Schur-Geometric Convexity for Differences of Means*

Huan Nan Shi, Jian Zhang and Da-mao Li^{\dagger}

Received 24 September 2009

Abstract

The Schur-geometric convexity in $(0, \infty) \times(0, \infty)$ for the difference of some famous means such as arithmetic mean, geometric mean, harmonic mean, rootsquare mean, etc. is discussed. Some inequalities related to the difference of means are obtained.

1 Introduction

Recently, the following chain of inequalities for the binary means is given in [1]:

$$
\begin{equation*}
H(a, b) \leq G(a, b) \leq N_{1}(a, b) \leq N_{3}(a, b) \leq N_{2}(a, b) \leq A(a, b) \leq S(a, b) \tag{1}
\end{equation*}
$$

where

$$
A(a, b)=\frac{a+b}{2}, G(a, b)=\sqrt{a b}, H(a, b)=\frac{2 a b}{a+b}, S(a, b)=\sqrt{\frac{a^{2}+b^{2}}{2}}
$$

and

$$
\begin{gathered}
N_{1}(a, b)=\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)^{2}=\frac{A(a, b)+G(a, b)}{2} \\
N_{3}(a, b)=\frac{a+\sqrt{a b}+b}{3}=\frac{2 A(a, b)+G(a, b)}{3} \\
N_{2}(a, b)=\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)\left(\sqrt{\frac{a+b}{2}}\right) .
\end{gathered}
$$

The means, $A(a, b), G(a, b), H(a, b), S(a, b), N_{1}(a, b)$ and $N_{3}(a, b)$ are arithmetic, geometric, harmonic, root-square, square-root and Heron's means respectively. The mean $N_{2}(a, b)$ can be seen in Taneja $[2,3]$.

Furthermore the following differences of means are considered in [1]:

$$
\begin{equation*}
M_{S A}(a, b)=S(a, b)-A(a, b) \tag{2}
\end{equation*}
$$

[^0]\[

$$
\begin{align*}
M_{S N_{2}}(a, b) & =S(a, b)-N_{2}(a, b) \tag{3}\\
M_{S N_{3}}(a, b) & =S(a, b)-N_{3}(a, b) \tag{4}\\
M_{S N_{1}}(a, b) & =S(a, b)-N_{1}(a, b), \tag{5}\\
M_{S G}(a, b) & =S(a, b)-G(a, b), \tag{6}\\
M_{S H}(a, b) & =S(a, b)-H(a, b), \tag{7}\\
M_{A N_{2}}(a, b) & =A(a, b)-N_{2}(a, b), \tag{8}\\
M_{A G}(a, b) & =A(a, b)-G(a, b), \tag{9}\\
M_{A H}(a, b) & =A(a, b)-H(a, b), \tag{10}\\
M_{N_{2} N_{1}}(a, b) & =N_{2}(a, b)-N_{1}(a, b), \tag{11}\\
M_{N_{2} G}(a, b) & =N_{2}(a, b)-G(a, b), \tag{12}
\end{align*}
$$
\]

and the following Theorem is established:
THEOREM A. The differences of means given by (2)-(12) are nonnegative and convex in $R_{+}^{2}=(0, \infty) \times(0, \infty)$.

In this paper, the following Theorem is proved, and by this Theorem, some inequalities in (1) are strengthened.

THEOREM 1. The differences of means given by (2)-(12) are Schur-geometrically convex in $\mathrm{R}_{+}^{2}=(0, \infty) \times(0, \infty)$.

2 Definitions and Lemma

The Schur-convex function was introduced by I. Schur in 1923, and it has many important applications in analytic inequalities, linear regression, graphs and matrices, combinatorial optimization, information-theoretic topics, Gamma functions, stochastic orderings, reliability, and other related fields (see e.g., [4] and [11]-[20]).

