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Abstract

Some results on the common �xed points of three self-mappings in cone metric
spaces in which the cone is not necessarily normal are proved. Consequently, the
results are generalizations, extensions and improvements of some previous results
in the literature.

1 Introduction and Preliminaries

The fact that ordered Banach spaces, normal cones and topical functions have appli-
cations in optimization theory is one of the motivation for research in ordered linear
metric spaces (see e.g. [10, 11]). In 2007, Huang and Zhang [7] introduced the concept
of cone metric spaces, which is a generalization of that of metric spaces, by replacing
the real numbers with ordered Banach spaces.
Huang and Zhang [7] proved some �xed point theorems for some contractive maps

in normal cone metric spaces. The results have been generalized by some authors [12,
13, 15]. Vetro [15] and Abbas and Jungck [1] studied common �xed points for non-
commuting mappings in normal cone metric spaces. However, there exists non-normal
cone metric spaces [8]. Hence the recent results of Jungck et al. [8] on the common
�xed points for weakly compatible pairs on cone metric spaces are generalizations as
well as extensions of the result of Vetro [15] in that normality assumption is removed
and the pair of maps considered are more general. Recently, Arshad et al. [3] proved a
result on common �xed point for three self mappings satisfying generalized contractive
type conditions in a non-normal cone metric space. The result is a generalization of
the results in [1, 7, 13] involving single-valued maps and pairs of contractive maps in
cone metric spaces. The result in this paper is an extension of the results in [3] in that
we consider three self-mappings satisfying more general contractive conditions, and a
generalization of the results of [8].
The following de�nitions are in the literature (e.g. see [7]).

Let E be a real Banach space and P a subset of E. P is called a cone if and only if (i)
P is closed, nonempty, and P 6= f0g; (ii) a; b 2 R, a; b � 0, x; y 2 P =) ax+ by 2 P ;
and (iii) P

T
(�P ) = f0g.
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42 Common Fixed Points for Self-Mappings

For a given cone P � E, we can de�ne a partial ordering � with respect to P by
x � y if and only if y � x 2 P . x < y will stand for x � y and x 6= y, while x� y will
stand for y � x 2 intP , where intP denotes the interior of P .
The cone P is called normal if there is M > 0 such that for all x; y 2 E, 0 � x � y

implies kxk �Mkyk.
The least positive number M satisfying the above is called the normal constant of

P .
DEFINITION 1.1. Let X be a non-empty set. Suppose that d : X � X ! E

satis�es
(i) 0 � d(x; y) for all x; y 2 X and d(x; y) = 0 if and only if x = y,
(ii) d(x; y) = d(y; x) for all x; y 2 X,
(iii) d(x; y) � d(x; z) + d(z; y) for all x; y; z 2 X.
Then d is called a cone metric on X, and (X; d) is called a cone metric space.
EXAMPLE 1.2 [7]. Let E = R2, P = f(x; y) 2 E : x; y � 0g, X = R and

d : X � X ! E de�ned by d(x; y) = (jx � yj; �jx � yj), where � � 0 is a constant.
Then (X; d) is a cone metric space.
Clearly, this example shows that cone metric spaces generalize metric spaces. We

now give another example where E is a linear metric space that is not normable.
EXAMPLE 1.3 [12]. Let E = `p, (0 < p < 1), P = ffxngn�1 2 E : xn � 0, for all

ng, (X; �) a metric space and d : X �X ! E de�ned by d(x; y) = f�(x;y)2n gn�1. Then
(X; d) is a cone metric space.
DEFINITION 1.4. Let (X; d) be a cone metric space. Let fxng be a sequence in

X. If for every c 2 E with 0 � c there is N such that for all n > N , d(xn; x) � c,
then fxng is said to be convergent to x 2 X, i.e. limn!1 xn = x.
DEFINITION 1.5. Let (X; d) be a cone metric space. Let fxng be a sequence in

X. If for every c 2 E with 0� c there is N such that for all n;m > N , d(xn; xm)� c,
then fxng is called a Cauchy sequence in X.
It is shown in [7] that a convergent sequence in a cone metric space (X; d) is a

Cauchy sequence.
DEFINITION 1.6 [8]. A point x 2 X is called a coincident point of a family of self

maps ffi; i 2 Ig, if there exists a point w (called a point of coincidence) in X such
that w = fi(x) for all i 2 I. Self-maps f and g are said to be weakly compatible if
they commute at their coincidence point, that is, if fx = gx for some x 2 X, then
fgx = gfx.
REMARK 1.7. The concept of weak compatibility is known to be the most general

among all commutativity concepts in �xed point theory. For example every pair of
weakly commuting self-maps and each pair of compatible self-maps are weakly com-
patible, but the reverse is not always true. In fact, the notion of weakly compatible
maps is more general than compatibility of type (A), compatibility of type (B), com-
patibility of type (C) and compatibility of type (P). For a review of those notions of
commutativity, see [4].
PROPOSITION 1.8 [3]. Let X be a non empty set and the mappings f; g; h : X !

