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Abstract

In this paper the Adomian decomposition method is used to �nd an analytic
solution for nonlinear reaction system of Raman type. In this approach, the
solutions are found in the form of a convergent power series with easily computed
components. Convergence analysis of Adomian series solution for a class of these
type of nonlinear ODEs is discussed and a numerical example is presented.

1 Introduction

Raman equations usually account for a large number of e¤ects but the major inter-
actions are the attenuation, and the power transfer between waves. The steady-state
Raman ampli�ed system can be described by a set of coupled nonlinear equations (see
[1])

�dPi
dz

= ��iPi +
i�1X
j=1

CijPjPi �
mX

j=i+1

�i
�j
CjiPjPi: (1)

with initial condition
P (0) = [P1(0); : : : ; Pm(0)]

T (2)

and where Cij =
gr(�j��i)
�Aeff

; Cji =
gr(�i��j)
�Aeff

and �i > 0; i = 1; : : : ;m.
The nonlinear term is of the type N(Pi; Pj) � f(Pi; Pj) = PiPj has Adomian

polynomials representation f(Pi; Pj) =
P1

n=0An where the formula of An is given by
(6).
The � signs stand for forward and backward waves, respectively. Pi, �i and �i are

the power, frequency and attenuation coe¢ cient of the i-th wave, respectively. Aeff is
the optical �bre e¤ective area, the factor � accounts the polarization random e¤ects.
gr(�j � �i) is the Raman gain coe¢ cient from wave j to wave i. The frequencies �i are
numbered in decreasing order (i = 1; 2; :::;m). In optical �ber, due to the amorphous
nature of Silica, the Raman gain coe¢ cient presents a fairly broad shape.
The Adomian decomposition method (ADM) has been used to solve e¤ectively

and accurately a large set of di¤erential equations (see, for instance [2]) as linear or
nonlinear, ordinary or partial, deterministic or stochastic. In this method, the solution
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is presented as the sum of an in�nite series, rapidly converging to an accurate solution.
In particular, it is quite e¤ective for dealing with nonlinear problems and do not involve
linearization of the problem. Evans and Raslan [3] applied a decomposition method
for solving delay di¤erential equation. In [4], Gu and Li introduced a modi�ed ADM
to solve a class of systems of nonlinear di¤erential equations. The method can be
mechanized in Maple and a procedure is written to solve the approximate analytic
solution of the systems. Approximate analytic solution for nonlinear reaction di¤usion
system of Lotka-Volterra type were obtained by Alabdullatif, Abdusalam and Fahmy
[5]. Ibrahim L. El-Kalla [6] introduces a new formula for Adomian polynomials. Based
on this new formula, error analysis of Adomian series solution for a class of nonlinear
di¤erential equations is discussed. Afrouzi and Khademloo applied the ADM to a
quasilinear parabolic equation. In general, the large majority of papers about ADM,
just applied the method without studding its convergence, some exception is [6].
In the scope of these type of nonlinear ODEs models (1), the main contribution of

this paper is to use the Adomian decomposition method to solve the Raman propaga-
tion equations. The solutions are found in the form of a convergent power series and
the convergence analysis of Adomain series solution for a class of these type of ODEs
is discussed.
The paper is organized as follows: In section 2, we review the Adomian decompo-

sition method. In section 3, we present the analysis of the Adomian decomposition
method applied to nonlinear coupled system. Section 4 is devoted to the study the
convergence of the method and estimate the maximum absolute error of the truncated
series. Finally, in section 5 a numerical example is presented.

2 A Brief Review of ADM

For the purpose of illustration of the methodology to the proposed method, using ADM,
we consider the general form of equation,

Lu+Gu+Nu = 0; (3)

where u is the unknown function, L represents a linear operator which is easily invert-
ible, G is a linear operator and Nu represents the nonlinear term. We assume that
the operator L is invertible and it can be taken as the de�ne integral with respect to z
from z0 to z, i.e., L�1 =

R z
z0
(:)d~z. Applying the inverse operator L�1 to both sides of

(3) and using the initial condition, i.e., u(0) = g(z) we �nd

u = g � L�1[Gu+Nu]: (4)

The nonlinear term Nu can be decomposed by an in�nite series of polynomials given
by

Nu =
1X
n=0

An(u0; u1; : : : ; un); (5)
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where An(u0; u1; : : : ; un) are the appropriate Adomian�s polynomials and are de�ned
by

n!An =
dn

d�n

"
f

 1X
k=0

�kuk

!#
�=0

; n � 0: (6)

