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Abstract

The Schur-geometric convexity in (0,∞) × (0,∞) for the difference of some
famous means such as arithmetic mean, geometric mean, harmonic mean, root-
square mean, etc. is discussed. Some inequalities related to the difference of
means are obtained.

1 Introduction

Recently, the following chain of inequalities for the binary means is given in [1]:

H(a, b) ≤ G(a, b) ≤ N1(a, b) ≤ N3(a, b) ≤ N2(a, b) ≤ A(a, b) ≤ S(a, b), (1)

where

A(a, b) =
a + b

2
, G(a, b) =

√
ab, H(a, b) =

2ab

a + b
, S(a, b) =

√

a2 + b2

2
,

and

N1(a, b) =

(√
a +

√
b

2

)2

=
A(a, b) + G(a, b)

2
,

N3(a, b) =
a +

√
ab + b

3
=

2A(a, b) + G(a, b)

3
,

N2(a, b) =

(√
a +

√
b

2

)(

√

a + b

2

)

.

The means, A(a, b), G(a, b), H(a, b), S(a, b), N1(a, b) and N3(a, b) are arithmetic, geo-
metric, harmonic, root-square, square-root and Heron’s means respectively. The mean
N2(a, b) can be seen in Taneja [2, 3].

Furthermore the following differences of means are considered in [1]:

MSA(a, b) = S(a, b) − A(a, b), (2)
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276 Schur-Geometric Convexity

MSN2
(a, b) = S(a, b) − N2(a, b), (3)

MSN3
(a, b) = S(a, b) − N3(a, b), (4)

MSN1
(a, b) = S(a, b) − N1(a, b), (5)

MSG(a, b) = S(a, b) − G(a, b), (6)

MSH(a, b) = S(a, b) − H(a, b), (7)

MAN2
(a, b) = A(a, b)− N2(a, b), (8)

MAG(a, b) = A(a, b) − G(a, b), (9)

MAH(a, b) = A(a, b) − H(a, b), (10)

MN2N1
(a, b) = N2(a, b) − N1(a, b), (11)

MN2G(a, b) = N2(a, b) − G(a, b), (12)

and the following Theorem is established:

THEOREM A. The differences of means given by (2)-(12) are nonnegative and
convex in R2

+ = (0,∞)× (0,∞).

In this paper, the following Theorem is proved, and by this Theorem, some inequal-
ities in (1) are strengthened.

THEOREM 1. The differences of means given by (2)-(12) are Schur-geometrically
convex in R2

+ = (0,∞)× (0,∞).

2 Definitions and Lemma

The Schur-convex function was introduced by I. Schur in 1923, and it has many im-
portant applications in analytic inequalities, linear regression, graphs and matrices,
combinatorial optimization, information-theoretic topics, Gamma functions, stochastic
orderings, reliability, and other related fields (see e.g., [4] and [11]-[20]).

In 2003, X. M. Zhang propose the concept of a “Schur-geometrically convex func-
tion” which is an extension of “Schur-convex function” and establish corresponding
decision theorem [6]. Since then, Schur-geometric convexity has evoked the interest of
of many researchers and numerous applications and extensions have appeared in the
literature, see [7]-[10].

In order to verify our Theorems, the following definitions and lemmas are necessary.

DEFINITION 1 ([4, 5]). Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ R
n.

(i) x is said to be majorized by y (in symbols x ≺ y) if
∑k

i=1 x[i] ≤
∑k

i=1 y[i]

for k = 1, 2, . . . , n − 1 and
∑n

i=1 xi =
∑n

i=1 yi, where x[1] ≥ · · · ≥ x[n] and
y[1] ≥ · · · ≥ y[n] are rearrangements of x and y in a descending order.

(ii) Ω ⊆ R
n is called a convex set if (αx1 + βy1 , . . . , αxn + βyn) ∈ Ω for every x and

y ∈ Ω, where α and β ∈ [0, 1] with α + β = 1.
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(iii) Let Ω ⊆ R
n. The function ϕ: Ω → R be said to be a Schur-convex function on

Ω if x ≺ y on Ω implies ϕ (x) ≤ ϕ (y) . ϕ is said to be a Schur-concave function
on Ω if and only if −ϕ is Schur-convex.

DEFINITION 2 ([6]). Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ R
n
+.

(i) Ω ⊆ R
n
+ is called a geometrically convex set if (xα

1 yβ
1 , . . . , xα

nyβ
n) ∈ Ω for all x and

y ∈ Ω, where α and β ∈ [0, 1] with α + β = 1.