In 2003, X. M. Zhang propose the concept of a "Schur-geometrically convex function" which is an extension of "Schur-convex function" and establish corresponding decision theorem [6]. Since then, Schur-geometric convexity has evoked the interest of of many researchers and numerous applications and extensions have appeared in the literature, see [7]-[10].

In order to verify our Theorems, the following definitions and lemmas are necessary.
DEFINITION $1([4,5])$. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$.
(i) x is said to be majorized by y (in symbols $x \prec y$) if $\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}$ for $k=1,2, \ldots, n-1$ and $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}$, where $x_{[1]} \geq \cdots \geq x_{[n]}$ and $y_{[1]} \geq \cdots \geq y_{[n]}$ are rearrangements of x and y in a descending order.
(ii) $\Omega \subseteq \mathbb{R}^{n}$ is called a convex set if $\left(\alpha x_{1}+\beta y_{1}, \ldots, \alpha x_{n}+\beta y_{n}\right) \in \Omega$ for every x and $y \in \Omega$, where α and $\beta \in[0,1]$ with $\alpha+\beta=1$.
(iii) Let $\Omega \subseteq \mathbb{R}^{n}$. The function $\varphi: \Omega \rightarrow \mathbb{R}$ be said to be a Schur-convex function on Ω if $x \prec y$ on Ω implies $\varphi(x) \leq \varphi(y) . \varphi$ is said to be a Schur-concave function on Ω if and only if $-\varphi$ is Schur-convex.

DEFINITION $2([6])$. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}_{+}^{n}$.
(i) $\Omega \subseteq \mathbb{R}_{+}^{n}$ is called a geometrically convex set if $\left(x_{1}^{\alpha} y_{1}^{\beta}, \ldots, x_{n}^{\alpha} y_{n}^{\beta}\right) \in \Omega$ for all x and $y \in \Omega$, where α and $\beta \in[0,1]$ with $\alpha+\beta=1$.
(ii) Let $\Omega \subseteq \mathbb{R}_{+}^{n}$. The function $\varphi: \Omega \rightarrow \mathbb{R}_{+}$is said to be Schur-geometrically convex function on Ω if $\left(\ln x_{1}, \ldots, \ln x_{n}\right) \prec\left(\ln y_{1}, \ldots, \ln y_{n}\right)$ on Ω implies $\varphi(x) \leq \varphi(y)$. The function φ is said to be a Schur-geometrically concave on Ω if and only if $-\varphi$ is Schur-geometrically convex.

DEFINITION 3 ([4, 5]).
(i) $\Omega \subseteq \mathbb{R}^{n}$ is called symmetric set, if $x \in \Omega$ implies $P x \in \Omega$ for every $n \times n$ permutation matrix P.
(ii) The function $\varphi: \Omega \rightarrow \mathbb{R}$ is called symmetric if for every permutation matrix P, $\varphi(P x)=\varphi(x)$ for all $x \in \Omega$.

DEFINITION $4([4,5])$. Let $\Omega \subseteq \mathbb{R}^{n}, \varphi: \Omega \rightarrow \mathbb{R}$ is a symmetric and convex function. Then φ is Schur convex on Ω.

REMARK 1. It is obvious that the difference of means given by (2)-(12) are symmetric, so by Theorem A and Lemma 1, it follows that those differences are all Schurconvex in $\mathrm{R}_{+}^{2}=(0, \infty) \times(0, \infty)$.

LEMMA $1([6])$. Let $\Omega \subseteq \mathbb{R}_{+}^{n}$ be symmetric with a nonempty interior geometrically convex set, and let $\varphi: \Omega \rightarrow \mathbb{R}_{+}$be continuous on Ω and differentiable in Ω^{0}. If φ is symmetric on Ω and

$$
\begin{equation*}
\left(\ln x_{1}-\ln x_{2}\right)\left(x_{1} \frac{\partial \varphi}{\partial x_{1}}-x_{2} \frac{\partial \varphi}{\partial x_{2}}\right) \geq 0(\leq 0) \tag{13}
\end{equation*}
$$

holds for any $x=\left(x_{1}, \cdots, x_{n}\right) \in \Omega^{0}$, then φ is a Schur-geometrically convex (Schurgeometrically concave) function.