The ADM assumes a series that the unknown function u(z) can be expressed by a
in�nite series of the form

u(z) =
1X
n=0

un(z): (7)

Taking into account (5) and substituting (7) into (4), we obtain

1X
n=0

un(z) = g � L�1
"
G

1X
n=0

un +
1X
n=0

An

#
: (8)

Identifying the zero component u0, the remaining components can be determined
by using recurrence relation, i.e.,

u0 = g(z); un+1 = �L�1[G(un) +An]; n > 0: (9)

The scheme (9) can easily determine the components un(z). It is in principle, possible to
calculate more components in the decomposition series to enhance the approximation.
Consequently, we can recursively determine every term of the series

P1
n=0 un(z) and

hence the solution u(z) is readily obtained, i.e., using the above recursive relationship,
we construct the solutions u(z) as u(z) = limn!1 Sn, where Sn =

Pn
i=0 ui(z) for

n � 0:
It is interesting to note that, we obtain the solution by using the initial condition

only.

3 The Analysis of the ADM

For simplicity, we are interested to deal with Adomian decomposition solution associ-
ated with the operator L�1.
Following Adomian decomposition method [2], the system (1) can be written in an

operator form as

�LPi = ��iPi +
i�1X
j=1

CijN(Pj ; Pi)�
mX

j=i+1

�i
�j
CjiN(Pj ; Pi); (10)

where L = @
@z .

Operating with L�1 on both sides of (10) and using the initial conditions (2), we
get

�Pi = Pi(0) + L�1
24��iPi + i�1X

j=1

CijN(Pj ; Pi)�
mX

j=i+1

�i
�j
CjiN(Pj ; Pi)

35 : (11)
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The Adomian decomposition method assumes a series solution of the unknown
functions Pi(z); i = 1; : : : ;m; are given by

Pi(z) =
1X
n=0

Pi;n(z): (12)

Substituting (12) into (11) and taking into account that

N(Pj ; Pi) =
1X
n=0

An(PjPi); (13)

we obtain

1X
n=0

Pin(z) = Pi(0) +

24��i 1X
n=0

Pi;n +
i�1X
j=1

Cij

1X
n=0

An �
mX

j=i+1

�i
�j
Cji

1X
n=0

An

35 :
Given the components Pi;0, the remaining components Pi;n+1, n � 0, can be com-

pletely determined using the previous terms, i.e.,

Pi;n+1 = L
�1

24��iPi;n + i�1X
j=1

CijAn �
mX

j=i+1

�i
�j
CjiAn

35 :
Hence, the series solutions is entirely evaluated.
In the following lemma we obtain an explicit formula for An.

LEMMA 1. If the polynomials An for N(Pj ; Pi) are given by

An =
1

n!

"
dn

d�n
N

 
nX
k=0

�kPj;k;

nX
k=0

�kPi;k

!#�����
�=0

(14)

then

An =
nX
k=0

Pj;kPi;n�k: (15)

PROOF. First, we observe that

1

n!

"
dn

d�n
N

 
nX
k=0

�kPj;k;
nX
k=0

�kPi;k

!#

=
1

n!

"
dn

d�n

 
nX
k=0

�kPj;k

nX
k=0

�kPi;k

!#

=
1

n!

"
dn

d�n

 
Pj;0

nX
k=0

�kPi;k + �Pj;1

nX
k=0

�kPi;k + � � �+ �nPj;n
nX
k=0

�kPi;k

!#

=
1

n!
[n!Pj;0Pi;n + (n+ 1)n � � � 2�Pj;1Pi;n + n!Pj;1Pi;n�1
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+(n+ 2)(n+ 1)n � � � 3�2Pj;2Pi;n + (n+ 1)n � � � 2�Pj;2Pi;n�1
+n!Pj;2Pi;n�2 + � � �+ (2n)(2n� 1) � � � (n+ 1)�nPj;nPi;n + � � �
+(n+ 1)n(n� 1) � � � 2�Pj;nPi;1 + n!Pj;nPi;0]:

Hence, taking into account (14) and the previous relation, we obtain

An =
1

n!

"
dn

d�n
N

 
nX
k=0

�kPj;k;
nX
k=0

�kPi;k

!#�����
�=0

= Pj;0Pi;n + Pj;1Pi;n�1 + Pj;2Pi;n�2 + � � �+ Pj;nPi;0;

which is our result.

