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Abstract

In this paper, we consider a risk process with random income and a constant

barrier. We first derive an integral equation for the Gerber-Shiu function. Then

we show that the Gerber-Shiu function satisfies a Volterra integral equation of

the second kind when the individual premium income is exponentially distributed.

Some explicit results are obtained for exponential claims.

1 Introduction

In the classical risk model, the premiums are assumed to be received by insurance
companies at a constant rate over time. This hypothesis simplifies the study of many
risk quantities of interest under such a frame work but it fails to capture the uncertainty
of the customer’s arrivals and the amount of premiums for different kinds of customers.
To reflect the cash flows of the insurance company more realistically, some papers
assumed that the insurer earns random premium income. Among them, Boikov [1]
investigated the probability of ultimate ruin of an insurance portfolio, where the claim
and the premium aggregate processes are both compound Poisson processes. Later,
the same risk model was further studied by Yao et al. [12] and Labbé and Kristina
[5]. Both of them managed to obtain some results about the Gerber-Shiu function.
While Bao [2], Bao and Ye [3] and Yang and Zhang [6] made simpler assumption about
the premium process and also managed to derive some results about the Gerber-Shiu
function.

In this paper, we consider a modification of the risk model proposed by Boikov [1]
in the presence of a constant dividend barrier. We recall that the barrier strategy has
been first proposed by De Finetti [4] for a binomial model. Now barrier strategies for
the classical risk model have been studied in detail by numerous authors, e.g. Lin et
al. [8], Dickson and Waters [9], Landriault [10] and references therein.

The rest of the paper is organized as follows. In Section 2, we introduce the risk
models and notations that are used throughout the article. In Section 3, we derive an
integral equation for the Gerber-Shiu function. In Section 4, we consider the special case
where the premium sizes are exponentially distributed. We show that the Gerber-Shiu
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function satisfies a Volterra equation of the second kind, based on the Volterra equation
we derive the general solution for the Gerber-Shiu function. We also obtain some
explicit results for Gerber-Shiu function when claim sizes are exponentially distributed.

2 Risk Models and Notations

In the class of risk models studied by Boikov [1], it is assumed that the claim num-
ber process N = {N(t), t ≥ 0} is a Poisson process with independent and identically
distributed (i.i.d) exponential interclaim times {Wj , j = 1, 2, · · ·}. In this paper, we as-
sume that EWj = 1/µ. The individual claim amounts {Yj, j = 1, 2, · · ·} are assumed
to be a sequence of i.i.d. positive r.v.’s with the common absolutely continuous distri-
bution function (d.f.) Q, continuous probability density function (p.d.f.) q and finite
mean mY .

Denote the aggregate claim process by {S1(t), t ≥ 0}, i.e. S1(t) =
∑N(t)

i=1 Yi. While
the premiums occur in time according to homogenous Poisson process {M(t), t ≥ 0}
with intensity λ > 0. The premium sizes are given by the sequence of i.i.d positive
random variables X1, X2, · · · with the common d.f.P , finite mean mX and continuous

p.d.f. p. Denote the aggregate premiums until time t by S2(t) =
∑M(t)

i=1 Xi. We also
assume that {M(t)}, {N(t)}, {Xi} and {Yi} are mutually independent.

The insurer’s surplus process without a barrier is {U(t), t ≥ 0} with U(t) = u +
S2(t) − S1(t) or dU(t) = dS2(t) − dS1(t). In the above, u = U(0) ≥ 0 is the initial
surplus. Let λmX = (1 + θ)µmY , where θ > 0 is the relative security loading.

A barrier strategy considered in this paper assumes that there is a horizontal barrier
of level b > 0 such that whenever the surplus exceeds the level b, the excess is paid
out immediately as a dividend. Let Ub(t) be the surplus process with initial surplus
Ub(0) = u under the barrier strategy above. Thus Ub(t) can be expressed as

dUb(t) =

{

dS2(t) − dS1(t), U(t) ≤ b;
−dS1(t), U(t) > b.

