Values Taken By Linear Combinations of Cosine Functions*

Vichian Laohakosol, Pinthira Tangsupphathawat
and
Supreedee Dangskul ${ }^{\dagger}$

Received 2 October 2010

Abstract

For $\theta, \beta \in[-\pi, \pi)$ and $\theta \notin\{-\pi, 0\}$, it is shown that as n runs through the nonnegative integers, the nonzero sequence $(\cos (n \theta+\beta))$ takes infinitely many positive and negative values; and if $\theta=s / t$ is a rational multiple of π, the sequence is purely periodic whose least period is equal to t when s is even and equal to $2 t$ when s is odd; while if θ is not a rational multiple of π, the range of values of the sequence is dense in the unit interval $(0,1)$. Any sequence of the form $\left(\sum_{r}^{d} \alpha_{r} \cos \left(2 n \pi s_{r} / t_{r}\right)+\beta_{r}\right)$, with rational s_{r} / t_{r} belonging to the unit interval $(0,1)$, is shown to be purely periodic whose least period is equal to the least common multiple of t_{1}, \ldots, t_{d}.

1 Introduction

Let $\theta, \beta \in[-\pi, \pi)$ and $\theta \notin\{-\pi, 0\}$. The distribution of the values of $\cos (n \theta+\beta)$ as n varies over the nonnegative integers $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$ has been of much interest recently. To mention one instance, in the course of establishing the positivity of elements in a binary sequence, it is shown by Halava, Harju and Hirvensalo ([2, Lemma 5], see also [3]) using elementary means that the inequality $\cos (n \theta+\beta) \geq 0$ cannot hold for all $n \in \mathbb{N}_{0}$. We endeavor here to carry out two particular tasks. In the next section, we improve upon the above-mentioned result of Halava-Harju-Hirvensalo by showing that both positive and negative values occur infinitely often. When θ is not a rational multiple of π, through the use of a theorem of Kronecker in Diophantine approximation, we show even more that the value set of such cosine function is dense in the closed interval $[-1,1]$.

Our second task arises from a result of Bell and Gerhold, [1, Lemma 8], dealing with a linear combination of cosine functions which states that: If $\theta_{1}, \ldots, \theta_{d}$ are rational

[^0]numbers in the open interval $(0,1)$, and if α_{i}, β_{i} are real numbers such that the purely periodic sequence
$$
u_{n}=\sum_{i=1}^{d} \alpha_{i} \cos \left(2 \pi \theta_{i} n+\beta_{i}\right)
$$
is not identically zero, then the sequence $\left(u_{n}\right)$ takes both positive and negative values.
Our next objective is to obtain more information about the periodicity of the sequence $\left(u_{n}\right)$. We show that the least period of the sequence $\left(u_{n}\right)$ is exactly equal to T, the least common multiple of the denominators t_{1}, \ldots, t_{d}.

2 Positive and Negative Values

We begin with a result on negative values. For an angle γ, it is convenient to use the phrase $\gamma \bmod (-\pi, \pi]$, when we mean an angle $\gamma_{0} \in(-\pi, \pi]$ for which $\gamma \equiv \gamma_{0} \bmod 2 \pi$. Clearly, the method employed here can also be adapted to examine the values taken by other trigonometric functions.

PROPOSITION 2.1. Let $\theta, \beta \in[-\pi, \pi)$ and $\theta \notin\{-\pi, 0\}$. There are infinitely many $n \in \mathbb{N}_{0}$ such that $\cos (n \theta+\beta)<0$.

PROOF. Assume that there are only finitely many $n \in \mathbb{N}_{0}$, say n_{1}, \ldots, n_{L}, such that

$$
\cos (n \theta+\beta)<0 \quad\left(n=n_{1}, \ldots, n_{L}\right)
$$

Thus,

$$
\cos \left(\left(\left(n_{L}+1\right) \theta+\beta\right)+k \theta\right)=\cos \left(\left(n_{L}+1+k\right) \theta+\beta\right) \geq 0
$$

for all $k \in \mathbb{N}_{0}$, which contradicts the result in Lemma 5 of [2] when φ is replaced by $\left(n_{L}+1\right) \theta+\beta \bmod (-\pi, \pi]$.

PROPOSITION 2.2. Let $\theta, \beta \in[-\pi, \pi)$ and $\theta \notin\{-\pi, 0\}$.
(i) The relation $\cos (n \theta+\beta) \leq 0$ cannot hold for all $n \in \mathbb{N}_{0}$.
(ii) There are infinitely many $n \in \mathbb{N}_{0}$ such that $\cos (n \theta+\beta)>0$.

