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Abstract

In this paper a new conjugate gradient method for unconstrained optimization
is introudced, which is su¢ cient descent and globally convergent and which can
also be used with the Dai-Yuan method to form a hybrid algorithm. Our methods
do not require the strong convexity condition on the objective function. Numerical
evidence shows that this new conjugate gradient algorithm may be considered as
one of the competitive conjugate gradient methods.

1 Introduction

There are now many conjugate gradient schemes for solving unconstrained optimization
problems of the form

min ff(x) : x 2 Rng

where f is a continuously di¤erentiable function of n real variables with gradient g =
rf . An essential feature of these schemes is to arrive at the desired extreme points
through the following nonlinear conjugate gradient algorithm

x(k+1) = x(k) + �kdk (1)

where �k is the stepsize, and dk is the conjugate search direction de�ned by

dk =

�
�gk k = 1
�gk + �kdk�1 k > 1

; (2)

where gk = rf
�
x(k)

�
and �k is an update parameter. In a recent survey paper by

Hager and Zhang [5], a number of choices of the parameter �k are given in chronological
order. Two well known choices are recalled here for later use:
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Dai-Yuan: �DYk =
jjgkjj2
dTk�1yk

(3)

Hager-Zhang: �HZk =
1

dTk�1yk

 
yk � 2dk�1

jjykjj2
dTk�1yk

!T
gk; (4)

where jj � jj is the Euclidean norm and yk = gk�gk�1. In (1) the stepsize �k is obtained
through the exact linear search (i.e., g

�
x(k) + �kdk

�T
dk = 0) or inexact linear search

with Wolfe�s criterion de�ned by

f(x(k) + �kdk) � f(x(k)) + ��kgTk dk; (5)

and
g(x(k) + �kdk)

T dk � �gTk dk (6)

where 0 < � < � < 1:
In 1999, Dai and Yuan [2] proposed the DY conjugate gradient method using �k

de�ned by (3). In 2001 [1], they introduced an updated formula of �k with three
parameters, which may be regarded as a convex combination of several earlier choices
of �k listed in [5]; but the three parameters are restricted in small intervals. Based on
the ideas of Dai-Yuan, Andrei in [3] presents yet another su¢ cient descent and global
convergence algorithm that avoided the strongly convex condition on the objective
function f(x) assumed by Hager and Zhang [4] incoporating �HZk in (4) (to be named
the HZ method in the sequel).
However, the method by Andrei requires some additional conditions (see the state-

ment following the proof of Theorem 1, and also the additional conditions such as
gTk+1(gk+1 � gk) > 0 and 0 < ! � �k � 
 in Theorem 2 of [3]). Therefore it is of in-
terest to �nd further alternate methods that are as competitive, yet neither the strong
convexity of the objective function nor the above mentioned conditions are required.
In this note, we introduce a new formulation of the update parameter �k de�ned

by

�NEWk =
jjgkjj2

�jdTk�1gkj+ dTk�1yk
: (7)

Note that if we use the exact line search, our new algorithm reduces to the algorithm of
Dai and Yuan. In this paper, however, we consider general nonlinear functions and an
inexact line search. By means of our �NEWk and the �DYk in (3), we may then introduce
a hybrid algorithm for �nding the extreme values of f:
Global convergence of our methods will be established and numerical evidence will

be listed to support our �ndings.

2 New Algorithm and Convergence

As in [2], we assume that the continuously di¤erentiable function f is bounded in the
level set L1 = fxjf(x) � f(x(1))g, where x(1) is the starting point; and that g(x) is
Lipschitz continuous in L1, i.e., there exists a constant L > 0 such that jjg(x)�g(y)jj �
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Ljjx � yjj for all x; y 2 L1: We remark that in Andrei [3], it is required that the level
set L1 be bounded instead of the slightly weaker condition of Dai-Yuan.
Also, we use the same algorithm in [2] which is restated here for the sake of conve-

nience:

Step 1. Initialize starting point x(1), and � > 1, a very small positive " > 0:
Compute d1 = �g1: Set k = 1:
Step 2. If jjgk jj < ", then stop and output x(k), else go to step 3.
Step 3. Compute x(k+1) = x(k) + �kdk through inexact linear search by (5) and

(6).
Step 4. Compute dk+1 by (2) and (7). Compute gk+1: Set k = k+1 and go to step

2.

