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Abstract

In this paper, we study the existence and multiplicity of positive solutions for
the singular fractional boundary value problem

(

D
α

0+u(t) = h(t)f(t, u(t)), 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0,

where 3 < α ≤ 4 is a real number, D
α

0+ is the standard Riemann-Liouville
derivative, and h ∈ C(0, 1) ∩ L(0, 1) is nonnegative and may be singular at t = 0
and/or t = 1. We use fixed point index theory to establish our main results
based on a priori estimates achieved by developing some spectral properties of
associated linear integral operators. Our main results essentially extend and
improve the corresponding ones in the literature.

1 Introduction

In this paper, we study the existence and multiplicity of positive solutions for the
singular fractional boundary value problem

{
D

α
0+u(t) = h(t)f(t, u(t)), t ∈ (0, 1),

u(0) = u(1) = u′(0) = u′(1) = 0,
(1)

where α ∈ (3, 4] is a real number, D
α
0+ is the standard Riemann-Liouville derivative,

f ∈ C([0, 1] × [0,∞), [0,∞)), and h ∈ C(0, 1) ∩ L(0, 1) is nonnegative and may be
singular at t = 0 and/or t = 1. We use fixed point index theory to establish our main
results based on a priori estimates achieved by developing some spectral properties of
associated linear integral operators.

Fractional differential equations can describe many phenomena in various fields of
science and engineering such as control, porous media, electrochemistry, viscoelasticity,
electromagnetics, etc. This explains why many authors have studied existence and mul-
tiplicity questions of solutions (or positive solutions) of nonlinear fractional differential
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260 Multiple Positive Solutions of a singular fractional BVP

equation, see, for example, [1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13] and references therein. It
is of interest to note that the Riemann-Liouville fractional derivative is not suitable for
nonzero boundary value conditions, see [11, 13].

By means of the Schauder fixed point theorem and fixed point index theory, Bai [1]
discussed the existence of positive solutions for the fractional boundary value problem

{
D

α
0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u(0) = 0, βu(η) = u(1),
(2)

where α ∈ (1, 2], Dα
0+ is the Riemann-Liouville fractional derivative, η ∈ (0, 1), βηα−1 ∈

(0, 1), and f ∈ C([0, 1] × [0,∞), [0,∞)) is sublinear. It should be remarked that our
nonlinearity f here, unlike the f in [1], may be both sublinear and superlinear. Our
first theorem involves the existence of at least one positive solution for (1) with f
growing superlinearly, thereby complementing the results in [1]. We then establish two
existence results of twin positive solutions for (1), two results that essentially improve
and extend the corresponding ones in [12] (see REMARK 1).

2 Preliminaries

The Riemann-Liouville fractional derivative D
α
0+ is defined by

D
α
0+y(t) = 1

Γ(n−α)

(
d
dt

)n ∫ t

0
y(s)ds

(t−s)α−n+1 ,

where Γ is the gamma function and n = [α]+1. For more details of fractional calculus,
we refer the reader to the recent literature such as [1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13].
Let

E = C[0, 1], ‖u‖ = max
t∈[0,1]

|u(t)|, P = {u ∈ E : u(t) ≥ 0, ∀t ∈ [0, 1]}.

Then (E, ‖ · ‖) is a real Banach space and P a cone on E. We denote Bρ = {u ∈ E :
‖u‖ < ρ} for ρ > 0 in the sequel.

LEMMA 1 ([12, Lemma 2.3]). Given φ ∈ C(0, 1) ∩ L(0, 1) and 3 < α ≤ 4, the
unique solution of the fractional boundary value problem

{
D

α
0+u(t) = φ(t), t ∈ (0, 1),

u(0) = u(1) = u′(0) = u′(1) = 0,

is represented by u(t) =
∫ 1

0
G(t, s)φ(s)ds, where

G(t, s) =

{
(t−s)α−1+(1−s)α−2tα−2 [(s−t)+(α−2)(1−t)s]