LEMMA $2([7])$. Let $a \leq b, u(t)=t a+(1-t) b, v(t)=t b+(1-t) a$. If $1 / 2 \leq t_{2} \leq$ $t_{1} \leq 1$ or $0 \leq t_{1} \leq t_{2} \leq 1 / 2$, then

$$
\begin{equation*}
\left(\frac{a+b}{2}, \frac{a+b}{2}\right) \prec\left(u\left(t_{2}\right), v\left(t_{2}\right)\right) \prec\left(u\left(t_{1}\right), v\left(t_{1}\right)\right) \prec(a, b) . \tag{14}
\end{equation*}
$$

3 Proofs of Main Results

1) For

$$
M_{S A}(a, b)=S(a, b)-A(a, b)=\sqrt{\frac{a^{2}+b^{2}}{2}}-\frac{a+b}{2}
$$

we have

$$
\begin{aligned}
& \frac{\partial M_{S A}}{\partial a}=\frac{a}{2}\left(\frac{a^{2}+b^{2}}{2}\right)^{-1 / 2}-\frac{1}{2} \\
& \frac{\partial M_{S A}}{\partial b}=\frac{b}{2}\left(\frac{a^{2}+b^{2}}{2}\right)^{-1 / 2}-\frac{1}{2}
\end{aligned}
$$

and then

$$
\begin{aligned}
\Lambda & :=(\ln a-\ln b)\left(a \frac{\partial M_{S A}}{\partial a}-b \frac{\partial M_{S A}}{\partial b}\right) \\
& =(\ln a-\ln b)\left[\left(\frac{a^{2}+b^{2}}{2}\right)^{-1 / 2} \frac{a^{2}-b^{2}}{2}-\frac{a-b}{2}\right] \\
& =\frac{(\ln a-\ln b)(a-b)}{2}\left[(a+b)\left(\frac{a^{2}+b^{2}}{2}\right)^{-1 / 2}-1\right]
\end{aligned}
$$

Since $\ln x$ is increasing, we have $(\ln a-\ln b)(a-b) \geq 0$, and $(a+b)\left(\frac{a^{2}+b^{2}}{2}\right)^{-1 / 2}-1 \geq$ 0 is equivalent to $a^{2}+b^{2} \leq 2 a^{2}+2 b^{2}+4 a b$, which is ture obviously, so $\Lambda \geq 0$. By the Lemma 1 , it follows that $M_{S A}(a, b)$ is Schur-geometrically convex in $\mathrm{R}_{+}^{\overline{2}}=$ $(0, \infty) \times(0, \infty)$.
2) For

$$
M_{A N_{2}}(a, b)=A(a, b)-N_{2}(a, b)=\frac{a+b}{2}-\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)\left(\sqrt{\frac{a+b}{2}}\right)
$$

we have

$$
\begin{aligned}
& \frac{\partial M_{A N_{2}}}{\partial a}=\frac{1}{2}-\frac{1}{4 \sqrt{a}} \sqrt{\frac{a+b}{2}}-\frac{1}{4}\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)\left(\frac{a+b}{2}\right)^{-1 / 2} \\
& \frac{\partial M_{A N_{2}}}{\partial b}=\frac{1}{2}-\frac{1}{4 \sqrt{b}} \sqrt{\frac{a+b}{2}}-\frac{1}{4}\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)\left(\frac{a+b}{2}\right)^{-1 / 2}
\end{aligned}
$$

