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Abstract
The present paper investigates the existence of mild solutions of a nonlinear

mixed Volterra-Fredholm integrodi¤erential equation with nonlocal condition in
Banach spaces. Further su¢ cient condition for the controllability of integrodif-
ferential equation is established. The approach used is the Schauder �xed point
theorem with the theory of resolvent operators.

1 Introduction

Let X be a Banach space with norm k � k. Let Z = C(J;X) be the Banach space of all
continuous functions from J into X endowed with the supremum norm

kxkZ = supfkx(t)k : t 2 Jg

and B(X) denotes the Banach space of bounded linear operators from X into itself.
Motivated by the work of [20], in this paper we consider the following nonlinear

mixed Volterra-Fredholm integrodi¤erential equation of the form:

x
0
(t) = A(t)

�
x(t) +

Z t

0

Q(t; s)x(s)ds
�
+ f(t; x(t);

Z t

0

k(t; s; x(s))ds;

Z b

0

h(t; s; x(s))ds);

(1)

x(0) + g(x) = x0; (2)

where t 2 J = [0; b], the unknown x(�) takes values in the Banach space X, and x0 is
a given element of X. Here A(t) is a closed linear operator on X with dense domain
D(A), which is independent of t. Q(t; s); t; s 2 J , is a bounded operator in X. The
nonlinear functions f : J �X �X �X ! X, g : Z ! X, k; h : J � J �X ! X are
continuous functions. We de�ne the following sets:

Br = fx 2 X : kxk � rg and Er = fz 2 Z : kzkZ � rg;
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where r > 0 is de�ned below.
The nonlocal condition, which is a generalization of the classical initial condition,

was motivated by physical problems. The problem of existence of solutions of evolution
equation with nonlocal conditions in Banach space was �rst studied by [5] and he
investigated the existence and uniqueness of mild, strong and classical solutions of
the nonlocal Cauchy problem. As indicated in [5, 10] and the references therein, the
nonlocal condition y(0) + g(y) = y0 can be applied in physics with better e¤ect than
the classical condition y(0) = y0. For example, in [10], the author used

g(y) =

pX
i=1

ciy(ti);

whereci; i = 1; 2; :::; p and 0 < t1 < t2 < � � � � b, to describe the di¤usion phenom-
enon of a small amount of gas in a transparent tube. In this case, the above explanation
allows the additional measurements at ti; i = 1; 2; :::; p. The study of di¤erential and
integrodi¤erential equations in abstract spaces with nonlocal conditions have received
much attention in recent years. We refer to the papers [6, 7, 16, 19].

The objective of the present paper is to generalize the results reported in [13, 14, 16,
17] and our approach to the conditions on functions are di¤erent. The papers reported
in [3, 20] are also special cases of the problem (1)�(2) when the function �(t) = t. We
�rst investigate the existence of mild solutions of the problem (1)�(2). The main tool
employed in our analysis is based on the Schauder �xed point theorem and the theory
of resolvent operators. We also study the nonlocal controllability problem for the above
equation.

The paper is organized as follows. In section 2, we present the preliminaries and
the hypotheses. Section 3 deals with the main result. Section 4 concerns with the
controllability of integrodi¤erential equation. In section 5, we give an example to
illustrate the applications of our results.

2 Preliminaries and Main Results

Before proceeding to our results, we shall set forth some preliminaries and hypotheses
that will be used in our subsequent discussion.

DEFINITION. A resolvent operator for (1)�(2) is a bounded operator-valued func-
tion R(t; s) 2 B(X); 0 � s � t � b, having the following properties:

(a) R(t; s) is strongly continuous in s and t, R(s; s) = I, the identity operator on X,
0 � s � b, and kR(t; s)k �Me�(t�s) for some constants M and �.

(b) R(t; s)Y � Y; R(t; s) is strongly continuous in s and t on Y , and Y is the Banach
space formed from D(A), the domain A(t), endowed with the graph norm.

