \frac{(m-2)(p-1)}{p(m-1)}}{E(0)^{q}}\right) E(0)^{q} E(S)
\end{aligned}
$$

where $C, C^{\prime}, C^{\prime \prime}, C^{\prime \prime \prime}, C^{\prime \prime \prime \prime}$ are different positive constants independent of $E(0)$. Hence, we deduce from Lemma 3 that

$$
E(t) \leq\left(\frac{1+q}{q}\right)^{1 / q}\left(C^{\prime \prime q}+C^{\prime q+\frac{1}{p}-\frac{1}{2}}+C^{\prime \prime \prime \prime \prime \frac{(m-2)(p-1)}{p(m-1)} 1 / q}\right)\left(\int_{0}^{t} \sigma(s) d s\right)^{-1 / q}
$$

References

[1] J. Ball, Remarks on blow up and nonexistence theorems for nonlinear evolutions equations, Quart. J. Math. Oxford, 28(1977), 473-486.
[2] A. Benaissa and S. Mokeddem, Global existence and energy decay of solutions to the Cauchy problem for a wave equation with a weakly nonlinear dissipation, Abs. Appl. Anal., 11(2004), 935-955.
[3] V. Georgiev and G. Todorova, Existence of solutions of the wave equation with nonlinear damping and source terms, J. Diff. Eq., 109(1994), 295-308.
[4] A. Haraux, Two remarks on dissipative hyperbolic problems, Research Notes in Mathematics, Pitman, 1985, pp161-179.
[5] V. Komornik, Exact Controllability and Stabilization, The Multiplier Method, Masson-John Wiley, Paris, 1994.
[6] P. Martinez, A new method to decay rate estimates for dissipative systems, ESAIM Control Optim. Calc. Var., 4(1999), 419-444.
[7] S. A. Messaoudi, Decay of the solution energy for a nonlinearly damped wave equation, Arab. J. for Science and Engineering, 26(2001), 63-68.
[8] M. Nakao, On solutions of the wave equations with a sublinear dissipative term, J. Diff. Eq., 69(1987), 204-215.
[9] M. Nakao, Remarks on the existence and uniqueness of global decaying solutions of the nonlinear dissipative wave equations, Math. Z., 206(1991), 265-275.
[10] M. Nakao, Decay of solutions of some nonlinear evolution equations, J. Math. Anal. Appl., 60(1977), 542-549.
[11] M. Nakao and K. Ono, Global existence to the Cauchy problem of the semilinear wave equation with a nonlinear dissipation, Funkcialaj Ekvacioj, 38(1995), 417431.
[12] L. Payne and D. H. Sattinger, Saddle points and instability on nonlinear hyperbolic equations, Israel J. Math., 22(1975), 273-303.
[13] D. H. Sattinger, On global solutions for nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30(1968), 148-172.
[14] G. Todorova, Stable and unstable sets for the Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms, J. Math. Anal. Appl., 239(1999), 213-226.
[15] G. Todorova, Cauchy problem for a nonlinear wave with nonlinear damping and source terms, C. R. Acad Sci. Paris Ser. I., 326(1998), 191-196.
[16] Y. J. Ye, On the decay of solutions for some nonlinear dissipative hyperbolic equations, Acta Math. Appl. Sin. Engl. Ser., 20(2004), 93-100.

[^0]: *Mathematics Subject Classifications: 35B40, 35L70.
 ${ }^{\dagger}$ Laboratory of Mathematics, Djillali Liabes University, Sidi Bel Abbes 22000, Algeria