(ii) Let Ω ⊆ R
n
+. The function ϕ: Ω → R+ is said to be Schur-geometrically convex

function on Ω if (lnx1, . . . , lnxn) ≺ (ln y1, . . . , lnyn) on Ω implies ϕ (x) ≤ ϕ (y).
The function ϕ is said to be a Schur-geometrically concave on Ω if and only if
−ϕ is Schur-geometrically convex.

DEFINITION 3 ([4, 5]).

(i) Ω ⊆ R
n is called symmetric set, if x ∈ Ω implies Px ∈ Ω for every n × n

permutation matrix P .

(ii) The function ϕ : Ω → R is called symmetric if for every permutation matrix P ,
ϕ(Px) = ϕ(x) for all x ∈ Ω.

DEFINITION 4 ([4, 5]). Let Ω ⊆ R
n, ϕ : Ω → R is a symmetric and convex

function. Then ϕ is Schur convex on Ω.

REMARK 1. It is obvious that the difference of means given by (2)-(12) are sym-
metric, so by Theorem A and Lemma 1, it follows that those differences are all Schur-
convex in R2

+ = (0,∞)× (0,∞).

LEMMA 1 ([6]). Let Ω ⊆ R
n
+ be symmetric with a nonempty interior geometrically

convex set, and let ϕ : Ω → R+ be continuous on Ω and differentiable in Ω0. If ϕ is
symmetric on Ω and

(lnx1 − lnx2)

(

x1
∂ϕ

∂x1
− x2

∂ϕ

∂x2

)

≥ 0(≤ 0) (13)

holds for any x = (x1, · · · , xn) ∈ Ω0, then ϕ is a Schur-geometrically convex (Schur-
geometrically concave) function.

LEMMA 2 ([7]). Let a ≤ b, u(t) = ta + (1 − t)b, v(t) = tb + (1 − t)a. If 1/2 ≤ t2 ≤
t1 ≤ 1 or 0 ≤ t1 ≤ t2 ≤ 1/2, then

(

a + b

2
,
a + b

2

)

≺ (u(t2), v(t2)) ≺ (u(t1), v(t1)) ≺ (a, b). (14)
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3 Proofs of Main Results

1) For

MSA(a, b) = S(a, b) − A(a, b) =

√

a2 + b2

2
−

a + b

2
,

we have

∂MSA

∂a
=

a

2

(

a2 + b2

2

)

−1/2

−
1

2
,

∂MSA

∂b
=

b

2

(

a2 + b2

2

)

−1/2

−
1

2
,

and then

Λ := (ln a − ln b)

(

a
∂MSA

∂a
− b

∂MSA

∂b

)

= (lna − ln b)

[

(

a2 + b2

2

)

−1/2
a2 − b2

2
−

a − b

2

]

=
(lna − ln b) (a − b)

2

[

(a + b)

(

a2 + b2

2

)

−1/2

− 1

]

.

Since lnx is increasing, we have (lna − ln b) (a−b) ≥ 0, and (a+b)
(

a2+b2

2

)

−1/2

−1 ≥
0 is equivalent to a2 + b2 ≤ 2a2 + 2b2 + 4ab, which is ture obviously, so Λ ≥ 0.
By the Lemma 1, it follows that MSA(a, b) is Schur-geometrically convex in R2

+ =
(0,∞)× (0,∞).

2) For

MAN2
(a, b) = A(a, b) − N2(a, b) =

a + b

2
−

(√
a +

√
b

2

)(

√

a + b

2

)

,

we have

∂MAN2

∂a
=

1

2
−

1

4
√

a

√

a + b

2
−

1

4

(√
a +

√
b

2

)

(

a + b

2

)

−1/2

,

∂MAN2

∂b
=

1

2
−

1

4
√

b

√

a + b

2
−

1

4

(√
a +

√
b

2

)

(

a + b

2

)

−1/2

,

and then

Λ = (ln a − ln b)

(

a
∂MAN2

∂a
− b

∂MAN2

∂b

)

= (ln a − ln b)

[

a − b

2
−

1

4

√

a + b

2

(√
a −

√
b
)

−
1

4

(√
a +

√
b

2

)

(

a + b

2

)

−1/2

(a − b)

]
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=
(ln a − ln b) (a − b)

2

[

1 −
1

2

√

a + b

2

(√
a +

√
b
)

−1

−
1

2

(√
a +

√
b

2

)

(

a + b

2

)

−1/2
]

.

It is easy to check that

1 −
1

2

√

a + b

2

(√
a +

√
b
)

−1

−
1

2

(√
a +

√
b

2

)

(

a + b

2

)

−1/2

≥ 0

is equivalent to
(a + b)2 + 2(a + b)

√
ab ≥ ab,

so Λ ≥ 0. By the Lemma 1, it follows that MAN2
(a, b) is Schur-geometrically convex

in R2
+.

