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Abstract

The main aim of this article is to study subsets of real linear n-normed
spaces consisting of strongly Cesàro summable and strongly lacunary summable
sequences. Some standard facts as linearity, existence of norms and completeness
with respect to these norms are investigated. Also some facts on equivalence of
various norms on such constructed Banach spaces are presented, and we show
that their topology can be fully described by using derived norm (norm). Further
we investigate the relationship between the spaces and provide some examples
and possible applications.

1 Introduction

Different types of complex sequences of the form x = {xk}∞k=1
or in short (xk) , under

various norms have been studied to great extent. In particular, the linear space w of all
complex sequences (xk) endowed with the usual operations and the supremum norm
‖x‖∞ = supk |xk| , as well as its subspaces `∞, c and c0, consisting respectively of all,
bounded, convergent and null sequences, are well studied.

The standard concept of a norm has, however, been extended. Therefore, the space
w under these new norms may be of interests in various applications. In this paper,
we intend to study the properties of several subsets of the linear space w under the so
called n-norms.

Let us first recall the concept of an n-norm. Let n ∈ N and X be a real linear
space of dimension d ≥ n ≥ 2. A real valued function ‖., . . . , .‖ : Xn → R satisfying
the following four properties:

(N1) ‖x1, x2, . . . , xn‖ = 0 if and only if x1, x2, . . . , xn are linearly dependent vectors,

(N2) ‖x1, x2, . . . , xn‖ = ‖xj1, xj2, . . . , xjn
‖ for every permutation (j1, j2, . . . , jn) of

(1, 2, . . . , n),

(N3) ‖αx1, x2, . . . , xn‖ = |α|‖x1, x2, . . . , xn‖ for all α ∈ R,
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(N4) ‖x + x′, x2, . . . , xn‖ ≤ ‖x, x2, . . . , xn‖ + ‖x′, x2, . . . , xn‖ for all x, x′, x2, . . . , xn ∈
X,

is called an n-norm on X and the pair (X, ‖., . . . , .‖) is called a linear n-normed space.
The concept of a 2-normed space was developed by Gähler [3] in the mid of 1960’s,

while that of an n-normed space can be found in Misiak [12]. Since then, many others
have studied this concept and obtained various results; see for instance Gunawan [6, 7]
and Gunawan and Mashadi [8, 9].

A trivial example of an n-normed space is X = Rn equipped with the following
Euclidean n-norm:

‖x1, x2, . . . , xn‖E = | det(xij)|
where xi = (xi1, . . . , xin) ∈ Rn for each i = 1, 2, . . . , n.

If (X, ‖., . . . , .‖) is an n-normed space of dimension d ≥ n ≥ 2 and {a1, a2, . . . , an} a
linearly independent set in X, then the following function ‖., . . . , .‖∞ on Xn−1 defined
by

‖x1, x2, . . . , xn−1‖∞ = max{‖x1, x2, . . . , xn−1, ai‖ : i = 1, 2, . . . , n}
defines an (n − 1)-norm on X with respect to {a1, a2, . . . , an} and this is known as a
derived (n − 1)-norm on X.

The standard n-norm on X, where X is a real inner product space of dimension
d ≥ n, is defined as

‖x1, x2, . . . , xn‖S =

∣

∣
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...
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∣

∣
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2

,

where 〈., .〉 denotes the inner product on X. If X = Rn, then this n-norm is exactly the
same as the Euclidean n-norm ‖., . . . , .‖E mentioned earlier. For n = 1, this n-norm

reduces to the usual norm ‖x1‖ = 〈x1, x1〉
1

2 .
A sequence (xk) in an n-normed space (X, ‖., . . . , .‖) is said to converge to some L ∈

X in the n-norm if limk→∞ ‖xk − L, w2, w3 . . . , wn‖ = 0 for every w2, w3 . . . , wn ∈ X.
A sequence (xk) in an n-normed space (X, ‖., . . . , .‖) is said to be Cauchy with respect
to the n-norm if limk,l→∞ ‖xk −xl, w2, w3 . . . , wn‖ = 0 for every w2, w3 . . . , wn ∈ X. If
every Cauchy sequence in X converges to some L ∈ X, then X is said to be complete
with respect to the n-norm. Any complete n-normed space is said to be n-Banach
space.

Now we state the following three useful results as Lemmas which can be found in
[9].

LEMMA 1. Every n-normed space is an (n−r)-normed space for all r = 1, 2, . . . ,n−
1. In particular, every n-normed space is a normed space.

