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Abstract

In this paper, we introduce and consider a new class of variational inequali-

ties, which is called the mixed quasi bifunction variational inequality. We use the

auxiliary principle technique in conjunction with the Bregman function to sug-

gest and analyze a three-step predictor-corrector method for solving mixed quasi

bifunction variational inequalities. We also study the convergence criteria of this

new method under some mild conditions. As special cases, we obtain various new

and known methods for solving variational inequalities and related optimization

problems.

1 Introduction

Variational inequalities are being used to study a wide class of diverse unrelated prob-
lems arising in various branches of pure and applied sciences in a unified framework.
Various generalizations and extensions of variational inequalities have been considered
in different directions using novel and innovative technique, see [1-31] and the refer-
ences therein. A useful and important generalization of the variational inequalities is
called the bifunction variational inequality. Crespi et al [2-5], Fang and Hu [6], Lalitha
and Mehra [11] and Noor [18] have studied some aspects of the bifunction variational
inequalities. Inspired and motivated by the research going on in this fascinating field,
we introduce and consider a new class of variational inequalities, which is called the
mixed quasi bifunction variational inequality. This variational inequality includes the
bifunction variational inequalities [2-6, 11, 18], variational inequalities and optimiza-
tion problems as special cases. We note that there are substantial number of numerical
methods including projection technique and its variant forms, Wiener-Hopf equations,
auxiliary principle and resolvent equations methods for solving variational inequalities.
However, it is known that projection, Wiener-Hopf equations and resolvent equations
techniques can not be extended and generalized to suggest and analyze similar iterative
methods for solving bifunction variational inequalities due to its very special structure.
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This fact motivated to use the auxiliary principle technique which is due to Glowinski,
Lions and Tremolieres [9]. In this paper, we again use the auxiliary principle technique
in conjunction with the Bregman function to suggest and analyze a three-step iterative
algorithms for solving mixed quasi bifunction variational inequalities. It is shown that
the convergence of this method requires partially relaxed strongly monotonicity, which
is a weaker condition than monotonicity. Our results can be considered as a novel and
important application of the auxiliary principle technique.

2 Prelimianries

Let H be a real Hilbert space, whose inner product and norm are denoted by 〈., .〉 and
‖.‖ respectively. Let K be a nonempty closed and convex set in H.

For given nonlinear operator T (., .) : K × K −→ H and continuous bifunction
ϕ(., .) : K × K −→ R ∪ {∞}, we consider the problem of finding u ∈ K such that

T (u, v − u) + ϕ(v, u) − ϕ(u, u) ≥ 0, ∀v ∈ K. (1)

Inequality of type (1) is called the mixed quasi variational inequality involving the

bifunction. One can easily show that the minimum of a sum of directional differentiable
convex function and a nondifferentiable convex function can be characterized by the
mixed quasi bifunction variational inequality of the type (1). It can be shown that a
wide class of problems, which arise in pure and applied sciences, can be studied in the
unified framework of the mixed quasi bifunction variational inequalities of the type (1),
see [2-6, 11, 20].

We note that, if T (u, v − u) = 〈Au, v − u〉,where A is a nonlinear operator, then
problem (1) is equivalent to finding u ∈ K such that

〈Au, v − u〉 + ϕ(v, u) − ϕ(u, u) ≥ 0, ∀v ∈ K, (2)

which is known as a mixed quasi variational inequality. It has been shown [1, 7-10,12-
24] that a wide class of problems arising in elasticity, fluid flow through porous media
and optimization can be studied in the general framework of problems (1) and (2).

In particular, if a function ϕ(., .) = 0, then problem (1) is equivalent to finding
u ∈ K such that

T (u, v − u) ≥ 0, ∀v ∈ K, (3)

which is called the bifunction variational inequality. For the formulation and other
aspects of the bifunction variational inequalities and related optimization problems,
see [2-6,11-30] and the references therein. For suitable and appropriate choice of the
operators T (., .), ϕ(., .) and spaces H, one can obtain several classes of variational
inequalities as special cases of problem (1). This shows that problem (1) is quite
general and unifying ones and has important applications in various fields of pure and
applied sciences.