and then

$$
\begin{aligned}
\Lambda & =(\ln a-\ln b)\left(a \frac{\partial M_{A N_{2}}}{\partial a}-b \frac{\partial M_{A N_{2}}}{\partial b}\right) \\
& =(\ln a-\ln b)\left[\frac{a-b}{2}-\frac{1}{4} \sqrt{\frac{a+b}{2}}(\sqrt{a}-\sqrt{b})-\frac{1}{4}\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)\left(\frac{a+b}{2}\right)^{-1 / 2}(a-b)\right]
\end{aligned}
$$

$$
=\frac{(\ln a-\ln b)(a-b)}{2}\left[1-\frac{1}{2} \sqrt{\frac{a+b}{2}}(\sqrt{a}+\sqrt{b})^{-1}-\frac{1}{2}\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)\left(\frac{a+b}{2}\right)^{-1 / 2}\right]
$$

It is easy to check that

$$
1-\frac{1}{2} \sqrt{\frac{a+b}{2}}(\sqrt{a}+\sqrt{b})^{-1}-\frac{1}{2}\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)\left(\frac{a+b}{2}\right)^{-1 / 2} \geq 0
$$

is equivalent to

$$
(a+b)^{2}+2(a+b) \sqrt{a b} \geq a b
$$

so $\Lambda \geq 0$. By the Lemma 1 , it follows that $M_{A N_{2}}(a, b)$ is Schur-geometrically convex in R_{+}^{2}.
3) For

$$
M_{S N_{2}}(a, b)=S(a, b)-N_{2}(a, b)=\sqrt{\frac{a^{2}+b^{2}}{2}}-\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)\left(\sqrt{\frac{a+b}{2}}\right)
$$

notice that

$$
M_{S N_{2}}(a, b)=M_{S A}(a, b)+M_{A N_{2}}(a, b)
$$

by the definition of the Schur-geometrically convex function, it follows that the sum of two Schur-geometrically convex function is also the Schur-geometrically convex, so $M_{S N_{2}}(a, b)$ is Schur-geometrically convex in R_{+}^{2}.
4) For

$$
M_{S N_{3}}(a, b)=S(a, b)-N_{3}(a, b)=\sqrt{\frac{a^{2}+b^{2}}{2}}-\frac{a+\sqrt{a b}+b}{3}
$$

we have

$$
\begin{aligned}
& \frac{\partial M_{S N_{3}}}{\partial a}=\frac{a}{2}\left(\frac{a^{2}+b^{2}}{2}\right)^{-1 / 2}-\frac{1}{3}\left(1+\frac{b}{2 \sqrt{a b}}\right) \\
& \frac{\partial M_{S N_{3}}}{\partial b}=\frac{b}{2}\left(\frac{a^{2}+b^{2}}{2}\right)^{-1 / 2}-\frac{1}{3}\left(1+\frac{a}{2 \sqrt{a b}}\right)
\end{aligned}
$$

and then

$$
\begin{aligned}
\Lambda & =(\ln a-\ln b)\left(a \frac{\partial M_{S N_{3}}}{\partial a}-b \frac{\partial M_{S N_{3}}}{\partial b}\right) \\
& =(\ln a-\ln b)(a-b)\left[\left(\frac{a^{2}+b^{2}}{2}\right)^{-1 / 2}\left(\frac{a+b}{2}\right)-\frac{1}{3}\right]
\end{aligned}
$$

notice that

$$
\left(\frac{a^{2}+b^{2}}{2}\right)^{-1 / 2}\left(\frac{a+b}{2}\right)-\frac{1}{3} \geq 0 \Leftrightarrow 9(a+b)^{2} \geq 2\left(a^{2}+b^{2}\right)
$$

we have $\Lambda \geq 0$, so $M_{S N_{3}}(a, b)$ is Schur-geometrically convex in R_{+}^{2}.
5) For

$$
M_{N_{2} N_{1}}(a, b)=N_{2}(a, b)-N_{1}(a, b)=\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)\left(\sqrt{\frac{a+b}{2}}\right)-\frac{a+b}{4}-\frac{\sqrt{a b}}{2},
$$