LEMMA 2. A standard n-normed space is complete if and only if it is complete

with respect to the usual norm ‖.‖S = 〈., .〉1/2
.

LEMMA 3. On a standard n-normed space X, the derived (n−1)-norm ‖., . . . , .‖∞,
defined with respect to orthonormal set {e1, e2, . . . , en}, is equivalent to the standard
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(n − 1)-norm ‖., . . . , .‖S. Precisely, we have

‖x1, x2, . . . , xn−1‖∞ ≤ ‖x1, x2, . . . , xn−1‖S ≤
√

n‖x1, x2, . . . , xn−1‖∞
for all x1, x2, . . . , xn−1, where

‖x1, x2, . . . , xn−1‖∞ = max{‖x1, x2, . . . , xn−1, ei‖S : i = 1, 2, . . . , n}.

Next we recall two subsets of the space w. The first is the space |σ1| of strongly
Cesàro summable sequences (see e.g. Borwein [1], Freedman, Sember and Raphael [2]
and Maddox [11]). It is defined as

|σ1| =

{

x = (xk) : there exists L such that lim
p

1

p

p
∑

k=1

|xk − L| = 0

}

and it is a Banach space normed by

‖x‖ = sup
p

(

1

p

p
∑

k=1

|xk|
)

.

Next, by a lacunary sequence θ = (kp); we mean an increasing sequence of non-negative
integers with hp = (kp − kp−1) → ∞, where k0 = 0, as p → ∞. We denote Ip =

(kp−1, kp] and ηp =
kp

kp−1

for p = 1, 2, 3, . . .. The space of strongly lacunary summable

sequence Nθ was defined by Freedman, Sember and Raphael [2] as follows:

Nθ =







x = (xk) : lim
p→∞

1

hp

∑

k∈Ip

|xk − L| = 0, for some L







.

The space Nθ is a Banach space with the norm

‖x‖θ = sup
p





1

hp

∑

k∈Ip

|xk|



 .

Throughout the article (X, ‖., . . . , .‖X) will be an n-normed space and w(X) will
denote X-valued sequence space. The n-norm ‖., . . . , .‖X on X is either a standard
n-norm or non-standard n-norm. In general, we write ‖., . . . , .‖X and for standard case
we write ‖., . . . , .‖S. Again for derived norms we use ‖., . . . , .‖∞.

2 Main Results

In this section we extend the notion of strongly Cesàro summable sequences and
strongly lacunary summable sequences to n-normed space valued sequences.

We denote by |σ1|(X) the set of all X-valued strongly Cesàro summable sequences
defined as the set of all x ∈ w(X) such that

lim
p→∞

1

p

p
∑

k=1

‖xk − L, z1, ..., zn−1‖X = 0 for every z1, ..., zn−1 ∈ X and for some L.
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For L = 0, we write this corresponding space as |σ1|0(X).

Let θ be a lacunary sequence. Then we denote by Nθ(X) the set of all X-valued
strongly lacunary summable sequences x ∈ w(X) such that

lim
p→∞

1

hp

∑

k∈Ip

‖xk − L, z1, ..., zn−1‖X = 0 for every z1, ..., zn−1 ∈ X and for some L.

For L = 0, we write this space as N0
θ (X).

In the special case where θ = (2p), we have Nθ(X) = |σ1|(X).

THEOREM 1. The following are true:
(i) If X is an n-Banach space then |σ1|(X) is a Banach space normed by

‖x‖ = sup
p

(

1

p

p
∑

k=1

‖xk, z1, ..., zn−1‖X

)

. (1)

(ii) If X is an n-Banach space then Nθ(X) is a Banach space normed by

‖x‖θ = sup
p





1

hp

∑

k∈Ip

‖xk, z1, ..., zn−1‖X



 . (2)

PROOF. It is easy to see that |σ1|(X) is a normed linear space. To prove complete-
ness, let (xi) be a Cauchy sequence in |σ1|(X), where xi = (xi

k) = (xi
1, x

i
2, ...) for each

i ∈ N . Then for a given ε > 0, there exists a positive integer n0 such that

‖xi − xj‖ = sup
p

(

1

p

p
∑

k=1

‖xi
k − x

j
k, z1, ..., zn−1‖X

)

< ε, for all i, j ≥ n0.

It follows that

1

p

p
∑

k=1

‖xi
k − x

j
k, z1, ..., zn−1‖X < ε, for all i, j ≥ n0 and for all p ≥ 1.