4 Convergence Analysis

In this section a condition that guarantees the existence of a unique solution is intro-
duced in Proposition 1, the convergence of the series solution (11) is proved in Propo-
sition 2, and the maximum absolute error of the truncated series (11) is estimated in
Proposition 3.
Denote by Y = (C[I]; k:k) the Banach space of all continuous functions on I =

[0; T ] � R with the norm kPk =
Pm

i=1maxz2I jPij; and where kPik = maxz2I jPi(z)j
for i = 1; : : : ;m:
In the following Proposition, we discuss the existence and uniqueness of the solution

of the problem (2) and (11).

PROPOSITION 1. Suppose that the following conditions hold:

(H1) There is a constant M5 > 0 such that kPik < 1
2M5 for all i = 1; : : : ;m (which

makes sense since signals are bounded).

(H2) Let I = [0; T ] � R,M0 be the smallest positive real number that satis�es jPk(0)�
Qk(0)j �M0maxz2I jPk(z)�Qk(z)j; and

M6 = max
1�k�m

8<:�k;M5

k�1X
j=1

Ckj ;M5

mX
j=k+1

�k
�j
Cjk

9=; :
such that if  = m(M0 +M6T ) then 0 <  < 1.

Then the problem (2) and (11) has a unique solution.

PROOF. First, note that hypothesis H1 implies that

kPjPk �QjQkk = kPjPk � PkQj + PkQj �QjQkk
= kPk(Pj �Qj) +Qj(Pk �Qk)k
� kPkk kPj �Qjk+ kQjk kPk �Qkk

� 1

2
M5kPj �Qjk+

1

2
M5kPk �Qkk �M5kPk �Qkk:
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We de�ne a mapping F : Y ! Y , where P 7! FP (z) and FP (z) = (F1P1(z); : : : ;
FmPm(z)) with

FiPi(z) = Pi(0) + L
�1

24��iPi + i�1X
j=1

CijPjPi �
mX

j=i+1

�i
�j
CjiPjPi

35 :
Here, properties such as continuity will be understood in a componentwise manner.

Let P;Q 2 Y . We have

kFP � FQk =
mX
i=1

max
z2I

jFiPi � FiQij � mmax
z2I

jFkPk(z)� FkQk(z)j

= mmax
z2I

������
0@Pk(0) + L�1

24��kPk + k�1X
j=1

CkjPjPk �
mX

j=k+1

�k
�j
CjkPjPk

351A
�

0@Qk(0) + L�1
24��kQk + k�1X

j=1

CkjQjQk �
mX

j=k+1

�k
�j
CjkQjQk

351A������
� mjPk(0)�Qk(0)j+mmax

z2I

��L�1 [��kPk + �kQk]��
+mmax

z2I

������L�1
24k�1X
j=1

CkjPjPk �
k�1X
j=1

CkjQjQk

35������
+mmax

z2I

������L�1
24� mX

j=k+1

�k
�j
CjkPjPk +

mX
j=k+1

�k
�j
CjkQjQk

35������
� mjPk(0)�Qk(0)j+m�kmax

z2I
L�1jQk � Pkj

+m
k�1X
j=1

Ckj max
z2I

L�1jPjPk �QjQkj

+m
mX

j=k+1

�k
�j
Cjkmax

z2I
L�1jQjQk � PjPkj

� mjPk(0)�Qk(0)j+m�kmax
z2I

L�1jQk � Pkj

+mM5

k�1X
j=1

Ckj max
z2I

L�1jPk �Qkj

+mM5

mX
j=k+1

�k
�j
Cjkmax

z2I
L�1jPk �Qkj

� mjPk(0)�Qk(0)j+m�kmax
z2I

jQk � Pkjmax
z2I

Z z

0

d~z
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+mM5

k�1X
j=1

Ckj max
z2I

jPk �Qkjmax
z2I

Z z

0

d~z

+mM5

mX
j=k+1

�k
�j
Cjkmax

z2I
jPk �Qkjmax

z2I

Z z

0

d~z

� mjPk(0)�Qk(0)j+mM6max
z2I

jPk(z)�Qk(z)jmax
z2I

Z z

0

d~z

= mjPk(0)�Qk(0)j+mM6max
z2I

jPk(z)�Qk(z)jT

� m(M0 +M6T )max
z2I

jPk(z)�Qk(z)j

� m(M0 +M6T )kPk �Qkk
= kPk �Qkk:

Under the condition 0 <  < 1 the mapping F is a contraction. Therefore, by the
Banach �xed-point theorem, there exists a unique solution to problem (2) and (11),
which completes the proof.