(c) For each y 2 Y , R(t; s)y is continuously di¤erential in s 2 J and

@

@s
R(t; s)y = �R(t; s)A(s)y �

Z t

s

R(t; �)Q(� ; s)A(s)yd� :
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(d) For each y 2 Y , and s 2 J , R(t; s)y is continuously di¤erential in t 2 J and

@

@t
R(t; s)y = R(t; s)A(t)y +

Z t

s

R(t; �)Q(� ; s)A(t)yd�

with @
@sR(t; s)y and

@
@tR(t; s)y are strongly continuous on 0 � s � t � b. Here,

R(t; s) can be deduced from the evolution operator of the generator A(t).

DEFINITION. A continuous solution x(�) : J ! X is said to be a mild solution of
problem (1)�(2) on J if for x0 2 X, it satis�es the following integral equation

x(t) = R(t; 0)[x0 � g(x)] +
Z t

0

R(t; s)f(s; x(s);

Z s

0

k(s; � ; x(�))d� ;Z b

0

h(s; � ; x(�))d�)ds: (3)

We need the following theorem (known as Schauder �xed point theorem [18], p-37)
for further discussion:

THEOREM 1. Let S be a bounded, closed and convex subset of a Banach space
X. If f 2 C(S; S)-set of all compact maps from S into S, then f has at least one �xed
point.

We list the following hypotheses for our convenience.

(H1) The resolvent operator R(t; s) is compact when t � s > 0 and there exists a
positive constant M1 such that

kR(t; s)k �M1:

(H2) There are constants L1;K1 and H1 such that

L1 = max
t2J

kf(t; 0; 0; 0)k; K1 = max
0�s�t�b

kk(t; s; 0)k; H1 = max
0�s;t�b

kh(t; s; 0)k:

(H3) There exists a constant G1 > 0 such that

kg(x)k � G1; for x 2 Er; g(�x1 + (1� �)x2) = �g(x1) + (1� �)g(x2);

for xi 2 Er, (i = 1; 2), � 2 (0; 1).

(H4) The set
fx(0) : x 2 Er; x(0) + g(x) = x0g

where

M1[kx0k+G1 + Lrb+ LKrb2 + LK1b
2 + LHrb2 + LH1b

2 + L1b] � r;

with [M1Lb+M1LKb
2 +M1LHb

2] < 1, is precompact in X.
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3 Existence Result

Now we shall prove the following result of existence of mild solution.

THEOREM 2. Assume that

(i) hypotheses (H1)�(H4) hold,

(ii) f 2 C(J �X �X �X;X) and there exists a constant L > 0 such that

kf(t; x1; y1; z1)� f(t; x2; y2; z2)k � L(kx1 � x2k+ ky1 � y2k+ kz1 � z2k);

for xi; yi; zi 2 Br, i = 1; 2 and t 2 J .

(iii) k; h 2 C(J � J �X;X) and there exist constants K; H > 0 such that

kk(t; s; x1)� k(t; s; x2)k � Kkx1 � x2k

and

kh(t; s; x1)� h(t; s; x2)k � Hkx1 � x2k

for xi; yi 2 Br, i = 1; 2 and t; s 2 J . Then problem (1)�(2) has a mild solution
on J .

PROOF. We de�ne the set E by E = fx 2 Z : x 2 Er; x(0) + g(x)) = x0g:
It is easy to see that E is a bounded closed convex subset of Z. De�ne a mapping
F : E ! E by

(Fx)(t) = R(t; 0)[x0 � g(x)] +
Z t

0

R(t; s)f(s; x(s);

Z s

0

k(s; � ; x(�))d� ;Z b

0

h(s; � ; x(�))d�)ds; t 2 J: (4)