(1)

Let Tb = inf{t : Ub(t) < 0|Ub(0) = u} be the ruin time associated to the surplus
process Ub(t) with Tb = ∞ if Ub(t) ≥ 0 for t ≥ 0 (i.e. ruin does not occur). Let
ω(x1, x2), x1 ≥ 0, x2 > 0 be a nonnegative bounded function. For δ ≥ 0, the Gerber-
Shiu function mb(u) is defined as

mb(u) = E[e−δTbω(Ub(Tb−), |Ub(Tb)|)I(Tb < +∞)|Ub(0) = u], (2)

where Ub(Tb−) is the surplus just prior to ruin, |Ub(Tb)| is the deficit at ruin, I(·) is
the indicator function. When ω(x1, x2) = 1, (2) is the Laplace transform of the time of
ruin Tb, denoted by φb(u) = E[e−δTbI(Tb <∞)|Ub(0) = u]. When ω(x1, x2) = 1, δ = 0,
(2) is the ruin probability ψb(u) = P (Tb < ∞|Ub(0) = u). Note that for b finite, ruin
will occur almost surely, which implies that the indicator function I(Tb < ∞) can be
dropped from the definition of mb(u).
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3 Integral Equation

In this section, our goal is to derive an integral equation for the Gerber-Shiu function
mb(u).

THEOREM 1. For 0 ≤ u ≤ b, the Gerber-Shiu functionmb(u) satisfies the following
integral equation

(λ+ µ+ δ)mb(u) = λ

∫ b

u

mb(x)p(x− u)dx+ λmb(b)P (b− u)

+µ

∫ u

0

mb(u− y)q(y)dy + µω(u), (3)

where ω(u) =
∫

∞

u
ω(u, y− u)q(y)dy.

PROOF. We consider all possible events over an infinitesimal interval (0, dt) and
obtain

mb(u) = (1 − λdt)(1 − µdt)e−δdtmb(u)

+λdt(1 − µdt)e−δdt[

∫ b−u

0

mb(u+ x)p(x)dx+mb(b)

∫

∞

b−u

p(x)dx]

+(1 − λdt)µdte−δdt[

∫ u

0

mb(u − y)q(y)dy +

∫

∞

u

ω(u, y)q(y)dy],

for 0 ≤ u < b. Letting dt→ 0 and rearranging it, we obtain (3).
Similarly, for u = b

(µ + δ)mb(b) = µ

∫ b

0

mb(b− y)q(y)dy + µω(b). (4)

This illustrates that (3) still holds for u = b.

REMARKS: 1. When b → ∞, (3) becomes (4.2) of Labbé and Sendova [5]; (2.1) of
Yao et al. [12].

2. For δ > 0, (4) is a defective equation. Using Theorem 2.1 of Lin and Willmot
[7], we have

mb(b) =
µ

δ

∫ b

0

ω(b− x)dV (x) +
µ

µ+ δ
ω(b), (5)

where V (u) = δ
µ+δ

∑+∞

n=1

(

µ
µ+δ

)n

Q∗n(u), u ≥ 0 and Q∗n(u) is the tail of the n-fold

convolution of Q(u) with itself. Throughout the paper, “∗” denotes the operation of
convolution.

3. When δ > 0, and ω(x1, x2) = 1, the Gerber-Shiu function simplifies to the
Laplace transform of the time of ruin φb(u), and (4) simplifies to

φb(b) =
µ

µ + δ

∫ b

0

φb(b− y)q(y)dy +
µ

µ+ δ

∫ +∞

b

q(y)dy,
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which has a compound geometric representation:

φb(b) =
δ

µ+ δ

+∞
∑

j=1

(

µ

µ+ δ

)j

Q∗j(b), b ≥ 0. (6)

4. When δ = 0, (4) simplifies to the proper renewal equation

mb(b) =

∫ b

0

mb(b− y)q(y)dy + ω(b),

which is equivalent to

mb(b) =

+∞
∑

n=0

Q∗n ∗ ω(b). (7)

5. When δ = 0, ω(x, y) = 1, then ω(u) = Q(u) and (4) is the ruin probability ψb(b):

ψδ(b) =

∫ b

0

Q(b− y)dR(y) +Q(b) =

∫ b

0

(1 −Q(b− y))dR(y) +Q(b) = 1.

This illustrates that ruin is certain when there is a horizontal barrier b.