DEFINITION 2.1. The operator T (., .) : K × K −→ H said to be partially relaxed

strongly monotone, iff, there exists a constant α > 0 such that

T (u, v − u) + T (z, u − v) ≤ α‖z − u‖2, ∀u, v, z ∈ K.
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Note that for z = v partially relaxed strongly monotonicity reduces to monotonicity of
the operator T (., ).

DEFINITION 2.2. The bifunction ϕ(., .) : H × H −→ R ∪ {+∞} is called skew-

symmetric, iff,

ϕ(u, u) − ϕ(u, v) − ϕ(v, u) + ϕ(v, v) ≥ 0, ∀u, v ∈ H.

Clearly if the skew-symmetric bifunction ϕ(., .) is bilinear, then

ϕ(u, u) − ϕ(u, v) − ϕ(v, u) + ϕ(v, v) = ϕ(u − v, u − v) ≥ 0, ∀u, v ∈ H.

3 Main Resulrs

In this section, we use the auxiliary principle technique of Glowinski et al [9], as devel-
oped by Noor [15-21] to suggest and analyze a three-step iterative algorithm for solving
mixed quasi bifunction variational inequalities (1).

For a given u ∈ K, consider the problem of finding z ∈ K such that

ρT (u, v − z) + 〈E′(z) − E′(u), v − z〉 ≥ ρϕ(z, z) − ρϕ(v, z), ∀v ∈ K, (4)

where E′(u) is the differential of a strongly convex function E(u) and ρ > 0 is a
constant. Problem (4) has a unique solution due to the strongly convexity of the
function E(u), see [7-9, 11].

REMARK 3.1. The function B(z, u) = E(z)−E(u)−〈E′(u), z−u〉 associated with
the convex function E(u) is called the generalized Bregman function. For the applica-
tions of the Bregman function for solving variational inequalities and complementarity
problems, see [19, 31].

We remark that if z = u, then z is a solution of the mixed quasi bifunction vari-
ational inequality (1). On the basis of this observation, we suggest and analyze the
following iterative algorithm for solving (1) as long as (4) is easier to solve than (1).

ALGORITHM 3.1. For a given u0 ∈ H, compute the approximate solution un+1

by the iterative schemes:

ρT (wn, v−un+1)+〈E′(un+1)−E′(wn), v−un+1〉 ≥ ρϕ(un+1 , un+1)−ρϕ(v, un+1), ∀v ∈ K

(5)
ν(Tyn, v −wn) + 〈E′(wn)− E′(yn), v −wn〉 ≥ νϕ(wn, wn)− νϕ(v, wn), ∀v ∈ K (6)

µT (un, v − yn) + 〈E′(yn) − E′(un), v − yn〉 ≥ µϕ(yn , yn) − µϕ(v, yn), ∀v ∈ K, (7)

where E′ is the differential of a strongly convex function E. Here ρ > 0, ν > 0 and
µ > 0 are constants.

Algorithm 3.1 is called the three-step predictor-corrector iterative method for solv-
ing the mixed quasi bifunction variational inequalities (1). If T (u, v−u) = 〈Au, v−u〉,
then Algorithm 3.1 reduces to:

ALGORITHM 3.2. For a given u0 ∈ H, compute the approximate solution un+1

by the iterative scheme

〈ρAwn + E′(un+1) − E′(wn), v − un+1〉 ≥ ρϕ(un+1, un+1) − ρϕ(v, un+1), ∀v ∈ K



Noor et al. 255

〈νAyn + E′(wn) − E′(yn), v − wn〉 ≥ νϕ(wn, wn) − νϕ(v, wn), ∀v ∈ K

〈µAun + E′(yn) − E′(un), v − yn ≥ µϕ(yn, yn) − µϕ(v, yn), ∀v ∈ K,

where E′ is the differential of a strongly convex function E.

Algorithm 3.2 is known as three-step iterative method for solving mixed quasi vari-
ational inequalities (2), see [15, 17, 19]. For appropriate and suitable choice of the
operators T (., ), ϕ(., .) and the space H, on can obtain several new and known three-
step, two-step and one-step iterative methods for solving various classes of variational
inequalities and related optimization problems.

We now study the convergence analysis of Algorithm 3.1, which is the main moti-
vation of our next result.

THEOREM 3.1. Let E be strongly differentiable convex function with modulus β.