X have a unique point of coincidence in X. If (f; h) and (g; h) are weakly compatible
self-maps of X, then f; g; h have a unique common �xed point.



J. O. Olaleru 43

2 Main Results

We adopt the technique used in [3].

Let (X; d) be a cone metric space and f , g and h be self mappings on X such that
f(X)[ g(X) � h(X). Suppose xo 2 X and x1 2 X is chosen such that hx1 = fx0 and
x2 2 X is chosen such that hx2 = gx1. Continuing in this way, the sequence fhxng
such that

hx2k+1 = fx2k;

hx2k+2 = gx2k+1; k = 0; 1; 2; :::: (1)

is called a (f � g)-sequence with initial point xo.
The following result is an extension of [3, Proposition 3.2].

PROPOSITION 2.1. Let (X; d) be a cone metric space and f; g; h : X ! X be
mappings such that f(X) [ g(X) � h(X). Assume that

d(fx; gy) � a1d(hx; fx) + a2d(hy; gy) + a3d(hy; fx) + a4d(hx; gy) + a5d(hx; hy) (2)

for all x; y 2 X, x 6= y where a1; a2; a3; a4; a5 2 [0; 1) and a1 + a2 + a3 + a4 + a5 < 1,
and that d(fx; gx) < d(hx; fx) + d(hx; gx) for all x 2 X, whenever fx 6= gx:
Then every (f � g)-sequence with initial point x0 is a Cauchy sequence.
PROOF. Observe that if f and g satisfy (2), it also satis�es

d(fx; gy) � kd(hx; fx) + kd(hy; gy) + ld(hy; fx) + ld(hx; gy) +md(hx; hy) (3)

for all x; y 2 X where k; l;m 2 [0; 1) and 2k+2l+m < 1, (2k = a1+a2; l = a3+a4; a5 =
m). Suppose fhxng is a (f � g)-sequence with initial point x0. Assume hxn 6= hxn+1
for all n 2 N , then xn 6= xn+1 for all n. Using (3), we have

d(hx2k+1; hx2k+2) = d(fx2k; gx2k+1)

� kd(hx2k; fx2k) + kd(hx2k+1; gx2k+1) + ld(hx2k+1; fx2k)

+ld(hx2k; gx2k+1) +md(hx2k; hx2k+1)

� kd(hx2k; hx2k+1) + kd(hx2k+1; hx2k+2)

+ld(hx2k; hx2k+2) +md(hx2k; h2k+1)

� kd(hx2k; hx2k+1) + kd(hx2k+1; hx2k+2) + ld(hx2k; hx2k+1)

+ld(hx2k+1; hx2k+2) +md(hx2k; h2k+1)

� (k + l +m)d(hx2k; hx2k+1) + (k + l)d(hx2k+1; hx2k+2):

Hence,
(1� k � l)d(hx2k+1; hx2k+2) � (k + l +m)d(hx2k; hx2k+1);

so that

d(hx2k+1; hx2k+2) � (
k + l +m

1� k � l )
2k+1d(hx0; hx1): (4)

Similarly,

d(hx2k+2; hx2k+3) � (
k + l +m

1� k � l )d(hx2k+1; hx2k+2);
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and hence

d(hx2k+2; hx2k+3) � (
k + l +m

1� k � l )
2k+2d(hx0; hx1): (5)

Let � = (k+l+m1�k�l ). Then � < 1. Following the same argument in (3.9)-(3.17) of [3], if
follows immediately that fhxng is a Cauchy sequence.
REMARK 2.2. If a3 = a4 = 0 in Proposition 2.1, then we have Proposition 3.2 of

[3].

THEOREM 2.3. Let (X; d) be a cone metric space and P an order cone and
f; g; h : X ! X be mappings such that f(X) [ g(X) � h(X). Assume the following
conditions hold:

d(fx; gy) � a1d(hx; fx) + a2d(hy; gy) + a3d(hy; fx) + a4d(hx; gy) + a5d(hx; hy) (6)

for all x; y 2 X, x 6= y where a1; a2; a3; a4; a5 2 [0; 1) and a1 + a2 + a3 + a4 + a5 < 1,
and that d(fx; gx) < d(hx; fx) + d(hx; gx) for all x 2 X, whenever fx 6= gx. If f(X)
or f(X) [ g(X) is a complete subspace of X, then f , g and h have a unique point of
coincidence. Furthermore, if (f; h) and (g; h) are both weakly compatible, then f , g
and h have a unique common �xed point.