3) For

MSN2
(a, b) = S(a, b) − N2(a, b) =

√

a2 + b2

2
−

(√
a +

√
b

2

)(

√

a + b

2

)

,

notice that
MSN2

(a, b) = MSA(a, b) + MAN2
(a, b),

by the definition of the Schur-geometrically convex function, it follows that the sum
of two Schur-geometrically convex function is also the Schur-geometrically convex, so
MSN2

(a, b) is Schur-geometrically convex in R2
+.

4) For

MSN3
(a, b) = S(a, b) − N3(a, b) =

√

a2 + b2

2
−

a +
√

ab + b

3
,

we have
∂MSN3

∂a
=

a

2

(

a2 + b2

2

)

−1/2

−
1

3

(

1 +
b

2
√

ab

)

,

∂MSN3

∂b
=

b

2

(

a2 + b2

2

)

−1/2

−
1

3

(

1 +
a

2
√

ab

)

,

and then

Λ = (ln a − ln b)

(

a
∂MSN3

∂a
− b

∂MSN3

∂b

)

= (ln a − ln b) (a − b)

[

(

a2 + b2

2

)

−1/2(
a + b

2

)

−
1

3

]

,

notice that

(

a2 + b2

2

)

−1/2(
a + b

2

)

−
1

3
≥ 0 ⇔ 9(a + b)2 ≥ 2

(

a2 + b2
)

,
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we have Λ ≥ 0, so MSN3
(a, b) is Schur-geometrically convex in R2

+.
5) For

MN2N1
(a, b) = N2(a, b) − N1(a, b) =

(√
a +

√
b

2

)(

√

a + b

2

)

−
a + b

4
−

√
ab

2
,

we have

∂MN2N1

∂a
=

1

4
√

a

√

a + b

2
+

1

4

(√
a +

√
b

2

)

(

a + b

2

)

−1/2

−
1

4
−

b

4
√

ab
,

∂MN2N1

∂b
=

1

4
√

b

√

a + b

2
+

1

4

(√
a +

√
b

2

)

(

a + b

2

)

−1/2

−
1

4
−

a

4
√

ab
,

and then

Λ = (ln a − ln b)

(

a
∂MN2N1

∂a
− b

∂MN2N1

∂b

)

= (ln a − ln b)

[

1

4

√

a + b

2

(√
a −

√
b
)

+
1

4

(√
a +

√
b

2

)

(

a + b

2

)

−1/2

(a − b) −
1

4
(a − b)

]

=
1

4
(lna − ln b) (a − b)

[
√

a + b

2

(√
a +

√
b
)

−1

+

(√
a +

√
b

2

)

(

a + b

2

)

−1/2

− 1

]

.

By the AM-GM inequality, we have

√

a + b

2

(√
a +

√
b
)

−1

+

(√
a +

√
b

2

)

(

a + b

2

)

−1/2

− 1

≥ 2

[

√

a + b

2

(√
a +

√
b
)

−1

·

(√
a +

√
b

2

)

(

a + b

2

)

−1/2
]1/2

− 1 =
√

2 − 1 ≥ 0,

so MN2N1
(a, b) is Schur-geometrically convex in R2

+.
6) For

MSN1
(a, b) = S(a, b) − N1(a, b) =

√

a2 + b2

2
−

(√
a +

√
b

2

)2

,

notice that
MSN1

(a, b) = MSN2
(a, b) + MN2N1

(a, b),

i.e. MSN1
(a, b) is the sum of two Schur-geometrically convex function, so MSN2

(a, b)
is Schur-geometrically convex in R2

+.
7) For

MAG(a, b) = A(a, b)− G(a, b) =
a + b

2
−

√
ab,
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we have
∂MAG

∂a
=

1

2
−

b

2
√

ab
,
∂MAG

∂b
=

1

2
−

a

2
√

ab
,

and then

Λ = (lna − ln b)

(

a
∂MAG

∂a
− b

∂MAG

∂b

)

=
1

2
(lna − ln b) (a − b) ≥ 0,

so MAG(a, b) is Schur-geometrically convex in R2
+.

