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Abstract

We give in this work some new results about the existence, uniqueness and
optimal regularity for the strict solution of an abstract second-order differential
equation set in an unbounded interval. We use similar techniques with those of
Labbas [9], when the right-hand term is Holder continuous function.

1 Introduction

The aim of this paper is to study the following second order abstract differential equa-
tion

u"(t) + Au(t) = f(t), t € (0,+00), (1)
under the non-homogeneous boundary conditions
u(0) = ¢, u(+o00) =0, (2)

where A is a closed linear operator with dense domain D(A) in a complex Banach space
E and ¢ is a given element of D(A). The vector-valued function f is continuous on
[0, +o00] into E and verifies

Jim [ 7(0)]5 = 0. 3)

Throughout this work we assume that there exists K > 0 such that for all A > 0,

I+ X @)
We recall that for m € N, BUC™(]0, +oo[; E') denotes the space of vector-valued
functions with uniformly continuous and bounded derivatives up to the order m in
[0, +o0l.
For o €]0,1[, the Banach space C?([0, +oc[; F) denotes the space of the bounded
and o-Hoélder continuous functions f : [0, +oco[— E, such that

(A= X)) <

SUP¢e[0,400] £ e < oo,
30> 0:Vt, 7 € [0,+00f, [[f(t) = f(T)|e <Clt -7,
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286 BVP for an Elliptic Equation

endowed with the norm

1/t = f(Dle

|t —_ 7'|U = HfHOO + [f]ca([0,+oo[;E).

[fllce (o, 400y = sup [Lf(t)lle + sup
tel0,+oo[ t#T

For simplicity, we shall write C?(E) instead of C?([0, +o0[; E).
We say that v € BUC([0, +oo[; E) is a strict solution of (1)-(2) if

u € BUC?([0, +o0[; E) N BUC([0, +o0[; D(A)),

and wu satisfies (1) and (2).

Observe that equation (1) has been studied by many authors, in different situations,
but on a bounded domain. See, for example Krein [7], Sobolevskii [13], Kuyazyuk
[8], Da Prato-Grisvard [3], Labbas [9], Favini-Labbas-Lemrabet-Sadallah [4], Favini-
Labbas-Tanabe-Yagi [5].

In the present study, the principal goal is to give an alternative approach to that
used in Berroug-Labbas-Sadallah [2]. The techniques we use are essentially based on the
theory of fractional powers of linear operators in Banach spaces and on the semigroups
estimates generated by them as in Krein [7] and in Sinestrari [12]. We make use of the
real Banach interpolation space D4 (0, +00), between D(A) and E. It is characterized
in [6], by

D46, 400) = {6 € E: sup|tlA(A—tI)71¢||p < oo}
>0

We will prove the following main results.

THEOREM 1 (Existence and uniqueness). Let 0 < 6 < 1/2, ¢ € D(A) and
f € C**(E) with assumption (3). Then problem (1)-(2) admits a unique strict solution.

THEOREM 2 (Regularity). Let 0 < 6 < 1/2, ¢ € D(A) and f € C?*(E) with
assumption (3). If f(0) — Ay € D4(0,+00), then the unique strict solution of (1)-(2)
satisfies the property of maximal regularity Au(.), u”(.) € C?*(E).

2 Proof of Theorem 1

We start by some recall of the theory of fractional powers of linear operators as devel-
oped in Balakrishnan [1], Krein [7] and Pazy [11]. It is well known that assumption (4)
implies that (—(—A)'/?) is the infinitesimal generator of an analytic semigroup {V (¢)},
t > 0 (for details, see [1]). Moreover we have the practical well known results

PROPOSITION 1.

(1) 3M, 6 > 0 such that ||V ()| 15 < Me™%,

(2) there exists C' > 0 such that for ¢t > 0, H(—A)l/QV(t)HL(E) < Ctle o,
PROPOSITION 2. For all x € E we have

(1) JLV(s)hads = (—A)~V2(x - V (b)),

2) [V (s)ds = (—A) 2V (t)a.
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Let 0 < 0 < 1/2 and f € X = C?%(E) with assumption (3). First, we seek for a
particular solution v(.) to equation (1). Let us set for ¢ € [0, +-00]

—+o00
= __/ Vit —s)(—A)"Y2 f(s)ds — % V(s —t)(—A)"Y2f(s)ds

t
Notice that the second integral is convergent. Indeed, Proposition 1 implies

—+oo

V(s —t)(=A) "2 f(s)ds

t

—+oo
gM// e 0670 ds|| f| x -
FE t

We can see that the derivative v'(t) exists and

1 oo
/ V(t—s)f(s)ds — = Vs —t)f(s)ds.