PROOF. Since f; g satisfy (6), they also satisfy (3), we will use (3). If f(X) is
a complete subspace of X, since by Proposition 2.1, a (f � g)-sequence fhxng, with
the initial point x0 is a Cauchy sequence, then there exist u; v 2 X such that hxn !
v = hu. The same argument holds if f(X) [ g(X) is a complete subspace of X with
v 2 f(X) [ g(X). From

d(hu; fu) � d(hu; hx2n) + d(hx2n; fu)

� d(hu; hx2n) + d(fu; gx2n�1)

� d(v; hx2n) + kd(hu; fu) + kd(hx2n�1; gx2n�1)

+ld(hx2n�1; fu) + ld(hu; gx2n�1) +md(hu; hx2n�1)

� d(v; hx2n) + kd(hu; fu) + kd(hx2n�1; hx2n)

+ld(hx2n�1; fu) + ld(v; hx2n) +md(v; hx2n�1)

� d(v; hx2n) + kd(hu; fu) + kd(hx2n�1; v)

+kd(v; hx2n) + ld(hx2n�1; v) + ld(hu; fu)

+ld(v; hx2n) +md(v; hx2n�1);

we obtain

d(hu; fu) � 1

1� k � l [d(v; hx2n) + kd(hx2n�1; v) + kd(v; hx2n)

+ld(hx2n�1; v) + ld(v; hx2n) +md(v; hx2n�1)]

=
1 + k + l

1� k � l d(v; hx2n) +
k + l +m

1� k � l d(v; hx2n�1): (7)

Suppose 0� c and there exists n0 2 N such that d(v; hx2n)� c(1�k�l)
2(1+k+l) and d(hx2n�1; v)�

c(1�k�l)
2(k+l+m) for all n � n0. Therefore d(hu; fu) � c from (7) and hence d(hu; fu) � c

r
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for every r 2 N . Since c
r � d(hu; fu) 2 intP , and P is closed, then as r ! 1,

we have that �d(hu; fu) 2 P . Since d(hu; fu) > 0, therefore d(hu; fu) 2 P and so
d(hu; fu) 2 P \ (�P ) = f0g. Hence d(hu; fu) = 0. Therefore hu = fu. Similarly, by
using the inequality

d(hu; gu) � d(hu; hx2n+1) + d(hx2n+1; gu); (8)

we can show that hu = gu. Thus v = hu = fu = gu and hence we conclude that v is
a point of coincidence of h, f and g.
The next is to show that the point of coincidence is unique. Assume there is another

point of coincidence v� in X such that v� = hu� = fu� = gu�, for some u� 2 X. It is
easy to check, using (3) that

d(v; v�) = d(fu; gu�)

� kd(hu; fu) + kd(hu�; gu�) + ld(hu�; fu) + ld(hu; gu�)

+md(hu; hu�)

� kd(v; v) + kd(v�; v�) + ld(v�; v) + ld(v; v�) +md(v; v�)

� (2l +m)d(v; v�):

Since 2l+m < 1, then v = v�. Since (f; h), (g; h) are weakly compatible by assumption,
v is the unique point of coincidence of h, f and g, then by Proposition 1.8, v is the
unique common �xed point of h, f and g.

REMARK 2.4.
(i) If a3 = a4 = 0 in Theorem 2.3, then we have the Theorem 3.3 of [3].
(ii) If f = g, Theorem 2.3 gives the main result in [13] and Theorem 2.8 of [8].
(iii) If we choose f = g and a3 = a4 in Theorem 2.3, then we have a generalization of
Theorem 3.1 of [12].
(iv) If a3 = a4 = 0 in Theorem 2.3, then we have a generalization of the Theorem 1 of
[15].
(v) If a1 = a2 = a3 = a4 = 0, Theorem 2.3 is a generalization of Theorem 1 of [7],
Theorem 2.1 of [1] and Theorem 2.3 of [3] .
(vi) If a3 = a4 = a5 = 0; Theorem 2.3 generalizes Theorem 3 of [7], Theorem 2.3 of [1]
and Theorem 2.6 of [13].
(vii) If a1 = a2 = a5 = 0 and Theorem 2.3 generalizes Theorem 5 of [7], Theorem 2.5
of [1] and Theorem 2.7 of [13].
(viii) If f = g = h Theorem 2.3 gives the result of Hardy and Rogers [6], which is a
generalization of the results of Chatterjea [5] and Kannan [9] among others.