Since all the functions involved in the de�nition of the operator are continuous, the
operator F is continuous. For x 2 E; t 2 J and using hypotheses (H1)�(H4) and
assumptions (ii); (iii), we have

k(Fx)(t)k �M1(kx0k+G1) +M1

Z t

0

[kf(s; x(s);
Z s

0

k(s; � ; x(�))d� ;Z b

0

h(s; � ; x(�))d�)� f(s; 0; 0; 0)k+ kf(s; 0; 0; 0)k]ds

�M1(kx0k+G1) +M1L

Z t

0

[r +

Z s

0

kk(s; � ; x(�))� k(s; � ; 0) + k(s; � ; 0)kd�

+

Z b

0

kh(s; � ; x(�))� h(s; � ; 0) + h(s; � ; 0)kd� ]ds+ L1M1b

�M1(kx0k+G1) +M1

Z t

0

[Lr + Lb(Kr +K1) + Lb(Hr +H1)]ds+ L1M1b
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�M1[kx0k+G1 + Lrb+ LKrb2 + LK1b
2 + LHrb2 + LH1b

2 + L1b]

= r: (5)

Thus, F maps E into itself and consequently F 2 C(E;E).
Now, we prove that F maps E into a precompact subset F (E) of E. For this

purpose, we �rst show that the set E(t) = f(Fx)(t) : x 2 Eg, t 2 J is precompact in
X. Observe that

E(0) = f(Fx)(0) : x 2 Eg = fx0 � g(x) : x 2 Er; x(0) + g(x) = x0g:

Therefore, according to hypothesis (H4), E(0) is precompact in X.
Let t > 0 be �xed. For an arbitrary 0 < � < t, we de�ne a mapping

(F�x)(t) = R(t; 0)[x0 � g(x)] +
Z t��

0

R(t; s)f(s; x(s);

Z s

0

k(s; � ; x(�))d�;Z b

0

h(s; � ; x(�))d�)ds: (6)

Since R(t; s) is compact operator for every t; s � 0, then the set E�(t) = f(F�x)(t) :
x 2 Eg is precompact in X for every � > 0. By using the equations (4), (6) and the
hypotheses (H1)�(H4), we obtain

k(Fx)(t)� (F�x)(t)k

�M1

Z t

t��
[kf(s; x(s);

Z s

0

k(s; � ; x(�))d�;

Z b

0

h(s; � ; x(�))d�)� f(s; 0; 0; 0)k+ L1]ds

�M1

Z t

t��
[Lr + Lb(Kr +K1) + Lb(Hr +H1) + L1]ds

�M1[Lrb+ LKrb
2 + LK1b

2 + LHrb2 + LH1b
2 + L1b]�: (7)

This implies that there exist precompact sets arbitrary close to the set E(t) = f(Fx)(t) :
x 2 Eg. Hence, the set f(Fx)(t) : x 2 Eg is precompact in X.
Next, we show that F (E) is an uniformly equicontinuous family of functions. Let

0 < s < t. By using hypotheses hypotheses (H2); (H3) and (ii); (iii), we have

k(Fx)(t)� (Fx)(s)k

� kR(t; 0)�R(s; 0)k(kx0k+ kg(x)k) +
Z s

0

kR(t; �)�R(s; �)k

� kf(� ; x(�);
Z �

0

k(� ; �; x(�))d�;

Z b

0

h(� ; �; x(�))d�)kd�

+

Z t

s

kR(t; �)kkf(� ; x(�);
Z �

0

k(� ; �; x(�))d�;

Z b

0

h(� ; �; x(�))d�)kd�

� kR(t; 0)�R(s; 0)k(kx0k+G1) +M1[Lr + L(Kr +K1 +Hr +H1)b+ L1](t� s)

+

Z s

0

kR(t; �)�R(s; �)k[Lr + L(Kr +K1 +Hr +H1)b+ L1]d� : (8)
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Here we have proceeded as in the result (7). The right hand side of (8) is independent
of x 2 E and tends to zero as s! t as a consequence of the continuity of R(t; s) in the
uniform operator topology for t > 0, which follows from the compactness of R(t; s),
t � s > 0. Therefore, F (E) is equicontinuous family of functions. Thus by Arzela-
Ascoli�s theorem, F (E) is precompact. Hence by the Schauder �xed point theorem, F
has a �xed point in E and any �xed point of F is a mild solution of (1)�(2) on J .