Let the bifunction ϕ(., .) be skew-symmetric. If the operator T (., .) is partially relaxed
strongly monotone with constant α > 0, then the approximate solution obtained from
Algorithm 3.1 converges to a solution u ∈ K of (1) for ρ < β

α
, ν < β

α
and µ < β

α
.

PROOF. Let u ∈ K be a solution of (1). Then

ρ{T (u, v − u) + ϕ(v, u) − ϕ(u, u)} ≥ 0 ∀v ∈ K (8)

µ{T (u, v − u) + ϕ(v, u) − ϕ(u, u)} ≥ 0 ∀v ∈ K (9)

ν{T (u, v − u) + ϕ(v, u) − ϕ(u, u)} ≥ 0 ∀v ∈ K, (10)

where ρ > 0, µ > 0 and ν > 0 are constants.
Taking v = un+1 in (8) and v = u in (5), we have

ρ{T (u, un+1 − u) + ϕ(un+1, u) − ϕ(u, u)} ≥ 0 (11)

ρT (wn, u− un+1) + 〈E′(un+1) − E′(wn), u − un+1〉 ≥ ρ{ϕ(un+1, un+1) − ϕ(u, un+1)}.
(12)

Consider the Bregman function,

B(z) := B(u, z) = E(u) − E(z) − 〈E′(z), u − z〉 ≥ β‖u − z‖2, (13)

since the function E(u) is strongly convex with modulus β > 0.

From (11), (12) and (13), we have

B(u, wn) − B(u, un+1) = E(un+1) − E(wn) − 〈E′(wn), u− wn〉

+〈E′(un+1), u − un+1〉

= E(un+1) − E(wn) − 〈E′(wn) − E′(un+1), u− un+1〉

−〈E′(wn), un+1 − wn〉

≥ β‖un+1 − wn‖
2 + 〈E′(un+1) − E′(wn), u− un+1〉

≥ β‖un+1 − wn‖
2 − ρT (wn, u − un+1)

+ρ{ϕ(un+1, un+1) − ϕ(u, un+1)}

≥ β‖un+1 − wn‖
2 + ρ{ϕ(un+1, un+1) − ρϕ(u, un+1)

−ϕ(un+1, u) + ϕ(u, u)}
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−ρ{T (wn, u− un+1) + T (u, un+1 − u)}

≥ β‖un+1 − wn‖
2 − αρ‖un+1 − wn‖

2

= {β − ρα}‖un+1 − wn‖
2,

where we have used the fact that the bifunction ϕ(., .) is skew-symmetric and the
operator T is a partially relaxed strongly monotone with constant α > 0.

In a similar way, we have

B(u, yn) − B(u, wn) ≥ {β − να}‖wn − yn‖
2

B(u, un) − B(u, yn) ≥ {β − µα}‖yn − un‖
2.

If un+1 = wn = yn =n, then clearly un is a solution of the mixed quasi bifunction
variational inequality (1). Otherwise, for ρ < β

α,
ν < β

α
and µ < β

α
, the sequences

B(u, wn)−B(u, un+1), B(u, yn)−B(u, wn) and B(u, un)−B(u, yn) are nonnegative
and we must have

lim
n−→∞

‖un+1 − wn‖ = 0, lim
n−→∞

‖wn − yn‖ = 0 and lim
n−→∞

‖yn − un‖ = 0.

Thus

lim
n−→∞

‖un+1 − un‖ = lim
n−→∞

‖un+1 − wn‖ + lim
n−→∞

‖wn − yn‖ + lim
n−→∞

‖yn − un‖ = 0.

From which, it follows that the sequence {un} is bounded. Let ū ∈ K be a cluster
point of the sequence {un} and let the subsequence {uni

} of the sequence converge
to ū ∈ K, which is a solution of the mixed quasi bifunction variational inequality (1).
Now following the technique of Zhu and Marcotte [31], if we replace u by ū in (13), the
analysis remains the same for ū and its associated Bregman function B̄.The sequence
{ū} still strictly decreases and we have

B̄(um) ≤ β‖ū − un‖
2.

this shows that the sequence B̄(un) converges to zero. This result, together with the
inequality

B̄(un) ≥ β‖un − ū||2,

enables us to conclude the entire sequence {un} converges to the cluster point u satis-
fying the mixed quasi bifunction variational inequality (1).
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