The following proposition is needed for the next result.

PROPOSITION 2.5. Let (X; d) be a cone metric space and f; g; h : X ! X be
mappings such that f(X) [ g(X) � h(X). Assume that d(fx; gy) � �u where

u 2 fd(hx; hy); d(hx; fx); d(hy; gy); d(hy; fx) + d(hx; gy)
2

g (9)

for all x; y 2 X, x 6= y, 0 < � < 1, and that d(fx; gx) < d(hx; fx) + d(hx; gx), for
all x 2 X, whenever fx 6= gx: Then every (f � g)-sequence with initial point x0 is a
Cauchy sequence.
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PROOF. Suppose fhxng is a (f � g)-sequence with initial point x0. Assume hxn 6=
hxn+1 for all n 2 N , then xn 6= xn+1 for all n. Using (9), we have

d(hx2k+1; hx2k+2) = d(fx2k; gx2k+1)

� �fd(hx2k; hx2k+1); d(hx2k; fx2k); d(hx2k+1; gx2k+1);
d(hx2k+1; fx2k) + d(hx2k; gx2k+1)

2
g

� �fd(hx2k; hx2k+1); d(hx2k+1; hx2k+2);
d(hx2k; hx2k+2)

2
g:

It su¢ ces to look at the following cases:
Case 1: d(hx2k+1; hx2k+2) � �d(hx2k; hx2k+1):
Case 2: d(hx2k+1; hx2k+2) � �d(hx2k;hx2k+2)2 � �d(hx2k;hx2k+1)+d(hx2k+1;hx2x+2)2 :Thus,

d(hx2k+1; hx2k+2) � �
2��d(hx2k; hx2k+1):

Combining the two cases we have d(hx2k+1; hx2k+2) � �d(hx2k; hx2k+1): Thus,
d(hx2k+1; hx2k+2) � �2k+1d(hxo; hx1): Similarly, d(hx2k+2; hx2k+3) � �2k+2d(hxo; hx1):
Following the same argument in (3.9)-(3.17) of [3], if follows immediately that fhxng
is a Cauchy sequence.

THEOREM 2.6. Let (X; d) be a cone metric space and P an order cone and f; g; h :
X ! X be mappings such that f(X) [ g(X) � h(X). Assume that d(fx; gy) � �u
where

u 2 fd(hx; hy); d(hx; fx); d(hy; gy); d(hy; fx) + d(hx; gy)
2

g (10)

for all x; y 2 X, x 6= y, 0 < � < 1; and that d(fx; gx) < d(hx; fx) + d(hx; gx) for all
x 2 X, whenever fx 6= gx: If f(X) or f(X) [ g(X) is a complete subspace of X, then
f , g and h have a unique point of coincidence. Furthermore, if (f; h) and (g; h) are
both weakly compatible, then f , g and h have a unique common �xed point.

PROOF. If f(X) is a complete subspace of X, since by Proposition 2.5, a (f � g)-
sequence fhxng, with the initial point x0 is a Cauchy sequence, then there exist u; v 2 X
such that hxn ! v = hu. The same argument holds if f(X) [ g(X) is a complete
subspace of X with v 2 f(X) [ g(X). From

d(hu; fu) � d(hu; hx2n) + d(hx2n; fu)

� d(hu; hx2n) + d(fu; gx2n�1)

� d(v; hx2n) + �fd(hu; hx2n�1); d(hu; fu); d(hx2n�1; gx2n�1);
d(hx2n�1; fu) + d(hu; gx2n�1)

2
g

� d(v; hx2n) + �fd(v; hx2n�1); d(hu; fu); d(hx2n�1; hx2n);
d(hx2n�1; fu) + d(v; hx2n)

2
g

� d(v; hx2n) + �fd(v; hx2n�1); d(hu; fu); d(hx2n�1; v) + d(v; hx2n);
d(hx2n�1; v) + d(hu; fu) + d(v; hx2n)

2
g;
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we consider the following cases:

Case 1: d(hu; fu) � d(v; hx2n) + �d(v; hx2n�1);
Case 2: d(hu; fu) � d(v; hx2n) + �d(hu; fu) ) d(hu; fu) � 1

1��d(v; hx2n);
Case 3: d(hu; fu) � d(v; hx2n)+�fd(hx2n�1; v)+d(v; hx2n)g; and thus d(hu; fu) �

(�+ 1)d(v; hx2n) + �d(hx2n�1; v);
Case 4: d(hu; fu) � d(v; hx2n)+ �

2 fd(hx2n�1; v)+d(hu; fu)+d(v; hx2n)g; and thus
d(hu; fu) � 2+�

2��d(v; hx2n) +
�
2��d(hx2n�1; v).