Γ(α) , 0 ≤ s ≤ t ≤ 1,
tα−2(1−s)α−2[(s−t)+(α−2)(1−t)s]

Γ(α) , 0 ≤ t ≤ s ≤ 1.
(3)

It is easy to verify that the Green’s function G ∈ C([0, 1] × [0, 1], [0,∞)) satisfies
the following relations(see [12, Lemma 2.4])

(α− 2)tα−2(1 − t)2s2(1 − s)α−2 ≤ Γ(α)G(t, s) ≤ m0s
2(1 − s)α−2 (4)
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and

(α− 2)q(t)k(s) ≤ Γ(α)G(t, s) ≤ m0k(s) (5)

for all 0 ≤ t, s ≤ 1, where q(t) = tα−2(1 − t)2, k(s) = s2(1 − s)α−2 and

m0 = max{α− 1, (α− 2)2}. (6)

LEMMA 2 ([5, p.314]). Suppose A : P → P is a completely continuous operator
and has no fixed points on ∂Bρ ∩ P . Then the following are true:

1. If ‖Au‖ ≤ ‖u‖ for all u ∈ ∂Bρ ∩P , then i(A,Bρ ∩P, P ) = 1, where i is the fixed
point index on P .

2. If ‖Au‖ ≥ ‖u‖ for all u ∈ ∂Bρ ∩ P , then i(A,Bρ ∩ P, P ) = 0.

LEMMA 3 ([5, p.144]). Suppose Ω ⊂ E is a bounded open set and A : Ω ∩ P → P
is a completely continuous operator. If there exists u0 ∈ P \ {0} such that

u− Au 6= λu0, ∀λ ≥ 0, u ∈ ∂Ω ∩ P,

then i(A,Ω ∩ P, P ) = 0 .

LEMMA 4. ([5, p.164]) Let Ω ⊂ E be a bounded open set with 0 ∈ Ω. Suppose
A : Ω∩P → P is a completely continuous operator and has no fixed points on ∂Ω∩P .
If u 6= λAu, ∀u ∈ ∂Ω ∩ P, 0 ≤ λ ≤ 1, then i(A,Ω ∩ P, P ) = 1.

We assume the following conditions throughout this paper.
(H1) f ∈ C([0, 1]× [0,∞), [0,∞)).
(H2) h ∈ L(0, 1) ∩ C(0, 1) is nonnegative and does not vanish identically on any

subinterval of (0, 1).
Define two operators A and T by

(Au)(t) =

∫ 1

0

G(t, s)h(s)f(s, u(s))ds, u ∈ P

and

(Tu)(t) =

∫ 1

0

G(t, s)h(s)u(s)ds, u ∈ P.

Note that (H1) and (H2) imply A : P → P is a completely continuous operator and
T : P → P is a completely continuous, linear, positive operator. A consequence of
Lemma 1 is that u ∈ P is a positive solution of (1) if and only if u ∈ P \ {0} is a
fixed point of A. Moreover, it is easy to prove that the spectral radius of T , denoted
by r(T ), is positive. Now the well-known Krein-Rutman theorem [9] asserts that there
exist two functions ϕ ∈ P \ {0} and ψ ∈ L(0, 1)\{0} with ψ(x) ≥ 0 for which

∫ 1

0

G(t, s)h(s)ϕ(s)ds = r(T )ϕ(t),

∫ 1

0

G(t, s)h(s)ψ(t)dt = r(T )ψ(s),

∫ 1

0

ψ(t)dt = 1.

(7)
Put

P0 = {u ∈ P :

∫ 1

0

ψ(t)u(t)dt ≥ ω‖u‖},



262 Multiple Positive Solutions of a singular fractional BVP

where ψ(t) is determined by (7) and ω = α−2
m0

∫ 1

0
q(t)ψ(t)dt > 0. Clearly, P0 is also a

cone on E. The following is a result obtained by observing relations (5).

LEMMA 5. A(P ) ⊂ P0.

In addition to (H1) and (H2), we need the following hypotheses on f .