In order to consider convergence, we �rst notice, by (6), that

dTk�1(gk � gk�1) � �dTk�1gk�1 � dTk�1gk�1 = (� � 1)dTk�1gk�1: (8)

LEMMA 1. If � > 1, then gTk dk < �(1� 1
� )jjgkjj

2 < 0 for k = 1; 2; ::: :

PROOF. If k = 1 then d1 = �g1 and gT1 d1 = �jjg1jj2 < �(1 � 1
� )jjg1jj

2 < 0 since
� > 1: Assume by induction that gTk�1dk�1 < �(1 � 1

� )jjgk�1jj
2 < 0: By (2), (6), (7)

and (8), we have

gTk dk = �jjgkjj2 + �NEWk gTk dk�1 = �jjgkjj2 +
jjgkjj2

�jdTk�1gkj+ dTk�1(gk � gk�1)
gTk dk�1

� �jjgkjj2 +
jjgkjj2

j�jdTk�1gkj+ dTk�1(gk � gk�1)j
jgTk dk�1j

� �jjgkjj2 +
jjgkjj2

j�jdTk�1gkj+ (� � 1)dTk�1gk�1j
jgTk dk�1j

� �jjgkjj2 +
jjgkjj2

�jdTk�1gkj
jgTk dk�1j

= �
�
1� 1

�

�
jjgkjj2:

The proof is complete.

We remark that our Lemma 1 implies that dk is a su¢ cient descent direction.

LEMMA 2 (see [2]). If the sequence fx(k)g is generated by (1) and (2), the stepsize
�k satis�es (5) and (6), and dk is a descent direction, f is bounded and g(x) is Lipschitz
in the level set, then

1X
k=1

(gTk dk)
2

jjdkjj2
<1: (9)

THEOREM 1 (Global convergence). If � > 1 in (7), f is bounded and g(x) is
Lipschitz in the level set, then our algorithm either terminates at a stationary point or
lim inf jjgkjj = 0:
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Proof. If our conclusion does not hold, then there exists a real number " > 0 such
that jjgkjj > ", for all k = 1; 2; ::: : Since dk + gk = �kdk�1; we have

jjdkjj2 = �2kjjdk�1jj2 � jjgkjj2 � 2gTk dk: (10)

By (8) and Lemma 1, we have

gTk dk = �jjgkjj2 + �NEWk gTk dk�1

= �jjgkjj2 +
jjgkjj2

�jdTk�1gkj+ dTk�1(gk � gk�1)
gTk dk�1

=
��jdTk�1gkj+ dTk�1 gk�1

�jdTk�1gkj+ dTk�1(gk � gk�1)
jjgkjj2

�
dTk�1gk�1

�jdTk�1gkj
jjgkjj2:

Since dTk�1gk�1 < 0 and d
T
k gk < 0; we see that

jjgkjj2 �
�jdTk�1gkjjgTk dkj
jdTk�1gk�1j

;

that is,

�NEWk =
jjgkjj2

�jdTk�1gkj+ dTk�1(gk � gk�1)
� jjgkjj2
�jdTk�1gkj

� jdTk gkj
jdTk�1 gk�1j

:

Replace �k in (10) with �
NEW
k , we get

jjdkjj2
(gTk dk)

2
� jjdk�1jj2

(gTk�1dk�1)
2
� jjgkjj2
(gTk dk)

2
� 2 1

gTk dk

=
jjdk�1jj2

(gTk�1dk�1)
2
� ( jjgkjj

gTk dk
+

1

jjgkjj
)2 +

1

jjgkjj2

� jjdk�1jj2
(gTk�1dk�1)

2
+

1

jjgkjj2
� jjdk�1jj2
(gTk�1dk�1)

2
+
1

"2

since d1 = �g1; so that

jjdkjj2
(gTk dk)

2
<

jjd1jj2
(gT1 d1)

2
+
k � 1
"2

=
1

jjg1jj2
+
k � 1
"2

<
1

"2
+
k � 1
"2

=
k

"2
:

Thus
1X
k=1

(gTk dk)
2

jjdkjj2
>

1X
k=1

"2

k
= +1

which is contrary to Lemma 2. The proof is complete.
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3 Hybrid Algorithm

We may build a hybrid algorithm (see discussions on hybrid algorithms in [5] for back-
ground information) based on �DYk and our �NEWk as follows: First we let

�mixk =

�
�DYk if j�DYk j � �NEWk and gTk dk�1 < 0
�NEWk otherwise

; (11)

and then we replace �NEWk with �mixk at step 4 of the algorithm in the last section.

THEOREM 2. For k = 1; 2; :::; we have gTk dk < �(1 � 1
� )jjgkjj

2 (so that our new
method is also su¢ cient descent).

PROOF. When n = 1; since � > 1 and d1 = �g1, we have gT1 d1 = �jjg1jj2 <
�(1 � 1

� )jjg1jj
2 < 0: Assume by induction that gTk�1dk�1 < �(1 � 1

� )jjgk�1jj
2 < 0. If

�mixk = �DYk , then gTk dk�1 � 0. Therefore, in case where �mixk = �DYk or �mixk =

�NEWk , we have

gTk dk = �jjgkjj2 + �mixk gTk dk�1 � �jjgkjj2 + �NEWk gTk dk�1:

From the proof of Lemma 1, we can then get gTk dk < �(1� 1
� )jjgkjj

2.

THEOREM 3. (Global convergence). If � > 1, f is bounded and g(x) is Lipschitz in
the level set, then our algorithm either terminates at a stationary point or lim inf jjgkjj =
0:

Proof. As in the proof of Theorem 1, if our conclusion does not hold, then we have

gTk dk = �jjgkjj2 + �mixk gTk dk�1

� �jjgkjj2 + �NEWk gTk dk�1

=
��jdTk�1gkj+ dTk�1 gk�1

�jdTk�1gkj+ dTk�1(gk � gk�1)
jjgkjj2

� jjgkjj2
�jdTk�1gkj+ dTk�1(gk � gk�1)

dTk�1 gk�1

= �NEWk dTk�1gk�1:

Since gTk dk < 0 for all k � 1, therefore,

�NEWk � gTk dk
dTk�1gk�1

=
jgTk dkj

jdTk�1gk�1j
: (12)

On the other hand, by (12) and (10), we have

jjdkjj2 = (�mixk )2jjdk�1jj2 � jjgkjj2 � 2gTk dk
� (�NEWk )2jjdk�1jj2 � jjgkjj2 � 2gTk dk

� (gTk dk)
2jjdk�1jj2

(gTk�1dk�1)
2

� jjgkjj2 � 2gTk dk

The remaining proof is the same as the proof of Theorem 1.
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4 Numerical Evidences

In this section, we will test the DY, HZ, the ANDREI (see [3]) and our NEW as well as
HYBRID conjugate methods with weak Wo�e line search. For each method, we take
� = 0:2; � = 0:3; � = 1:1 in (5)-(6), and the termination condition is kgkk � " = 10�6.
The test problems are extracted from [6]. Since the computational procedures are
similar to those in [6] and in [7], we will not bother with the detailed descriptions of
the numerical data. Instead, we prepare a Table which provides conclusions of our
numerical comparisons. More speci�cally, in this table, the terms Problem, Dim, NI,
NF, NG, -, * have the following meaning:

Problem: the name of the test problem;
Dim: the dimension of the problem;
NI: the total number of iterations;
NF: the number of the function evaluations;
NG: the number of the gradient evaluations;
-: method not applicable;
*: the best method.

Our Table (see the last two pages) shows that our new methods in some test prob-
lems outperform the Dai-Yuan method. Although the HZ method is also performing
well, but this method requires that the objective function is strongly convex and the
level set is bounded, so HZ method may not be applicable (such as the Gulf research
problem). In conclusion, our new methods are competitive among the well known
conjugate gradient methods for unconstrained optimization.

Acknowledgment. Research supported by the Natural Science Foundation of
Guangdong Province of P. R. China under grant number 9151008002000012.
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