Combining the four cases, we have

d(hu; fu) � 1

�+ 1
d(v; hx2n) + �d(v; hx2n�1): (11)

Suppose 0� c and there exists n0 2 N such that d(v; hx2n)� c(�+1)
2 and d(hx2n�1; v)�

c
2� for all n � n0. Therefore d(hu; fu)� c from (11). The fact that v is the common
�xed point follows the same procedure as in the proof of Theorem 2.3. The uniqueness
follows from the contractive de�nition (10).

REMARK 2.7. If g = f , we have Theorem 2.1 of [8] which is a generalization of
several results in the references of [8].

Following the same procedure in the proof of Proposition 2.5, the proof of the
following proposition follows easily.

PROPOSITION 2.8. Let (X; d) be a cone metric space and f; g; h : X ! X be
mappings such that f(X) [ g(X) � h(X). Assume that d(fx; gy) � �u where

u 2 fd(hx; hy); d(hx; fx) + d(hy; gy)
2

;
d(hy; fx) + d(hx; gy)

2
g (12)

for all x; y 2 X, x 6= y, 0 < � < 1; and that d(fx; gx) < d(hx; fx) + d(hx; gx) for
all x 2 X, whenever fx 6= gx: Then every (f � g)-sequence with initial point x0 is a
Cauchy sequence.

We now state the following Theorem.

THEOREM 2.9. Let (X; d) be a cone metric space and P an order cone and f; g; h :
X ! X be mappings such that f(X) [ g(X) � h(X). Assume that d(fx; gy) � �u
where

u 2 fd(hx; hy); d(hx; fx) + d(hy; gy)
2

;
d(hy; fx) + d(hx; gy)

2
g (13)

for all x; y 2 X, x 6= y, 0 < � < 1; and that d(fx; gx) < d(hx; fx) + d(hx; gx) for all
x 2 X, whenever fx 6= gx: If f(X) or f(X) [ g(X) is a complete subspace of X, then
f , g and h have a unique point of coincidence. Furthermore, if (f; h) and (g; h) are
both weakly compatible, then f , g and h have a unique common �xed point.

PROOF. If f(X) is a complete subspace of X, since by Proposition 2.8, a (f � g)-
sequence fhxng, with the initial point x0 is a Cauchy sequence, then there exist u; v 2 X
such that hxn ! v = hu. The same argument holds if f(X) [ g(X) is a complete
subspace of X with v 2 f(X) [ g(X). In view of Theorem 2.6, it is su¢ cient to
consider the case d(fx; gy) � �d(hx;fx)+d(hy;gy)2 . Then

d(hu; fu) � d(hu; hx2n) + d(hx2n; fu)
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� d(hu; hx2n) + d(fu; gx2n�1)

� d(v; hx2n) +
�

2
(d(hu; fu) + d(hx2n�1; gx2n�1))

� d(v; hx2n) +
�

2
(d(hu; fu) + d(hx2n�1; hx2n)):

After computing, we have d(hu; fu) � 2+�
2��d(v; hx2n)+

�
2��d(hx2n�1; v). Suppose 0� c

and there exists n0 2 N such that d(v; hx2n) � c(2��)
2(2+�) and d(hx2n�1; v) �

c(2��)
� for

all n � n0. Therefore d(hu; fu) � c from (13). The fact that v is the common �xed
point follows the same procedure as in the proof of Theorem 2.3. The uniqueness
follows from the contractive de�nition (9).

REMARK 2.10. If g = f , we have Theorem 2.2 of [8] which is a generalization of
several results in the references of [8].

EXAMPLE 2.11. Let X = R, E = `p, (0 < p < 1), P = ffxngn�1 2 E : xn � 0,
for all ng. Let d : X �X ! E be de�ned by d(x; y) = f jx�yj2n gn�1. Then (X; d) is a
cone metric space. Consider the mapping f , g and h de�ned as:

fx =

�
1

1+� + � x 6= 0
0; x = 0

gx =

�
1

1�� � � x 6= 0
0; x = 0

h(x) = �x for all x

where � > 1 and � > 0. It is easy to check that

d(fx; gy) � ad(hx; hy)

for all x; y 2 X, where a = 1
(1+�)� 2 (0; 1). The only point of coincidence of f , g and

h is 0. Also, the pair mappings (f; h) and (g; h) commutes at the point of coincidence
and therefore are weakly compatible. All the conditions of Theorem 2.3 are satis�ed
and therefore f , g and h have a unique common �xed point which is 0.
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