PROPOSITION 2. Suppose that hypotheses (H1)-(H2) hold together with:

(H3) Let M7 = max1�k�m

n
�k;
Pk�1

j=1 Ckj ;
Pm

j=k+1
�k
�j
Cjk

o
and � = M7T such that

0 < � < 1.

Then the series solution (12) of problem (2) and (11), using ADM, converges.

PROOF. Let Sn and Sq be arbitrary partial sums with n � q. We are going to
prove that fSng is a Cauchy sequence in Y . Indeed,

kSn � Sqk = max
z2[0;T ]

jSn � Sqj = max
z2[0;T ]

������
nX

k=q+1

Pi;k

������
= max

z2[0;T ]

������
nX

k=q+1

L�1

24��k�1Pi;k�1 + (k�1)�1X
j=1

Ck�1jAk�1

�
mX

j=(k�1)+1

�k�1
�j

Cjk�1Ak�1

35������
� max

z2[0;T ]

������
n�1X
k=q

L�1

24��kPi;k + k�1X
j=1

CkjAk �
mX

j=k+1

�k
�j
CjkAk

35������
� M7 max

z2[0;T ]

�������L�1
n�1X
k=q

Pi;k + L
�1

n�1X
k=q

Ak � L�1
n�1X
k=q

Ak

������
� M7 max

z2[0;T ]

�������L�1
n�1X
k=q

Pi;k

������
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� M7 max
z2[0;T ]

������
n�1X
k=q

Pi;k

������maxz2I

Z z

0

d~z

� M7T max
z2[0;T ]

jSn�1 � Sq�1j

� �kSn�1 � Sq�1k:

If we consider n = r + 1 and q = r then, we have kSr+1 � Srk � �kSr � Sr�1k �
�2kSr�1 � Sr�2k � � � � � �rkS1 � S0k: From the triangle inequality, we obtain

kSn � Sqk � kSq+1 � Sqk+ kSq+2 � Sq+1k+ � � �+ kSn � Sn�1k
�

�
�q + �q+1 + �q+2 + � � �+ �n�1

�
kS1 � S0k

� �q
�
1 + � + �2 + : : :+ �n�q�1

�
kS1 � S0k

� �q
�
1� �n�q
1� �

�
kP1k:

Since 0 < � < 1 we have 1� �n�q < 1, and consequently

kSn � Sqk �
�q

1� � kP1k: (16)

Since kP1k < 1 we have kSn � Sqk ! 0 as q ! 1. Hence, we conclude that fSng is
a Cauchy sequence in Y: So the series converges and the proof is complete.
To end this subsection, we estimate the maximum absolute error of the truncated

series (12).

PROPOSITION 3. The maximum absolute truncation error of the series solution
(12) of problem (2) and (11) is estimated by

max
z2[0;T ]

�����Pk(z)�
qX
i=0

Pk;i(z)

����� � �q

1� � max
z2[0;T ]

jPk;1(z)j; k = 1; : : : ;m:

PROOF. From the previous proposition, we have kSn�Sqk � �q

1�� maxz2[0;T ] jPk;1(z)j:
For each z 2 [0; T ], we have Sn(z)! Pk(z) with n!1, so we have

kPk � Sqk �
�q

1� � max
z2[0;T ]

jPk;1(z)j;

and the maximum absolute truncation error in the interval I is estimated to be

max
z2[0;T ]

�����Pk(z)�
qX
i=0

Pk;i(z)

����� � max
z2[0;T ]

�q

1� � jPk;1(z)j; (17)

for k = 1; : : : ;m. This completes the proof.
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5 The Raman System with One Pump and Two Sig-
nals

In this section, we compute a numerical example to see the rate of convergence of
the proposed method. We present a table with the error between the two consecutive
iteration of the solution at given instants.
For the special case of an ampli�er composed by a forward single pump and two

propagating signals, the solution is expressed as follows:8>><>>:
P1(z) = P1(0) + L

�1
h
��1P1 � �1

�2
C21N(P1; P2)� �1

�3
C31N(P1; P3)

i
;