4 Controllability Result

Controllability is one of the fundamental concepts in mathematical control theory and
plays an important role in both deterministic and stochastic control systems. It is
well known that the controllability of deterministic systems are widely used in many
�elds of science and technology. The controllability of nonlinear deterministic systems
represented by equations in abstract spaces, whereas the stochastic control theory is a
stochastic generalization of classical control theory. Such problems have been studied
by several authors, see [1, 2, 4, 7, 8, 9] and the references cited therein. Now we
will establish a set of su¢ cient conditions for the controllability of nonlinear mixed
integrodi¤erential equation with control parameter of the form:

x
0
(t) = A(t)

�
x(t) +

Z t

0

Q(t; s)x(s)ds
�
+ f(t; x(t);

Z t

0

k(t; s; x(s))ds;Z b

0

h(t; s; x(s))ds) + (Bu)(t); t 2 J (9)

x(0) + g(x) = x0; (10)

where the state x(�) takes values in the Banach space X and the control function u(�) is
given in L2(J; U), a Banach space of admissible control functions with U as a Banach
space. Here B is is a bounded linear operator from U into X. Then, for equations
(9)�(10), there exists a mild solution of the following form

x(t) = R(t; 0)[x0 � g(x)] +
Z t

0

R(t; s)
h
f(s; x(s);

Z s

0

k(s; � ; x(�))d� ;Z b

0

h(s; � ; x(�))d�) + (Bu)(s)
i
ds; (11)

where the resolvent operator R(t; s) 2 B(X) for t� s > 0 and the functions f; g; k and
h satisfy the conditions stated in Section 3.

DEFINITION. The system (9)�(10) is said to be nonlocally controllable on the
interval J if, for every x1 2 X, there exists a control u 2 L2(J; U) such that the mild
solution x(�) of the problem (9)�(10) satis�es x(b) + g(x) = x1.

To establish the result, we need the following additional hypothesis.

(H5) The operator W from L2(J; U) into X, de�ned by

Wu =

Z b

0

R(b; s)(Bu)(s)ds;
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has an induced inverse operator W�1 which takes values in L2(J; U)=kerW , and
there exist positive constants M2;M3 such that

kBk �M2; kW�1k �M3:

THEOREM 3. If the hypotheses (H1)�(H5) and conditions (ii), (iii) of Theorem
2 are satis�ed, then the (9)�(10) is nonlocally controllable on J .

PROOF. Using hypothesis (H5), for an arbitrary x(�), de�ne the control

u(t) =W�1
n
x1 � g(x)�R(b; 0)(x0 � g(x))

�
Z b

0

R(b; s)
h
f(s; x(s);

Z s

0

k(s; � ; x(�))d� ;

Z b

0

h(s; � ; x(�))d�)
i
ds
o
(t): (12)

Let
Z0 = fx 2 Z : x(0) + g(x); kxk � r1; for t 2 Jg;

where the positive constant r1 is given by

r1 �M1

h
kx0k+G1 + Lr1b+ LKr1b2 + LK1b

2 + LHr1b
2

+ LH1b
2 + L1b

i
(1 +M1M2M3b) +M1M2M3(kx1k+G1)b;

with (1+M1M2M3b)[M1Lb+M1LKb
2+M1LHb

2] < 1. Then Z0 is clearly a bounded,
closed and convex subset of Z. De�ne a mapping � : Z0 ! Z0 by

(�x)(t) = R(t; 0)(x0 � g(x)) +
Z t

0

R(t; s)
h
f(s; x(s);