Hence (xi
k) is a Cauchy sequence in X for all k ∈ N . Since X is an n-Banach space,

(xi
k) is convergent in X for all k ∈ N . For simplicity, let lim

i→∞
xi

k = xk (say), exists for

each k ∈ N . Now we can find that

lim
j→∞

1

p

p
∑

k=1

‖xi
k − x

j
k, z1, ..., zn−1‖X < ε, for all i ≥ n0 and for all p ≥ 1.

Thus,

sup
p

(

1

p

p
∑

k=1

‖xi
k − xk, z1, ..., zn−1‖X

)

< ε, for all i ≥ n0.

It follows that (xi − x) ∈ |σ1|(X). Since (xi) ∈ |σ1|(X) and |σ1|(X) is a linear space,
so we have x = xi − (xi − x) ∈ |σ1|(X). This completes the proof of part (i).
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The proof of (ii) similar and skipped. The proof is complete.

COROLLARY 2. Let X be equipped with the standard n-norm. Then
(i) if X is a Banach space then |σ1|(X) is a Banach space normed by

‖x‖ = sup
p

(

1

p

p
∑

k=1

‖xk, z1, ..., zn−1‖X

)

,

(ii) if X is a Banach space then Nθ(X) is a Banach space normed by

‖x‖θ = sup
r

(

1

hr

∑

k∈Ir

‖xk, z1, ..., zn−1‖X

)

Indeed, the proof follows by combining Lemma 2 and Theorem 1, and is skipped.

We now use the notion derived norms to define some other norms on the spaces
and investigate the relationship among these norms.

Let {a1, a2, ..., an} be a linearly independent set in X. Then

‖xk, z1, ..., zn−r−1‖∞ = max{‖xk, z1, ..., zn−r−1, ai1 , ai2, ..., air
‖X}, {i1, ..., ir} ⊆ {1, ..., n}

is an derived (n − r)-norm on X for each r = 1, 2, ..., n− 1 and for each k ≥ 1. Hence
we have the following Theorem.

THEOREM 3. Let {a1, a2, · · · , an} be a linearly independent set in X. Then
(i) |σ1|(X) is a normed linear space, with norm ‖.‖r defined by

‖x‖r = sup
p

(

1

p

p
∑

k=1

‖xk, z1, ..., zn−r−1‖∞
)

for each r = 1, 2, ..., n− 1, (3)

(ii) Nθ(X) is a normed linear space, with norm ‖.‖r
θ defined by

‖x‖r
θ = sup

r

(

1

hr

∑

k∈Ir

‖xk, z1, ..., zn−r−1‖∞
)

for each r = 1, 2, ..., n− 1. (4)

We call the above norms as the derived (n − r)-norm for each r = 1, 2, ..., n− 1.

Proof is a routine verification and so omitted.

THEOREM 4. If X is an (n − r)-Banach spaces for each r = 1, 2, ..., n− 1, then
|σ1|(X) is a Banach with norm ‖.‖r defined by (3) and Nθ(X) is a Banach space with
norm ‖.‖r

θ defined by (4).

Proof is same with the proof of Theorem 1 and is omitted.

THEOREM 5. If (xi) converges to an x in |σ1|(X) in the norm ‖.‖ defined by (1),
then (xi) also converges to x in the norm ‖.‖r defined by (3) for r = 1.

PROOF. Let (xi) converges to x in |σ1|(X) in the norm ‖.‖. Then ‖xi − x‖ −→ 0
as i −→ ∞. Using the definition of norm (1), we get

sup
p

(

1

p

p
∑

k=1

‖xi
k − xk, z1, ..., zn−1‖X

)

−→ 0 as i −→ ∞.
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Let {a1, a2, · · · , an} be any linearly independent set in X. Then

sup
p

(

1

p

p
∑

k=1

‖xi
k − xk, z1, ..., zn−2, aj‖X

)

−→ 0 as i −→ ∞ for each j = 1, 2, ..., n.

Hence

sup
p

(

1

p

p
∑

k=1

‖xi
k − xk, z1, ..., zn−2‖∞

)

−→ 0 as i −→ ∞.

Thus ‖xi − x‖1 −→ 0 as i −→ ∞. Hence (xi) converges to x in the norm ‖.‖1.

If X is equipped with the standard n-norm and derived norm on X are with respect
to an orthonormal set then the converse of the above Theorem is also true. Conse-
quently we have the following Theorem.