4 Exponential Premium

In this section, we pay attention to the situation in which the premium sizes are
exponentially distributed. Let p(x) = αe−αx, x ≥ 0, α ≥ 0, then (3) simplifies to

(λ + µ+ δ)mb(u) = λαeαu

∫ b

u

mb(y)e
−αydy + λmb(b)e

−α(b−u)

+µ

∫ u

0

mb(x)q(u− x)dx+ µω(u), 0 ≤ u ≤ b. (8)

Differentiating the above equation with respect to u, we obtain for 0 ≤ u ≤ b,

(λ + µ+ δ)m′

b(u) = α(µ+ δ)mb(u)

+ µ

(

d

du
− α

)(
∫ u

0

mb(x)q(u− x)dx

)

+ h(u), (9)

where h(u) = µω′(u)−αµω(u). Replacing u by x in (9) and then integrating both sides
of the equation from 0 to u with respect to x, we obtain for 0 ≤ u ≤ b,

(λ + µ + δ)(mb(u) −mb(0))

= α(µ+ δ)

∫ u

0

mb(x)dx− µ

∫ u

0

mb(x)(αQ(u− x) − q(u− x))dx+

∫ u

0

h(x)dx.

Rearranging this equation, we have the following theorem.
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THEOREM 2. If the premium size distribution P is an exponential distribution
with mean 1/α, α > 0. Then the integral equation (3) can be represented as the Volterra
integral equation of the second kind

mb(u) =

∫ u

0

k(u, x)mb(x)dx+ `(u), 0 ≤ x ≤ u ≤ b,

where

k(u, x) =
α(µ+ δ) − αµQ(u− x) + µq(u− x)

λ+ µ+ δ
,

`(u) = mb(0) +

∫ u

0
h(x)dx

λ + µ+ δ
. (10)

REMARK. If mb(0) is available, then the solution for mb(u) is available. Therefore,
we have to determine mb(0). It is easy to verify that `(u) is continuous in 0 ≤ u ≤ b
since ω(x, y) is bounded and Q(x) is continuous. Obviously, k(u, x) is continuous in
0 ≤ x ≤ u in that both Q(x) and q(x) are continuous functions. Then, according to
Cai and Dickson (2002), the unique solution for mb(u) has the following representation,
for 0 ≤ u ≤ b

mb(u) = `(u) +

∞
∑

m=1

∫ u

0

km(u, x)`(x)dx, (11)

where km(u, x) =
∫ u

x
k(u, t)km−1(t, x)dt, m = 2, 3, ..., 0 ≤ x ≤ u, with k1(u, x) =

k(u, x). Setting u = b in (11) and combining with (10), we see that

mb(0) =
(λ + µ + δ)mb(b) −

∫ b

0
h(x)dx−

∫ b

0
K(b, x)

∫ x

0
h(y)dydx

(λ + µ + δ)
(

1 −
∫ b

0 K(b, x)dx
) , (12)

where K(b, x) =
∑

∞

m=1 km(b, x), 0 ≤ x ≤ b and mb(b) is given in (5).

THEOREM 3. When δ = 0, mb(u) satisfies the following defective renewal equa-
tion, for 0 ≤ u ≤ b,

mb(u) =

∫ u

0

q1(z)mb(u− z)dz + `1(u), (13)

where

q1(x) =
αµQ(x)

λ + µ
+

µ

λ+ µ
q(x),

`1(u) = mb(0) +

∫ u

0

h(x)dx/(λ+ µ),

mb(0) =
mb(b) −

1
λ+µ

∫ b

0

∫ b−y

0
h(x)dxdH(y)

H(b)
, (14)

and mb(b) is given in (7).
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PROOF. Setting δ = 0 in (8), we obtain (13). Since the positive loading condition,
then

∫

∞

0

q1(x)dx =
αµmY

λ + µ
+

µ

λ + µ
<

λ

λ+ µ
+

µ

λ + µ
= 1.

Since `1(u) is a bounded function in 0 ≤ u ≤ b, then the unique solution to mb(u) in
(13) can be expressed as

mb(u) = `1 ∗H(u), for 0 ≤ u ≤ b,

where H(x) =
∑

∞

n=0Q
∗n
1 (x) with Q1(x) =

∫ x

0 q1(y)dy. Setting u = b in the above
equation and rearranging lead to (14).