Z s

0

k(s; � ; x(�))d� ;Z b

0

h(s; � ; x(�))d�) + (Bu)(s)
i
ds: (13)

Now, we shall show that, when using control u, the operator � has a �xed point. This
�xed point is then a mild solution of the system (9)�(10). Clearly, x1�g(x) = (�x)(b),
which means that the control u steers the mixed integrodi¤erential system from the
initial state x0 to x1 in time b provided we can obtain a �xed point of the nonlinear
operator �. Using the de�nition of the control u in the equation (13), we get

(�x)(t) = R(t; 0)(x0 � g(x)) +
Z t

0

R(t; s)
h
f(s; x(s);

Z s

0

k(s; � ; x(�))d�;Z b

0

h(s; � ; x(�))d�)
i
ds+

Z t

0

R(t; s)BW�1
h
x1 � g(x)�R(b; 0)(x0 � g(x))

�
Z b

0

R(b; �)f(�; x(�);

Z �

0

k(�; � ; x(�))d� ;

Z b

0

h(�; � ; x(�))d�)d�
i
(s)ds: (14)

Since all the functions involved in the de�nition of the operator are continuous, the
operator � is continuous. For x 2 Z0; t 2 J and following steps as in the proof of
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Theorem 2 in equation (5), from hypotheses (H1) � (H5) and assumptions (ii); (iii),
we have

k(�x)(t)k �M1

h
kx0k+G1 + Lr1b+ LKr1b2 + LK1b

2 + LHr1b
2

+ LH1b
2 + L1b

i
(1 +M1M2M3b) +M1M2M3(kx1k+G1)b = r1: (15)

Thus, � maps Z0 into itself and consequently � 2 C(Z0;Z0).
Now, we prove that � maps Z0 into a precompact subset �(Z0) of Z0. For this

purpose, we �rst show that for every �xed t 2 J , the set Z0(t) = f(�x)(t) : x 2 Z0g, is
precompact in X. This is clear for t = 0 since Z0(0) is precompact by hypothesis (H4).
Let t > 0 be �xed. For an arbitrary 0 < � < t, we de�ne a mapping

(��x)(t) = R(t; 0)(x0 � g(x)) +
Z t��

0

R(t; s)
h
f(s; x(s);

Z s

0

k(s; � ; x(�))d� ;Z b

0

h(s; � ; x(�))d�)
i
ds

+

Z t��

0

R(t; s)BW�1
h
x1 � g(x)�R(b; 0)(x0 � g(x))�

Z b

0

R(b; �)f(�; x(�);Z �

0

k(�; � ; x(�))d� ;

Z b

0

h(�; � ; x(�))d�)d�
i
(s)ds: (16)

Since R(t; s) is compact operator for every t; s � 0, then the set Z�(t) = f(��x)(t) :
x 2 Z0g is precompact in X for every � > 0. By using the equations (14), (16) and the
hypotheses (H1)�(H4), and (ii); (iii), we obtain

k(�x)(t)� (��x)(t)k

�M1

h
Lr1 + LKr1b+ LK1b+ LHr1b+ LH1b+ L1

i
�+M1M2M3

h
kx1k+G1

+M1

�
kx0k+G1 + Lr1b+ LKr1b2 + LK1b

2 + LHr1b
2 + LH1b

2 + L1b
�i
�; (17)

which implies that Z0(t) is totally bounded, that is, precompact in X.
Next, we show that �(Z0) is an uniformly equicontinuous family of functions. Let

0 < s < t. Following steps as in the proof of Theorem 2 in equation (8), from hypotheses
hypotheses (H2); (H3) and (ii); (iii), we have

k(�x)(t)� (�x)(s)k
� kR(t; 0)�R(s; 0)k(kx0k+G1) +M1[Lr + L(Kr +K1 +Hr +H1)b+ L1](t� s)