we have

$$
\begin{aligned}
& \frac{\partial M_{N_{2} N_{1}}}{\partial a}=\frac{1}{4 \sqrt{a}} \sqrt{\frac{a+b}{2}}+\frac{1}{4}\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)\left(\frac{a+b}{2}\right)^{-1 / 2}-\frac{1}{4}-\frac{b}{4 \sqrt{a b}} \\
& \frac{\partial M_{N_{2} N_{1}}}{\partial b}=\frac{1}{4 \sqrt{b}} \sqrt{\frac{a+b}{2}}+\frac{1}{4}\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)\left(\frac{a+b}{2}\right)^{-1 / 2}-\frac{1}{4}-\frac{a}{4 \sqrt{a b}}
\end{aligned}
$$

and then

$$
\begin{aligned}
\Lambda & =(\ln a-\ln b)\left(a \frac{\partial M_{N_{2} N_{1}}}{\partial a}-b \frac{\partial M_{N_{2} N_{1}}}{\partial b}\right) \\
& =(\ln a-\ln b)\left[\frac{1}{4} \sqrt{\frac{a+b}{2}}(\sqrt{a}-\sqrt{b})+\frac{1}{4}\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)\left(\frac{a+b}{2}\right)^{-1 / 2}(a-b)-\frac{1}{4}(a-b)\right] \\
& =\frac{1}{4}(\ln a-\ln b)(a-b)\left[\sqrt{\frac{a+b}{2}}(\sqrt{a}+\sqrt{b})^{-1}+\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)\left(\frac{a+b}{2}\right)^{-1 / 2}-1\right]
\end{aligned}
$$

By the AM-GM inequality, we have

$$
\begin{aligned}
& \sqrt{\frac{a+b}{2}}(\sqrt{a}+\sqrt{b})^{-1}+\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)\left(\frac{a+b}{2}\right)^{-1 / 2}-1 \\
& \geq 2\left[\sqrt{\frac{a+b}{2}}(\sqrt{a}+\sqrt{b})^{-1} \cdot\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)\left(\frac{a+b}{2}\right)^{-1 / 2}\right]^{1 / 2}-1=\sqrt{2}-1 \geq 0
\end{aligned}
$$

so $M_{N_{2} N_{1}}(a, b)$ is Schur-geometrically convex in R_{+}^{2}.
6) For

$$
M_{S N_{1}}(a, b)=S(a, b)-N_{1}(a, b)=\sqrt{\frac{a^{2}+b^{2}}{2}}-\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)^{2}
$$

notice that

$$
M_{S N_{1}}(a, b)=M_{S N_{2}}(a, b)+M_{N_{2} N_{1}}(a, b),
$$

i.e. $M_{S N_{1}}(a, b)$ is the sum of two Schur-geometrically convex function, so $M_{S N_{2}}(a, b)$ is Schur-geometrically convex in R_{+}^{2}.
7) For

$$
M_{A G}(a, b)=A(a, b)-G(a, b)=\frac{a+b}{2}-\sqrt{a b}
$$

we have

$$
\frac{\partial M_{A G}}{\partial a}=\frac{1}{2}-\frac{b}{2 \sqrt{a b}}, \frac{\partial M_{A G}}{\partial b}=\frac{1}{2}-\frac{a}{2 \sqrt{a b}}
$$

and then

$$
\Lambda=(\ln a-\ln b)\left(a \frac{\partial M_{A G}}{\partial a}-b \frac{\partial M_{A G}}{\partial b}\right)=\frac{1}{2}(\ln a-\ln b)(a-b) \geq 0
$$