THEOREM 6. Let X be a standard n-normed space and the derived (n− 1)-norm
on X is with respect to an orthonormal set. Then (xi) is convergent in |σ1|(X) in the
norm ‖.‖ defined by (1), if and only if (xi) is convergent in |σ1|(X) in the norm ‖.‖r

defined by (3) for r = 1.

PROOF. In view of the above Theorem it is enough to prove that (xi) is convergent
in the norm ‖.‖1 implies (xi) is convergent in the norm ‖.‖. Let (xi) is converges to x

in |σ1|(X) in the norm ‖.‖1. Then ‖xi − x‖1 −→ 0 as i −→ ∞. Using (3) with r = 1,
we get

sup
p

(

1

p

p
∑

k=1

‖xi
k − xk, z1, ..., zn−2‖∞

)

−→ 0 as i −→ ∞.

Now one can observe that ‖xi
k − xk, z1, · · · , zn−1‖S ≤ ‖xi

k − x, z1, ..., zn−2‖S‖zn−1‖S,
where ‖., . . . , .‖S and ‖.‖S on the right hand side denote the standard (n − 1)-norm
and the usual norm on X respectively. Since the derived (n − 1)-norm on X is with
respect to an orthonormal set, using Lemma 3, we have

‖xi
k − xk, z1, ..., zn−1‖S ≤

√
n‖xi

k − x, z1, ..., zn−2‖∞‖zn−1‖S ,

and in this case ‖., . . . , .‖∞ on the right hand side is the derived (n − 1)-norm which
we used to define the norm ‖.‖1. Therefore

sup
p

(

1

p

p
∑

k=1

‖xi
k − xk, z1, ..., zn−1‖S

)

≤ sup
p

1

p

p
∑

k=1

(√
n
∥

∥xi
k − xk, z1, ..., zn−2

∥

∥

∞
‖zn−1‖S

)

.

Hence

sup
p

(

1

p

p
∑

k=1

‖xi
k − xk, z1, ..., zn−1‖S

)

−→ 0 as i −→ ∞.

Thus ‖xi −x‖ −→ 0 as i −→ ∞. That is, (xi) is converges to x in |σ1|(X) in the norm
‖.‖. The proof is complete.

COROLLARY 7. Let X be a standard n-normed space and the derived (n − r)-
norms on X are with respect to an orthonormal set. Then a sequence in |σ1|(X) is
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convergent in the norm ‖.‖ defined by (1) if and only if it is convergent in the norm
‖.‖1 and, by induction, in the norm ‖.‖r defined by (3) for all r = 1, 2, ..., n− 1. In
particular, a sequence in |σ1|(X) is convergent in the norm ‖.‖ if and only if it is
convergent in the norm ‖.‖n−1 defined by

‖x‖n−1 = sup
p

(

1

p

p
∑

k=1

‖xk‖∞
)

. (5)

THEOREM 8. Let X be a standard n-normed space and the derived (n− r)-norms
on X for all r = 1, 2, ..., n− 1 are with respect to an orthonormal set. Then |σ1|(X)
is complete with respect to the norm ‖.‖ defined by (1) if and only if it is complete
with respect to the norm ‖.‖1 defined by (3). By induction, |σ1|(X) is complete with
respect to the norm ‖.‖ if and only if it is complete with respect to the norm ‖.‖n−1

defined by (5).

PROOF. By replacing the phrases ‘(xi) converges to x’ with ‘(xi) is Cauchy’ and
‘xi−x’ with ‘xi−xj’, we see that the analogues of Theorem 5, Theorem 6 and Corollary
7 hold for Cauchy sequences. This completes the proof.

REMARK 1. It we replace the space |σ1|(X) by Nθ(X), analogues of Theorem 5,
Theorem 6, Corollary 7 and Theorem 8 hold for Nθ(X).

EXAMPLE 4. Let us take X = R3 and consider a 3-norm ‖., ., .‖X defined as:

‖x1, x2, x3‖X = | det(xij)|,

where xi = (xi1, xi2, xi3) ∈ R3 for each i = 1, 2, 3. Consider the divergent sequence
x = {0, 1, 0, 1, 0, · · · } ∈ w(X), where k = (k, k, k) for each k = 0, 1. Let us consider
a basis {e1, e2, e3} of X = R3, where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1). Now
‖xk‖∞ = max {‖xk, ei1 , ei2‖X}, {i1, i2} ⊆ {1, 2, 3} is an derived norm on X. Then x

belong to Nθ(X) and |σ1|(X), for θ = (2p). Here actually strongly Cesàro summability
method transform the sequence x into the sequence y, where y =

{

0, 1

2
, 1

3
, 1

2
, 2

5
, · · ·

}

,
which converges to 1

2
. In other words we can say that x has the generalized limit 1

2
.