(H3) lim infu→0+
f(t,u)

u
> λ1 uniformly with respect to t ∈ [0, 1], where λ1 =

1/r(T ) > 0.

(H4) lim supu→+∞
f(t,u)

u
< λ1 uniformly with respect to t ∈ [0, 1].

(H5) lim infu→+∞
f(t,u)

u
> λ1 uniformly with respect to t ∈ [0, 1].

(H6) lim supu→0+

f(t,u)
u

< λ1 uniformly with respect to t ∈ [0, 1].

(H7) There is ρ > 0 such that the inequality f(t, u) < ηΓ(α)ρ
m0

holds whenever
u ∈ [0, ρ] and t ∈ [0, 1] , m0 > 0 being defined in (6).

(H8) There are ρ > 0 and σ ∈ (0, α−2
α

) such that f(t, u) > Γ(α)ρ

η(α−2)q( α−2

α
)

holds

whenever u ∈ [θρ, ρ] and t ∈ [σ, 1−σ], θ and η being defined by θ = α−2
m0

min{q(σ), q(1−

σ)} > 0 and η =
(∫ 1

0 k(s)h(s)ds
)−1

> 0.

REMARK 1. Some simple computations show the following estimates:

Γ(α)

m0

(∫ 1

0

k(s)ds

)−1

≤ λ1 = (r(T ))−1 ≤
m0

α− 2

(
max

t∈[0,1]

∫ 1

0

G(t, s)q(s)ds

)−1

,

from which we obtain M ≤ λ1 ≤ N ≤ Ñ , where M,N, Ñ are defined in [12, Section
3]. Notice that (H3) and (H5) considerably weaken (A1), and that (H4) and (H6)
considerably (A2), where (A1) and (A2) are formulated in [12]. This means our main
results, even in the case of h being nonsingular, essentially extend and improve the
corresponding ones in the literature.

3 Main results

First we have the following.

THEOREM 1. Suppose that (H1), (H2), (H5) and (H6) are satisfied, then (1) has
at least one positive solution.

PROOF. By (H5), there exist ε > 0 and b > 0 such that f(t, u) ≥ (λ1 + ε)u− b for
all u ≥ 0 and t ∈ [0, 1]. This implies

(Au)(t) ≥ (λ1 + ε)

∫ 1

0

G(t, s)h(s)u(s)ds− b

∫ 1

0

G(t, s)h(s)ds (8)

for all u ∈ P . Let M1 = {u ∈ P : u = Au+ λϕ, λ ≥ 0}, where ϕ ∈ P is determined by
(7). We shall prove that M1 is bounded. Indeed, if u ∈ M1, then we have u ≥ Au by
definition. This together with (8) leads to

u(t) ≥ (λ1 + ε)

∫ 1

0

G(t, s)h(s)u(s)ds − b

∫ 1

0

G(t, s)h(s)ds.
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Multiply by ψ(t) on both sides of the above and integrate over [0, 1] and use (7) to
obtain ∫ 1

0 ψ(t)u(t)dt ≥ (λ1 + ε)λ−1
1

∫ 1

0 ψ(t)u(t)dt − bλ−1
1 ,

so that
∫ 1

0
ψ(t)u(t)dt ≤ b

ε
for all u ∈ M1. Note we have M1 ⊂ P0 by Lemma 5. This

together with the preceding inequality implies ‖u‖ ≤ (εω)−1b for all u ∈ M1, which
establishes the boundedness of M1, as required. Taking R > (εω)−1b, we obtain

u 6= Au+ λϕ, ∀u ∈ ∂BR ∩ P, λ ≥ 0.