so $M_{A G}(a, b)$ is Schur-geometrically convex in R_{+}^{2}.
8) For

$$
M_{S G}(a, b)=S(a, b)-G(a, b)=\sqrt{\frac{a^{2}+b^{2}}{2}}-\sqrt{a b}
$$

notice that

$$
M_{S G}(a, b)=M_{S A}(a, b)+M_{A G}(a, b)
$$

i.e. $\quad M_{S G}(a, b)$ is the sum of two Schur-geometric convex function, so $M_{S G}(a, b)$ is Schur-geometrically convex in R_{+}^{2}.
9) For

$$
M_{A H}(a, b)=A(a, b)-H(a, b)=\frac{a+b}{2}-\frac{2 a b}{a+b}
$$

we have

$$
\frac{\partial M_{A H}}{\partial a}=\frac{1}{2}-\frac{2 b^{2}}{(a+b)^{2}}, \frac{\partial M_{A H}}{\partial b}=\frac{1}{2}-\frac{2 a^{2}}{(a+b)^{2}}
$$

and then

$$
\begin{aligned}
\Lambda & =(\ln a-\ln b)\left(a \frac{\partial M_{A H}}{\partial a}-b \frac{\partial M_{A H}}{\partial b}\right) \\
& =(\ln a-\ln b)(a-b)\left[\frac{1}{2}+\frac{2 a b}{(a+b)^{2}}\right] \geq 0
\end{aligned}
$$

so $M_{A H}(a, b)$ is Schur-geometrically convex in R_{+}^{2}.
10) For

$$
M_{S H}(a, b)=S(a, b)-H(a, b)=\sqrt{\frac{a^{2}+b^{2}}{2}}-\frac{2 a b}{a+b}
$$

notice that

$$
M_{S H}(a, b)=M_{S A}(a, b)+M_{A H}(a, b)
$$

i.e. $M_{S H}(a, b)$ is the sum of two Schur-geometrically convex function, so $M_{S H}(a, b)$ is Schur-geometrically convex in R_{+}^{2}.
11) For

$$
M_{N_{2} G}(a, b)=N_{2}(a, b)-G(a, b)=\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)\left(\sqrt{\frac{a+b}{2}}\right)-\sqrt{a b}
$$

we have

$$
\frac{\partial M_{N_{2} G}}{\partial a}=\frac{1}{4 \sqrt{a}}\left(\sqrt{\frac{a+b}{2}}\right)+\frac{1}{4}\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)\left(\frac{a+b}{2}\right)^{-1 / 2}-\frac{b}{2 \sqrt{a b}}
$$

$$
\frac{\partial M_{N_{2} G}}{\partial b}=\frac{1}{4 \sqrt{b}}\left(\sqrt{\frac{a+b}{2}}\right)+\frac{1}{4}\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)\left(\frac{a+b}{2}\right)^{-1 / 2}-\frac{a}{2 \sqrt{a b}}
$$

and then

$$
\begin{aligned}
\Lambda & =(\ln a-\ln b)\left(a \frac{\partial M_{N_{2} G}}{\partial a}-b \frac{\partial M_{N_{2} G}}{\partial b}\right) \\
& =(\ln a-\ln b)\left[\frac{1}{4}\left(\sqrt{\frac{a+b}{2}}\right)(\sqrt{a}-\sqrt{b})+\frac{1}{4}\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)\left(\frac{a+b}{2}\right)^{-1 / 2}(a-b)\right] \\
& =\frac{1}{4}(\ln a-\ln b)(a-b)\left[\left(\sqrt{\frac{a+b}{2}}\right)(\sqrt{a}+\sqrt{b})^{-1}+\frac{1}{4}\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)\left(\frac{a+b}{2}\right)^{-1 / 2}\right] \geq 0,
\end{aligned}
$$

so $M_{N_{2} G}(a, b)$ is Schur-geometrically convex in R_{+}^{2}.
Thus the proof of Theorem 1 is complete.