+

Z s

0

kR(t; �)�R(s; �)k[Lr + L(Kr +K1 +Hr +H1)b+ L1]d�

+

Z s

0

kR(t; �)�R(s; �)kM2M3

h
kx1k+G1 +M1

�
kx0k+G1 + (Lr1 + LKr1b

+ LK1b+ LHr1b+ LH1b+ L1)b
�i
d� +M1M2M3

h
kx1k+G1 +M1

�
kx0k+G1

+ (Lr1 + LKr1b+ LK1b+ LHr1b+ LH1b+ L1)b
�i
(t� s): (18)
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Here we have proceeded as in the result (17). The right hand side of (18) is independent
of x 2 Z0 and tends to zero as s ! t as a consequence of the continuity of R(t; s) in
the uniform operator topology for t > 0, which follows from the compactness of R(t; s),
t � s > 0. Therefore, �(Z0) is equicontinuous family of functions. Thus by Arzela-
Ascoli�s theorem, �(Z0) is precompact. Hence by the Schauder �xed point theorem, �
has a �xed point in Z0 and any �xed point of � is a mild solution of (9)�(10) on J .
Therefore, the system (9)�(10) is nonlocally controllable on J .

5 Example

In this section, we give an example to illustrate the usefulness of our main result. Let
us consider the following partial integrodi¤erential equation of the form:

@

@t
w(t; x) = a0(t)

@2

@x2
[w(t; x) +

Z t

0

1

(1 + t2)(1 + s2)
w(s; x)ds] + �(t; x)

+ w(t; x) +

Z t

0

1

(1 + t2)(1 + s)
w(s; x)ds

+

Z 1

0

1

(1 + t2)(1 + s)
[w2(s; x) + sin(w2(s; x))]ds (19)

w(t; 0) = w(t; �) = 0 (20)

w(0; x) +

Z 1

0

1

2
w(s; x)ds = w0(x); 0 � t � 1; 0 � x � �; (21)

where w0(x) 2 X = L2([0; �]), w0(0) = w0(�) = 0 and the functions a0 and � :
[0; 1] � (0; �) ! (0; �) are continuous on 0 � t � 1. Let X = L2([0; �]) and the
operators A(t) be de�ned by

A(t)z = a0(t)z
00

with the domain D(A) = fz 2 X : z; z
00

are absolutely contunuous; z
00 2

X; z(0) = z(1) = 0g, then A(t) generates an evolution system and R(t; s) can be
deduced from the evolution systems [11, 12, 15] such that R(t; s) is compact and
kR(t; s)k � M1e

�(t�s) for some constants M1 and �. On comparison of functions
f and g with the problem (19)�(21), then by assumptions, we have

kf(t; x1; y1; z1)� f(t; x2; y2; z2)k � f1 +
log 2

(1 + t2)
[1 + 2kx1 + x2k]gkx1 � x2k:

Also for x1; x2 2 C([0; 1], the function

g(�x1 + (1� �)x2) =
Z 1

0

1

2
(�x1 + (1� �)x2)(s)ds

=

Z 1

0

1

2
�x1(s)ds+

Z 1

0

1

2
(1� �)x2(s)ds = �g(x1) + (1� �)g(x2)

is convex.
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Let Bu : [0; 1]�X be de�ned by

(Bu)(t)x = �(t; x); x 2 (0; �):

With the choice of A(t); B and f , the equations (19)-(21) take the abstract form as
(1)-(2).

Now, the linear operator W is given by

(Wu)x =

Z 1

0

R(1; s)�(s; x)ds; x 2 (0; �):

Assume that this operator has a bounded invertible operatorW�1 in L2([0; 1]; U)=kerW .
Further, all the other conditions stated in Theorem 2 and Theorem 3 are satis�ed.
Hence, the problem (19)-(21) has a mild solution on [0; 1] and the system (19)-(21) is
controllable on [0; 1].
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