P2(z) = P2(0) + L
�1
h
��2P2 + C21N(P1; P2)� �2

�3
C32K(P2; P3)

i
;

P3(z) = P3(0) + L
�1 [��3P3 + C31N(P1; P3) + C32N(P2; P3)] :

(18)

The Adomian decomposition method assumes a series solution of the unknown func-
tions P1(z); P2(z) and P3(z) are given by

P1(z) =
1X
n=0

P1;n(z); P2(z) =
1X
n=0

P2;n(z); P3(z) =
1X
n=0

P3;n(z): (19)

Substituting (19) with their initial conditions into (18) yields

1X
n=0

P1;n(z) = P1(0) + L
�1

"
��1

1X
n=0

P1;n �
�1
�2
C21N(P1; P2)�

�1
�3
C31N(P1; P3)

#
;

1X
n=0

P2;n(z) = P2(0) + L
�1

"
��2

1X
n=0

P2;n + C21N(P1; P2)�
�2
�3
C32N(P2; P3)

#
;

1X
n=0

P3;n(z) = P3(0) + L
�1

"
��3

1X
n=0

P3;n + C31N(P1; P3) + C32N(P2; P3)

#
;

where the functions N(P1; P2); N(P1; P3) and N(P2; P3) are related to the nonlinear
terms, and making use of (13) and (14), the nonlinear terms can be expressed in terms
of Adomian polynomials as follows:

N(P1; P2) =

1X
n=0

Dn(P1; P2); N(P1; P3) =

1X
n=0

Bn(P1; P3); N(P2; P3) =

1X
n=0

En(P2; P3);

where

Dn =
nX
k=0

P1;kP2;n�k; Bn =
nX
k=0

P1;kP3;n�k; and En =
nX
k=0

P2;kP3;n�k:

Identifying the zeroth components of P1;0; P2;0 and P3;0, the remaining components
P1;n+1; P2;n+1 and P3;n+1, n � 0 are obtained recursively by

P1;n+1 = L�1
�
��1P1;n �

�1
�2
C21Dn �

�1
�3
C31Bn

�
;
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S1n z=10 z=30 z=60 z=100
n = 9 7.24065412 �10�5 3.62767771 �10�5 1.57307374�10�5 4.749965358 �10�6
n = 29 5.98448706�10�5 3.21863535 �10�5 1.47838597�10�5 4.650101884 �10�6
n = 49 4.88886873 �10�5 2.84241024 �10�5 1.38763283�10�5 4.551655496�10�6

S2n z=10 z=30 z=60 z=100
n = 9 3.37306181 �10�5 1.69441802 �10�5 7.36352147 �10�6 2.22692930 �10�6
n = 29 2.79583822�10�5 1.50615797 �10�5 6.92718129�10�6 2.18087075 �10�6
n = 49 2.29127375�10�5 1.33276366 �10�5 6.50867685�10�6 2.13545488�10�6

S3n z=10 z=30 z=60 z=100
n = 9 3.53614661 �10�5 1.76694509 �10�5 7.64510894 �10�6 2.30479348 �10�6
n = 29 2.91478046�10�5 1.56493360 �10�5 7.17806355�10�6 2.25557842 �10�6
n = 49 2.37393882 �10�5 1.36936673�10�5 6.73072054�10�6 2.20707260 �10�6

Table 1: l1�error of S1n, S2n and S3n for n 2 f9; 29; 49g :

P2;n+1 = L�1
�
��2P2;n + C21Dn �

�2
�3
C32En

�
;

P3;n+1 = L�1 [��3P3;n + C31Bn + C32En] :

Substituting the above expressions in (19), it gives the exact solution in the closed
form.
In Table 1, we present the l1-norm of the di¤erence of

S1n = jP1;n+1 � P1;nj; S2n = jP2;n+1 � P2;nj; S3n = jP3;n+1 � P3;nj for n 2 f9; 29; 49g ;

with the following data

P1;0 = 0:8; P2;0 = 1� 10�3; P3;0 = P2;0;
�1 = 2:053373� 1014THz; �2 = 1:960� 1014THz; �3 = 1:958� 1014THz;
C12 = 0:2648178032� 10�3; C13 = 0:2736146032� 10�3; C23 = 0:002859233333� 10�3;
�1 = 5:419400495579674� 10�5 (a pump);
�2 = 4:947848510246372� 10�5 (a signal); �3 = 4:932588910154262� 10�5 (a signal);

which can be found in [8].
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