Hence x is a 3-nls valued strongly Cesàro summable sequence.

REMARK 2. Associated to the derived norm ‖.‖n−1, we can define balls (open)
S(x, ε) centered at x and radius ε as follows:

S(x, ε) = {y : ‖x − y‖n−1 < ε}.

Using these balls, Theorem 8 becomes:

THEOREM 9. A sequence (xk) is convergent to x in |σ1|(X) if and only if for every
ε > 0, there exists n0 ∈ N such that xk ∈ S(x, ε) for all k ≥ n0.

Hence we have the following important result.

THEOREM 10. A space |σ1|(X) is a normed space and its topology agrees with
that generated by the derived norm ‖.‖n−1.

Our next aim is to investigate the relationship among the spaces |σ1|(X) and Nθ(X).

PROPOSITION 11. Let θ = (kp) be a lacunary sequence with lim infp ηp > 1, then
|σ1|(X) ⊆ Nθ(X).
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PROOF. Let lim inf ηp > 1. Then there exists a ν > 0 such that 1 + ν ≤ ηp for all
p ≥ 1. Let x ∈ |σ1|(X). Then there exists some L ∈ X such that

lim
t→∞

1

t

t
∑

k=1

‖xk − L, z1, ..., zn−1‖X = 0, for every z1, ..., zn−1 ∈ X.

Now we write

1

hp

∑

k∈Ip

‖xk − L, z1, ..., zn−1‖X

=
1

hp

∑

1≤i≤kp

‖xi − L, z1, ..., zn−1‖X − 1

hp

∑

1≤i≤kp−1

‖xi − L, z1, ..., zn−1‖X

=
kp

hp





1

kp

∑

1≤i≤kp

‖xi − L, z1, ..., zn−1‖X





−kp−1

hp





1

kp−1

∑

1≤i≤kp−1

‖xi − L, z1, ..., zn−1‖X



 . (6)

Now we have
kp

hp
≤ 1+ν

ν and
kp−1

hp
≤ 1

ν , since hp = kp − kp−1. Hence using (6), we have

x ∈ Nθ(X).

PROPOSITION 12. Let θ = (kp) be a lacunary sequence with lim supp ηp < ∞,
then Nθ(X) ⊆ |σ1|(X).

PROOF. Let lim supηp < ∞. Then there exists a M > 0 such that ηp < M for all
p ≥ 1. Let x ∈ N0

θ (X) and ε > 0. Then we can find R > 0 and K > 0 such that

sup
i≥R

Si = sup
i≥R





1

hi

ki
∑

i=1

‖xi, z1, · · · , zn−1‖X − 1

hi

ki−1
∑

i=1

‖xi, z1, · · · , zn−1‖X



 < ε

and Si < K for all i = 1, 2, ... . Then if t is any integer with kp−1 < t ≤ kp, where
p > R, we can write

1

t

t
∑

i=1

‖xi, z1, · · · , zn−1‖X

≤ 1

kp−1

kp
∑

i=1

‖xi, z1, · · · , zn−1‖X

=
1

kp−1





∑

I1

‖xi, z1, · · · , zn−1‖X + · · ·+
∑

Ip

‖xi, z1, · · · , zn−1‖X





=
k1

kp−1

S1 +
k2 − k1

kp−1

S2 + · · ·+ kR − kR−1

kp−1

SR +
kR+1 − kR

kp−1

SR+1
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+ · · ·+ kp − kp−1

kp−1

Sp

≤
(

sup
i≥1

Si

)

kR

kp−1

+

(

sup
i≥R

Si

)

kp−kR

kp−1

≤ K kR

kp−1

+ εM.

Since kp−1 −→ ∞ as i −→ ∞, it follows that x ∈ |σ1|0(X). The general inclusion
Nθ(X) ⊆ |σ1|(X) follows by linearity.

PROPOSITION 13. Let θ = (kp) be a lacunary sequence with 1 < lim inf ηp ≤
lim supηp < ∞, then |σ1|(X) = Nθ(X).

PROOF. Proof follows by combining Proposition 11 and Proposition 12.