To show that v(t) € D(A) and Awv(.) is continuous we write (thanks to Proposition

2)
At) = —5A(-A 1/2/Vt—s (5) — F(B))ds
A aear -
3 A 1/2/ V(s — (1) ~ £()ds
e v
= L)+ <>>+f<>—§v<>f<>.
where

V() - F)ds = / (—A) 2Vt - )(f(s) — F()ds,

085 0

+oo +oo
St = [ Grls =00~ fe)ds = [ ~AV (s = 07(0) - ).

Furthermore, as f is Holder-continuous, v'(.) is differentiable with

1 t i\ AV1/2
’UN _ —Z(—A 1/2 e (t—s)(—A) s)ds
0 = so-5-4 [ /()

1 +oo ) (—A)L/2
_5(_/1)1/2/ == £y
t

= 0= 52 [N ) — saa

0
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((—A)1/2 /t e(ts)(A)l/2d5> f(t)
0
+OO 1/2
(—4)/? / =A2 (f(s) = f(t))ds

_% ((_ A)L/2 /t e e(ts><A>1/2dS> I

= 50~ U — 5 (T~ VI — 550~ 570
1

- —%U(t) - =S(t) + %V(t)f(t),

[\)

SO
v (t) + Av(t) = f(1).
Hence v is a strict solution to (1) satisfying the boundary conditions

1 [Te°

v(0) =3 ; V(s)(=A) T2 f(s)ds,  v(+o0) =0,

for the last condition we use the estimate

t
< M max ||f(r)|e / e 0t=s) g
TG[%,t] t/2

o V(t—s)(—A)"Y2f(s)ds

E
< g max 1) (1-e %)
On the other hand we have
— v = —l— 1/2 o S S) — S—l— 1/2 o S S
(A0) = 5" [V — O - 547 [ Vs

1 [+ ov 1
= 3] GrUE - sonds - 510),

from Proposition 1, we conclude since f is Holder-continuous, that v(0) € D(A).
We will also use the following lemma

LEMMA 1. Assume (4) and let £ € D(A). Then the homogeneous Problem

{ u”(t) + Au(t) =0, t€]0,+o0, (5)
uw(0) =&, u(+oo) =0,

admits a unique strict solution wu(.).
PROOF. Let us set u(t) = V(t)€. Since & € D(A) we can easily see that

u'(t) = =V ()(=A)'2,

and
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then
{ 10 = (A0
u(0) =¢, wu(4+o00) =0.

Let us return to the proof of Theorem 1. The Problem

u”(t) + Au(t) =0, t €0, +o0],
u(0)

= o,

u(+00) =0,

with
ZTo =@ — U(O)a

admits a unique strict solution w. Indeed, we know that v(0) € D(A) and ¢ € D(A),
thus Lemma 1 applies. Therefore,

u(.) =v(.) +u(.),

is the unique strict solution to problem (1)-(2).

3 Proof of Theorem 2

Let 0 <0 <1/2,p € D(A) and f € X = C*(E) with assumption (3). Let us suppose
that f(0) — Ay € D4(0,4+00). It is enough to do it for Au(.), for this purpose we write

Au(t) = Av(t) + V(t)(Ap — Av(0))

— %(U(t)—i—S( t) + f()—%V(t)f(t)

+oo
(o (ap+y [ GO0 - 500 - 310)
= S +SW) + 1)+ K@),

Ut) = fo(~4)!/%e *<*A>”2<t;1><f<> F(t))ds
S = [ (- >1/2 ~- A>/<S D(f(t) - f(s))ds 1

KO =V 40+ 3 57 GH606) - 70)s - 370)) - 3V 050,

Let us show the holderianity of U(.), S(.) and K(.). For 0 < r < ¢, we get
U -Ue) - / (- A>”2 ~CAME=9(4(5) - (t))ds
—4)2em CATEI(f(s) — f(1))ds