8) For

MSG(a, b) = S(a, b) − G(a, b) =

√

a2 + b2

2
−

√
ab,

notice that
MSG(a, b) = MSA(a, b) + MAG(a, b),

i.e. MSG(a, b) is the sum of two Schur-geometric convex function, so MSG(a, b) is
Schur-geometrically convex in R2

+.
9) For

MAH(a, b) = A(a, b) − H(a, b) =
a + b

2
−

2ab

a + b
,

we have
∂MAH

∂a
=

1

2
−

2b2

(a + b)2
,
∂MAH

∂b
=

1

2
−

2a2

(a + b)2
,

and then

Λ = (lna − ln b)

(

a
∂MAH

∂a
− b

∂MAH

∂b

)

= (lna − ln b) (a − b)

[

1

2
+

2ab

(a + b)2

]

≥ 0,

so MAH(a, b) is Schur-geometrically convex in R2
+.

10) For

MSH(a, b) = S(a, b) − H(a, b) =

√

a2 + b2

2
−

2ab

a + b
,

notice that
MSH(a, b) = MSA(a, b) + MAH(a, b),

i.e. MSH(a, b) is the sum of two Schur-geometrically convex function, so MSH(a, b) is
Schur-geometrically convex in R2

+.
11) For

MN2G(a, b) = N2(a, b) − G(a, b) =

(√
a +

√
b

2

)(

√

a + b

2

)

−
√

ab,

we have

∂MN2G

∂a
=

1

4
√

a

(
√

a + b

2

)

+
1

4

(√
a +

√
b

2

)

(

a + b

2

)

−1/2

−
b

2
√

ab
,
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∂MN2G

∂b
=

1

4
√

b

(

√

a + b

2

)

+
1

4

(√
a +

√
b

2

)

(

a + b

2

)

−1/2

−
a

2
√

ab
,

and then

Λ = (ln a − ln b)

(

a
∂MN2G

∂a
− b

∂MN2G

∂b

)

= (ln a − ln b)

[

1

4

(
√

a + b

2

)

(√
a −

√
b
)

+
1

4

(√
a +

√
b

2

)

(

a + b

2

)

−1/2

(a − b)

]

=
1

4
(lna − ln b) (a − b)

[(
√

a + b

2

)

(√
a +

√
b
)

−1

+
1

4

(√
a +

√
b

2

)

(

a + b

2

)

−1/2
]

≥ 0,

so MN2G(a, b) is Schur-geometrically convex in R2
+.

Thus the proof of Theorem 1 is complete.

4 Applications

As an application of our main result, we have the following.

THEOREM 2. Let 0 < a ≤ b. If 1/2 ≤ t ≤ 1 or 0 ≤ t ≤ 1/2, then

0 ≤

√

at2b(1−t)2 + a(1−t)2bt2

2
−

atb1−t + a1−tbt

2
≤

√

a2 + b2

2
−

a + b

2
, (15)

0 ≤

√

at2b(1−t)2 + a(1−t)2bt2

2
−

(√
atb1−t +

√
a1−tbt

2

)(
√

atb1−t + a1−tbt

2

)

≤

√

a2 + b2

2
−

(√
a +

√
b

2

)(

√

a + b

2

)

, (16)

0 ≤

√

at2b(1−t)2 + a(1−t)2bt2

2
−

atb1−t +
√

ab + a1−tbt

3
≤

√

a2 + b2

2
−

a +
√

ab + b

3
,

(17)

0 ≤
at2b(1−t)2 + a(1−t)2bt2

2
−

(√
atb1−t +

√
a1−tbt

2

)(
√

atb1−t + a1−tbt

2

)

≤
a + b

2
−

(√
a +

√
b

2

)(

√

a + b

2

)

, (18)

0 ≤

(√
atb1−t +

√
a1−tbt

2

)(
√

atb1−t + a1−tbt

2

)

−

(√
atb1−t +

√
a1−tbt

2

)2
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≤

(√
a +

√
b

2

)(
√

a + b

2

)

−

(√
a +

√
b

2

)2

. (19)

PROOF. From Lemma 2, we have

(

ln
√

ab, ln
√

ab
)

≺
(

ln(bta1−t), ln(atb1−t)
)

≺ (ln a, ln b),

and by Theorem 1, the difference of two means in (2)

MSA(a, b) = S(a, b) − A(a, b) =

√

a2 + b2

2
−

a + b

2
,

is Schur-geometrically convex in R2
+, so we have

MSA(
√

ab,
√

ab) ≤ MSA(atb1−t, a1−tbt) ≤ MSA(a, b),

i.e. (15) holds.
Similarly, by Schur-geometric convexity of the difference of two means in (3), (4),

(8) and (11), from (20) it follows that (16), (17), (18) and (19) hold respectively.
The proof of Theorem 2 is complete.

REMARK 2. (15) is the sharpening of the inequality A(a, b) ≤ S(a, b) in (1), and
(16) is the sharpening of the inequality N2(a, b) ≤ A(a, b) in (1).
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