3 Examples and Remarks

The concept of 2-normed spaces was introduced and studied by Siegfried Gähler, a
German Mathematician who worked at German Academy of Science, Berlin, in a series
of paper in German language published in Mathematische Nachrichten in the mid of
1960’s. Later on it was further generalized, and the notion of n-norm was introduced
by Misiak. Very often Gähler has raised the following questions: What is the real
motivation for studying 2-norm structures? Is there a physical situation or an abstract
concept where norm topology does not work but 2-norm topology does? After the
investigations of this paper, we can comment that while studying n-normed structure
or summability methods for sequences with a real n-normed linear space as base space
the main issue should be the use of the n-norms. We also observe that if a term in
the definition of n-norm represents the change of shape, and the n-norm stands for
the associated area or center of gravity of the term, we can think of some plausible
applicable of the notion of n-norm. As an example, we can think of use of the notion of
n-norm for a process where for a particular output we need n-inputs but with one main
input and other (n − 1)-inputs as dummy inputs to complete the process. Keeping all
these factors in mind we provide some further examples.

EXAMPLE 1. Consider the linear space Pm of real polynomials of degree ≤ m on
the interval [0, 1]. Let {xi}nm

i=0 be nm + 1 arbitrary but distinct fixed points in [0, 1].
For f1, f2, . . . , fn in Pm, let us define

‖f1, f2, . . . , fn‖ =







0 if f1, . . . , fn are lin. independent,
nm
∑

i=0

|f1(xi)f2(xi) . . . fn(xi)| if f1, . . . , fn are lin. dependent.

Then ‖., . . . , .‖ is an n-norm on Pm.

PROOF. We prove only the property ‖f1, f2, . . . , fn‖ = 0 if and only if f1, f2, . . . , fn

are linearly dependent. Other properties of n-norm can be easily verified. If f1, f2, . . . , fn

are linearly dependent, then ‖f1, f2, . . . , fn‖ = 0. Conversely assume

nm
∑

i=0

|f1(xi)f2(xi) . . . fn(xi)| = 0.
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This implies that

f1(xi)f2(xi) . . . fn(xi) = 0 at nm + 1 distinct points.

Since the degree of each fi ≤ m, we must have at least one fi = 0. Thus

‖f1, f2, . . . , fn‖ = 0 if and only if f1, f2, . . . , fn are linearly dependent.

EXAMPLE 2. Consider the space C0 of real sequences with only finite number of
non-zero terms. Let us define:

‖x1, x2, ..., xn‖ =

{

0 if x1, x2, ..., xn lniearly dependent,
∑∞

k=1
(|xk

1||xk
2| . . . |xk

n|) if x1, x2, ..., xn linearly independent.

Then ‖., . . . , .‖ is an n-norm on C0. But it is not an n-norm on c0 and l∞ consisting
of real sequences.

In view of Lemma 1, Lemma 2 and definitions of convergence and Cauchy sequence
in n-norm, the concept of derived norm has special role through the subject.

Associated to the derived norm ‖., ..., .‖∞, we can define the balls (open) B(x, ε)
centered at x having radius ε by

B(x, ε) := {y : ‖x− y, z2, ..., zn−1‖∞ < ε},

where

‖x− y, z2, ..., zn−1‖∞ := max{‖x − y, z2, ..., zn−1, uj‖ : j = 1, 2, ..., d}.

We may want to view an n-norm on a real linear space M , say as a norm on the
Cartesian product space Mn which is invariant under permutation. But this is not
true. One may find it interesting to see the differences between these two concepts
through the condition (N1) in the definition of n-norm. We now give the following
example which seems to be a 2-norm but not true.

EXAMPLE 3. Let Y be the space of all bounded real-valued functions on R. For
f, g ∈ Y , let us define

‖f, g‖ =

{

0 if f, g are linearly dependent,
supt∈R |f(t)g(t)| if f, g are linearly independent.

Then ‖., .‖ is not a 2-norm. To see this,

f(t) =







0 if t ≤ 0,

sin t if 0 < t < π,

0 if t ≥ π,

and

g(t) =







0 if t ≤ −π,

sin t if −π < t < 0,

0 if t ≥ 0.
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Then f and g are linearly independent. But ‖f, g‖ = 0.

EXAMPLE 4. Let X be a 2-normed space of all bounded real-valued functions on
R and ‖.‖∞ be a derived norm on X. Let T : X −→ X be defined by

h(t) = Tf(t) = f(t − ∆),

where ∆ > 0 is a constant. This is a model of a delay line, which is an electric device
whose output h is a delayed version of the input f , the time delay be ∆. Then T is
linear and bounded with respect to the derived norm.

References

[1] D. Borwein, Linear functionals connected with strong Cesàro summability, J. Lon-
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