Now Lemma 3 yields

i(A,BR ∩ P, P ) = 0. (9)

By (H6), there exist r ∈ (0, R) and ε ∈ (0, λ1) such that f(t, u) ≤ (λ1 − ε)u for all
u ∈ [0, r] and t ∈ [0, 1]. This implies

(Au)(t) ≤ (λ1 − ε)

∫ 1

0

G(t, s)h(s)u(s)ds (10)

for all u ∈ Br ∩ P . Now we claim

u 6= µAu, ∀u ∈ ∂Br ∩ P, 0 ≤ µ ≤ 1. (11)

Indeed, if there exist u0 ∈ ∂Br ∩ P and µ0 ∈ [0, 1] for which u0 = µ0Au0, then this

together with (10) leads to u0(t) ≤ (λ1 − ε)
∫ 1

0 G(t, s)h(s)u0(s)ds. Multiply by ψ(t) on
both sides of the preceding inequality and integrate over [0, 1] and use (7) to obtain

∫ 1

0

ψ(t)u0(t)dt ≤
λ1 − ε

λ1

∫ 1

0

ψ(t)u0(t)dt,

so that
∫ 1

0 ψ(t)u0(t)dt = 0, whence u0(t) ≡ 0, contradicting u0 ∈ ∂Br ∩P . As a result,
(11) is true and we have by Lemma 4

i(A,Br ∩ P, P ) = 1. (12)

Now (9) and (12) combined imply

i(A, (BR \Br) ∩ P, P ) = i(A,BR ∩ P, P )− i(A,Br ∩ P, P ) = −1.

Hence the operator A has at least one fixed point on (BR \Br)∩P . Therefore (1) has
at least one positive solution, which completes the proof.

THEOREM 2. Suppose that (H1)-(H3), (H5) and (H7) are satisfied, then (1) has
at least two positive solutions.

PROOF. By (H7), we have

‖Au‖ = max
t∈[0,1]

∫ 1

0

G(t, s)h(s)f(s, u(s))ds <

∫ 1

0

m0

Γ(α)
k(s)h(s)

ηΓ(α)ρ

M0
ds = ‖u‖
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for all u ∈ ∂Bρ ∩ P . Now Lemma 2 yields

i(A,Bρ ∩ P, P ) = 1. (13)

On the other hand, in view of (H5), we may take R > ρ so that (9) holds (see the proof
of Theorem 1). By (H3), there exist r ∈ (0, ρ) and ε > 0 such that f(t, u) ≥ (λ1 + ε)u,
for all u ∈ [0, r] and t ∈ [0, 1]. This implies

(Au)(t) ≥ (λ1 + ε)

∫ 1

0

G(t, s)h(s)u(s)ds (14)

for all u ∈ Br ∩ P . Now we claim

u−Au 6= µϕ, ∀u ∈ ∂Br ∩ P, µ ≥ 0, (15)

where ϕ is determined by (7). Indeed, if the claim is false, then there exist u1 ∈ ∂Br∩P
and µ1 ≥ 0 such that u1−Au1 = µ1ϕ and thus u1 ≥ Au1. Combining the last inequality
with (14) (with u replaced by u1), we obtain

u1(t) ≥ (λ1 + ε)

∫ 1

0

G(t, s)h(s)u1(s)ds.

Multiply by ψ(t) on both sides of the above and integrate over [0,1] and use (7) to
obtain ∫ 1

0

u1(t)ψ(t)dt ≥ (λ1 + ε)λ−1
1

∫ 1

0

u1(t)ψ(t)dt,

so that
∫ 1

0
u1(t)ψ(t)dt = 0, whence u1(t) ≡ 0, contradicting u1 ∈ ∂Br ∩P . As a result,

(15) is true, as claimed. Now Lemma 3 yields

i(A,Br ∩ P, P ) = 0. (16)

Combining (9), (13) and (16), we arrive at

i(A, (BR\Bρ) ∩ P, P ) = 0 − 1 = −1

and

i(A, (Bρ\Br) ∩ P, P ) = 1 − 0 = 1.

Consequently, A has at least two fixed points, with one on (BR\Bρ)∩P and the other
on (Bρ\Br)∩P . Therefore (1) has at least two positive solutions, which completes the
proof.