—A) 2 AT (f(s) — f(r)ds

%%
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= a+b—c

lalle < c/

on the other hand we can see that

- T_ (=AY 2(t—g —_ e (= 1/2(7”*5) s) — r S
. /O(A>1/2(6(A) (29 = = CAEED) (7(5) = f(r)d

/ (A2 A () — f(1))ds

We have

d I£lx < Ot —=r)*lIfllx,

- / / A2 CT(f(s) — f(r)dods
+ / (= A)2emCAHEI(f () — f(2)ds
- / / A)122emCOE(f(s) — f(r))dods
#[en O O (4() — 1)
= b +c,

and

b1l & / / A)V/2)2e= (=) 20 (f(s)—f(r))HEdads

41
< C/ (T—S)20/ ;dads”f”x

(r—s)20=1(t —r)
< d .
¢ [ U a1

Now, by making the change of variable (r — s) = (t — r)¢&, it follows

T (r = 8)2071(t — ) bo [T €201 v
~/0 (t—r+r—2ys) ds < (t—r) A 1+§d§<0(t_7ﬁ) .

Holderianity of ¢; is obvious.
For S(.), one has

+oo A)1/2
S(r) - 5(t) = / (A2 A0 (f(s) — f(1))ds
+ / (A2 CAEEN (f(s) — f(r))ds

+ / " (LA 2 A0 () s
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= [ (~A)2e COPETD (1) - f(r))ds

+/ AP A ()~ ()
/ 1/2 (AN (sr) 67(714)1/2(5*15)) (f(s) = f(t))ds
= a+b+

thus

dSIIfIIX <Ot =n)*|flx

|wm<c/

It is easy to check the result for b. Fmally

oo A)1/2
lélle = 4)12] e (4(5) — (1)) dods
E
+oo s—r o
< c/ / d—dstIIX
g =)
< C/ o= T)d sllfllx
setting (s — ¢) = £(¢t — r) in this last inequality we obtain
+oo ¢260— 1
e < ¢ [ S e < Cl— il
For K(.), we note that
KO- K0 = V@) -ve) (e 10+ 5 [ G606 - o))
0 s
5 (V{0 = V) (F) = F0) — 5V ~ )
= ki+ka+ ks,

we then have the estimate

[kl

N

A1) - 1(0)]| ds
C/ s71r0ds| fl x

t
c/s%*@wm
C(t— ) fllx.

N

N

N

moreover

kslle < C (6 =) || f1x-
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Now, for k1 we use the following result proved in Sinestrari [12]
LEMMA 2. Setting for x € E and t > 0

v(t) =V(t)x = 67(7A)1/2t$,

ifx e D(,A)l/z (26, 4+00) then v € C2Q(E).
Thanks to the reiteration theorem in interpolation theory (see [10]) we have the
equality
D(_ay1/2(20, +00) = Da(6, +00). (6)

Therefore, it suffices to show that (see Sinestrari [12, p.24])

120 (—(—A)1/2) V(T>/O

Let » > 0, we have

—+oo
< K.
E

sup
r>0

(~(=4)"2) V(s)(f(s) - £(0))ds

+oo
P12 (~(-a) )V(T)/O (~(=A)"2) V(9)(f(s) — £(0))ds

E

= [T () Vs ) ~ g0
0

|00 +oo 529
< - —d
X T ‘/0 (S T)Q SHfHXa

E

by making the change of variable s = r{, we obtain

120 “+o0 S2(-) 7 “+o0 52(-)
’ / (s+r>2d5‘/o areg™

Consequently
“+oo
VO (4= 10+ [ G - 0)ds) € (E),

Hence Au(.) € C??(E). This ends the proof of Theorem 2.

EXAMPLE. We present now a simple example to illustrate equations (1)-(2). Con-
sider, for instance, in E = L?(R) the operator A defined by

D(A) = H*R), Au=au® —bu,
with a <0, b >0,

for more details concerning A, see [5]. All previous abstract results can be applied to
the following problem

0%u O*u
W—Fa@—bu:f(t,x), (t,x)eZ,
w(0,2) =uo(z), wu(d+oo,z)=0, ze€R,
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where ¥ = (0, +00) X R, ug € H*(R) and f € C?%([0, +oc[; L3(R)).
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