4 Applications

As an application of our main result, we have the following.
THEOREM 2. Let $0<a \leq b$. If $1 / 2 \leq t \leq 1$ or $0 \leq t \leq 1 / 2$, then

$$
\begin{align*}
& 0 \leq \sqrt{\frac{a^{t^{2} b^{(1-t)^{2}+a^{(1-t)^{2} b^{t^{2}}}}} 2}{2}-\frac{a^{t} b^{1-t}+a^{1-t} b^{t}}{2} \leq \sqrt{\frac{a^{2}+b^{2}}{2}}-\frac{a+b}{2},} \tag{15}\\
& 0 \leq \sqrt{\frac{a^{t^{2} b^{(1-t)^{2}+a^{(1-t)^{2} b^{t^{2}}}}} 2}{2}-\left(\frac{\sqrt{a^{t} b^{1-t}}+\sqrt{a^{1-t} b^{t}}}{2}\right)\left(\sqrt{\frac{a^{t} b^{1-t}+a^{1-t} b^{t}}{2}}\right)} \\
& \leq \sqrt{\frac{a^{2}+b^{2}}{2}}-\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)\left(\sqrt{\frac{a+b}{2}}\right), \tag{16}\\
& 0 \leq \sqrt{\frac{a^{t^{2} b^{(1-t)^{2}+a^{(1-t)^{2} b^{t^{2}}}}} \frac{2}{2}}{2}-\frac{a^{t} b^{1-t}+\sqrt{a b}+a^{1-t} b^{t}}{3}} \leq \sqrt{\frac{a^{2}+b^{2}}{2}}-\frac{a+\sqrt{a b}+b}{3}, \tag{17}\\
& 0 \leq \frac{a^{t^{2} b^{(1-t)^{2}}+a^{(1-t)^{2} b^{t^{2}}}}}{2}-\left(\frac{\sqrt{a^{t} b^{1-t}}+\sqrt{a^{1-t} b^{t}}}{2}\right)\left(\sqrt{\frac{a^{t} b^{1-t}+a^{1-t} b^{t}}{2}}\right) \\
& \leq \frac{a+b}{2}-\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)\left(\sqrt{\frac{a+b}{2}}\right), \tag{18}\\
& 0 \leq\left(\frac{\sqrt{a^{t} b^{1-t}}+\sqrt{a^{1-t} b^{t}}}{2}\right)\left(\sqrt{\frac{a^{t} b^{1-t}+a^{1-t} b^{t}}{2}}\right)-\left(\frac{\sqrt{a^{t} b^{1-t}}+\sqrt{a^{1-t} b^{t}}}{2}\right)^{2}
\end{align*}
$$

$$
\begin{equation*}
\leq\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)\left(\sqrt{\frac{a+b}{2}}\right)-\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)^{2} \tag{19}
\end{equation*}
$$

PROOF. From Lemma 2, we have

$$
(\ln \sqrt{a b}, \ln \sqrt{a b}) \prec\left(\ln \left(b^{t} a^{1-t}\right), \ln \left(a^{t} b^{1-t}\right)\right) \prec(\ln a, \ln b),
$$

and by Theorem 1, the difference of two means in (2)

$$
M_{S A}(a, b)=S(a, b)-A(a, b)=\sqrt{\frac{a^{2}+b^{2}}{2}}-\frac{a+b}{2}
$$

is Schur-geometrically convex in R_{+}^{2}, so we have

$$
M_{S A}(\sqrt{a b}, \sqrt{a b}) \leq M_{S A}\left(a^{t} b^{1-t}, a^{1-t} b^{t}\right) \leq M_{S A}(a, b)
$$

i.e. (15) holds.

Similarly, by Schur-geometric convexity of the difference of two means in (3), (4), (8) and (11), from (20) it follows that (16), (17), (18) and (19) hold respectively.

The proof of Theorem 2 is complete.
REMARK 2. (15) is the sharpening of the inequality $A(a, b) \leq S(a, b)$ in (1), and (16) is the sharpening of the inequality $N_{2}(a, b) \leq A(a, b)$ in (1).