To prove Theorem 3 below, we need an extra cone P1, which is defined by

P1 = {u ∈ P : u(t) ≥ θ‖u‖, ∀t ∈ [σ, 1− σ]},

where θ = α−2
m0

min{q(σ), q(1 − σ)}. We have the following

Claim 1. A(P ) ⊂ P1.
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PROOF. On the one hand, u ∈ P implies ‖Au‖ ≤ 1
Γ(α)

∫ 1

0
m0k(s)h(s)f(s, u(s))ds.

On the other hand, u ∈ P and t ∈ [σ, 1− σ] imply

(Au)(t) ≥
(α− 2)q(t)

m0Γ(α)

∫ 1

0

m0k(s)h(s)f(s, u(s))ds ≥
θ

Γ(α)

∫ 1

0

m0k(s)h(s)f(s, u(s))ds

and thus (Au)(t) ≥ θ‖Au‖ for all u ∈ P and t ∈ [σ, 1− σ]. This implies A(P ) ⊂ P1, as
claimed.

THEOREM 3. Suppose that (H1), (H2), (H4), (H6) and (H8) are satisfied, then
(1) has at least two positive solutions.

PROOF. Recall A(P ) ⊂ P1. By (H8), we have

‖Au‖ = max
0≤t≤1

(Au)(t) ≥ max
t∈[σ,1−σ]

(Au)(t)

= max
t∈[σ,1−σ]

∫ 1

0

G(t, s)h(s)f(s, u(s))ds

> max
t∈[σ,1−σ]

∫ 1

0

(α− 2)q(t)k(s)

Γ(α)
h(s)f(s, u(s))ds

=
(α− 2)q(α−2

α
)

Γ(α)

∫ 1

0

k(s)h(s)
Γ(α)ρ

η(α − 2)q(α−2
α

)
ds

= ‖u‖,

for all u ∈ ∂Bρ ∩ P, and by Lemma 2

i(A,Bρ ∩ P, P ) = 0. (17)

On the other hand, in view of (H6) , we may take r ∈ (0, ρ) so that (12) holds (see the
proof of Theorem 1). In addition, by (H4), there exist ε ∈ (0, λ1) and m > 0 such that
f(t, u) ≤ (λ1 − ε)u +m for all u ≥ 0 and t ∈ [0, 1]. Let

M2 = {u ∈ P : u = µAu, 0 ≤ µ ≤ 1}. (18)

We shall prove that M2 is bounded. Indeed, if u ∈M2, then, by definition, we have for
some µ ∈ [0, 1]

u(t) = µ(Au)(t) ≤
∫ 1

0
G(t, s)h(s)f(s, u(s))ds

≤
∫ 1

0
G(t, s)h(s)((λ1 − ε)u(s) +m)ds

= (λ1 − ε)(Tu)(t) + u0(t),

(19)

u0 ∈ P \ {0} being defined by u0(t) = m
∫ 1

0
G(t, s)h(s)ds. Notice r((λ1 − ε)T ) < 1.

This implies the inverse operator of I − (λ1 − ε)T exists and equals

(I − (λ1 − ε)T )−1 = I + (λ1 − ε)T + (λ1 − ε)2T 2 + . . .+ (λ1 − ε)nTn + . . . ,

from which we obtain (I − (λ1 − ε)T )−1(P ) ⊂ P . Applying this to (19) gives u ≤
(I − (λ1 − ε)T )−1u0 for all u ∈ M2. This proves the boundedness of M2, as required.
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Choosing R > sup{‖u‖ : u ∈ M2} and R > ρ, we have u 6= λAu for all u ∈ ∂BR ∩ P
and λ ∈ [0, 1]. Now Lemma 4 yields

i(A,BR ∩ P, P ) = 1. (20)

Combining (12), (17) and (20), we arrive at

i(A, (BR\Bρ) ∩ P, P ) = 1 − 0 = 1, i(A, (Bρ\Br) ∩ P, P ) = 0 − 1 = −1.

Hence A has at least two fixed points, with one on (BR\Bρ) ∩ P and the other on
(Bρ\Br) ∩ P . Therefore (1) has at least two positive solutions, which completes the
proof.
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