4.1 Explicit Results for Exponential Claim Size

In this subsection, we assume that Q is an exponential distribution function with mean
1/β, β > 0.

THEOREM 4. Let P (x) be an exponential distribution with mean 1/α, α > 0 and
Q(y) an exponential distribution with mean 1/β, β > 0. Then for 0 ≤ u ≤ b,

(λ + µ+ δ)m′′

b (u) − [α(µ+ δ) − β(λ + δ)]m′

b(u)

− αβδmb(u) − βh(u) − h′(u) = 0. (15)

Indeed, this equation can be obtained directly from (8).

EXAMPLE 1. (The distribution function of deficit at ruin) If δ = 0, ω(x, y) = I(y ≤
z), then mb(u) reduces to the distribution function of the deficit at ruin, denoted by
Fb(z|u) for z > 0. Note that ω(u) =

∫ z

0
βe−β(u+y)dy = e−βu(1 − e−βz) and βh(u) +

h′(u) = 0. Therefore,

Fb(z|u) = C1 + C2e
αµ−λβ

λ+µ
u, 0 ≤ u ≤ b, (16)

where

C1 = (1 − e−βz)

(

1 − e−βb

(

1 −
µ(α+ β)

β(λ + µ)
exp(

αµ− λβ

λ+ µ
b)

)

−1
)

,

C2 = µe−βb(1 − e−βz)

(

β(λ + µ)

α+ β
− µ exp(

αµ− λβ

λ + µ
b)

)

.

Then the distribution function of the deficit at ruin is given by

Fb(z|u) = (1 − e−βz)(1 − e−βb
~(u)/~(b)), z > 0, 0 ≤ u ≤ b,

where ~(u) = µ exp(αµ−λβ
λ+µ

u) − β(λ+µ)
α+β

.

REMARK. When b→ ∞, Fb(z|u) → 1−e−βz , z > 0. This is clear in that the claim
sizes are exponentially distributed.
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EXAMPLE 2. (The Laplace transform of the time to ruin) When δ > 0, ω(x, y) =
1, mb(u) reduces to the Laplace transform of ruin probability φb(u) with ω(u) =
e−βu, βh(u) + h′(u) = 0. Thus (15) simplifies to

(λ + µ+ δ)φ′′

b (u) − [α(µ+ δ) − β(λ + δ)]φ′

δ(u) − αβδφδ(u) = 0,

which leads us to

φb(u) = c1e
−Ru + c2e

ρu, 0 ≤ u ≤ b, (17)

where −R < 0 and ρ > 0 are solutions of

(λ + µ + δ)s2 − [α(µ+ δ) − β(λ + δ)]s− αβδ = 0.

Substituting (17) into (8) and comparing the coefficients of eαu and e−βu respec-
tively, yields

{

− c1R
R+α

e−(R+α)b + c2ρ
α−ρ

e−(α−ρ)b = 0,
c1β

β−R
+ c2β

ρ+β
= 1.

Solving the system of equations above gives

c1 =
ρ

α− ρ

(

βρ

(β −R)(α − ρ)
+

βR

(β + ρ)(R + α)
e−(ρ+R)b

)

−1

,

c2 =
R

R+ α

(

βρ

(β − R)(α− ρ)
e(ρ+R)b +

βR

(β + ρ)(R + α)

)

−1

.

REMARKS: 1. When b → ∞, then c2 = 0, c1 = β−R
β
, and

φδ(u) =
β − R

β
e−Ru =

µ(α+R)

(λ + µ+ δ)(α+ R) − αλ
e−Ru, (18)

since −R satisfies the Lundberg equation

λ + µ + δ =
αλ

α− s
+

βµ

s+ β
.

(18) is identical to Theorem 2.2 of Yao et al. [12] with λ = λ1, α = a, R = −β1, µ = λ2.
This also illustrates that Theorem 2.2 of Yao et al. [12] can be rewritten in a simpler
style:

φδ(u) =

(

1 +
β1

b

)

eβ1u,

which can also be obtained by substituting ψδ(u) = −c1e
β1u into (2.1) of Yao et al.

[12].

2. When δ = 0, ρ = 0, then c1 = 0, c2 = 1, ψδ(u) = 1, 0 ≤ u ≤ b. This illustrates
that the ruin is certain when there is a horizontal barrier b <∞.
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