Acknowledgment. The authors are indebted to the referees for their helpful suggestions. This work was supported in part by the Scientific Research Common Program of Beijing Municipal Commission of Education (KM201011417013).

References

[1] I. J. Taneja, Refinement of inequalities among means, Journal of Combinatorics, Information \& System Sciences,2006, Volume 31, ISSUE 1-4, 343-364, arXiv:math/0505192v2 [math.GM] 12 Jul 2005.
[2] I. J. Taneja, On a Difference of Jensen Inequality and its Applications to Mean Divergence Measures, RGMIA Research Report Collection, http://rgmia.vu.edu.au, 7(4)(2004), Art. 16. Also in:arXiv:math.PR/0501302 v1 19 Jan 2005.
[3] I. J. Taneja, On symmetric and non-symmetric divergence measures and their generalizations, to appear as a chapter in: Advances in Imaging and Electron Physics, 2005.
[4] A. M. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Application, New York : Academies Press, 1979.
[5] B. Y. Wang, Foundations of Majorization Inequalities, Beijing Normal Univ. Press, Beijing, China, 1990 (in Chinese).
[6] X. M. Zhang, Geometrically Convex Functions, An'hui University Press, Hefei, 2004 (in Chinese).
[7] H. N. Shi, Y. M. Jiang and W. D. Jiang, Schur-convexity and Schur-geometrically concavity of Gini mean, Comp. Math. Appl., 57(2009), 266-274.
[8] Y. M. Chu and X. M. Zhang, The Schur geometrical convexity of the extended mean values, J. Convex Anal., 15(4)2008, 869-890.
[9] K. Z. Guan. A class of symmetric functions for multiplicatively convex function, Math. Inequal. Appl., 10(4)(2007), 745-753.
[10] H. N. Shi, M. Bencze, S.H. Wu and D. M. Li, Schur convexity of generalized Heronian means involving two parameters, J. Inequal. Appl., Volume 2008, Article ID 879273, 9 pages doi:10.1155/2008/879273.
[11] X. M. Zhang, The Schur geometrical convexity of integral arithmetric mean, Inte. J. Pure Appl. Math., 41(7)(2007), 919-925.
[12] K. Z. Guan, Schur-convexity of the complete symmetric function, Math. Inequal. Appl., 9(4)(2006), 567-576.
[13] K. Z. Guan, Some properties of a class of symmetric functions, J. Math. Anal. Appl., 336(1)(2007), 70-80.
[14] C. Stepniak, An effective characterization of Schur-convex functions with applications, J. Convex Anal. 14(1)(2007), 103-108.
[15] H. N. Shi, Schur-Convex Functions relate to Hadamard-type inequalities, J. Math. Inequal., 1(1)(2007), 127-136.
[16] H. N. Shi, D. M. Li and C. Gu, Schur-Convexity of a mean of convex function, Appl. Math. Lett., 22(2009), 932-937.
[17] Y. M. Chu and X. M. Zhang, Necessary and sufficient conditions such that extended mean values are Schur-convex or Schur-concave, J. Math. Kyoto University, 48(1)(2008), 229-238.
[18] N. Elezovic and J. Pecaric, Note on Schur-convex functions, Rocky Mountain J. Math., 29(1998), 853-856.
[19] J. Sándor, The Schur-convexity of Stolarsky and Gini means, Banach J. Math. Anal., 1(2)(2007), 212-215.
[20] H. N. Shi, S. H. Wu and F. Qi, An alternative note on the Schur-convexity of the extended mean values, Math. Inequal. Appl., 9(2)(2006), 219-224.

[^0]: ${ }^{*}$ Mathematics Subject Classifications: 26B25, 26E60, 26D20.
 ${ }^{\dagger}$ Department of Electronic Information, Teacher's College, Beijing Union University, Beijing City, 100011, P.R.China