PROOF. (i) Assume that $\cos (n \theta+\beta) \leq 0$ for all $n \in \mathbb{N}_{0}$, which implies that for each $n \in \mathbb{N}_{0}$,

$$
n \theta+\beta \in\left[\frac{-3 \pi}{2}+k 2 \pi, \frac{-\pi}{2}+k 2 \pi\right],
$$

for some $k \in \mathbb{Z}$. Then $\beta \in[-\pi,-\pi / 2]$ or $\beta \in[\pi / 2, \pi)$.
If $\beta \in[-\pi,-\pi / 2]$, since $|\theta|<\pi$, we have

$$
\theta+\beta \in\left[\frac{-3 \pi}{2}, \frac{-\pi}{2}\right]
$$

Inductively, we obtain $n \theta+\beta \in[-3 \pi / 2,-\pi / 2]$ for all $n \in \mathbb{N}_{0}$. Since $\theta \neq 0$, this implies $|n \theta+\beta| \rightarrow \infty \quad(n \rightarrow \infty)$, which is a contradiction.

If $\beta \in[\pi / 2, \pi)$, since $|\theta|<\pi$, we have

$$
\theta+\beta \in\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]
$$

Inductively, we obtain $n \theta+\beta \in[\pi / 2,3 \pi / 2]$ for all $n \in \mathbb{N}_{0}$. Since $\theta \neq 0$, this implies $|n \theta+\beta| \rightarrow \infty \quad(n \rightarrow \infty)$, which is again a contradiction.
(ii) Assume that there are only finitely many $n \in \mathbb{N}_{0}$, say n_{1}, \ldots, n_{L}, such that

$$
\cos (n \theta+\beta)>0 \quad\left(n=n_{1}, \ldots, n_{L}\right)
$$

Thus,

$$
\cos \left(\left(\left(n_{L}+1\right) \theta+\beta\right)+k \theta\right)=\cos \left(\left(n_{L}+1+k\right) \theta+\beta\right) \leq 0
$$

for all $k \in \mathbb{N}_{0}$, which contradicts the preceding lemma when β is replaced by $\left(n_{L}+1\right) \theta+\beta$ $\bmod (-\pi, \pi]$.

Next, we derive more information by invoking upon a result in Diophantine approximation known as the Dirichlet approximation theorem.

THEOREM 2.3. Let $\theta, \beta \in[-\pi, \pi)$ with $\theta \notin\{-\pi, 0\}$.
(a) If $\theta=s \pi / t(s \in \mathbb{Z}, t \in \mathbb{N}, \operatorname{gcd}(s, t)=1)$ is a rational multiple of π, then the sequence $(\cos (n \theta+\beta))_{n \in \mathbb{N}_{0}}$ is purely periodic. Moreover, if s is even, then the least period of the sequence $(\cos (n \theta+\beta))_{n \in \mathbb{N}_{0}}$ is t, while if s is odd, then its least period is $2 t$.
(b) If θ is not a rational multiple of π, then as n varies over \mathbb{N}_{0} the range of values of $\cos (n \theta+\beta)$ is dense in $[-1,1]$.

PROOF. (a) Since the cosine function is periodic of period 2π, the sequence

$$
\cos (n \theta+\beta)=\cos \left(\frac{n s \pi}{t}+\beta\right) \quad\left(n \in \mathbb{N}_{0}\right)
$$

is purely periodic with at most $2 t$ values in a period, corresponding to $n=0,1,2, \ldots, 2 t-$ 1, namely,

$$
\cos \beta, \cos \left(\frac{s \pi}{t}+\beta\right), \cos \left(\frac{2 s \pi}{t}+\beta\right), \ldots, \cos \left(\frac{s(2 t-1) \pi}{t}+\beta\right)
$$

If $t=1$, then either $\theta=2 k \pi$ or $\theta=(2 k+1) \pi$ for some $k \in \mathbb{Z}$. In either case, $\theta \notin[-\pi, \pi) \backslash\{-\pi, 0\}$, and so there is nothing to consider.

Let now $t \geq 2$. If s is even, say $s=2 k$, then t must be odd and the sequence

$$
\cos (n \theta+\beta)=\cos \left(\frac{2 n k \pi}{t}+\beta\right) \quad\left(n \in \mathbb{N}_{0}\right)
$$

is periodic of period t with values in each period being

$$
\cos \beta, \cos \left(\frac{2 k \pi}{t}+\beta\right), \cos \left(\frac{4 k \pi}{t}+\beta\right), \ldots, \cos \left(\frac{2 k(t-1) \pi}{t}+\beta\right) .
$$

If t is not the least period, let its least period be ℓ. Thus $\ell \mid t, \ell<t$ and

$$
\cos \beta=\cos \left(\frac{2 k \ell \pi}{t}+\beta\right), \cos \left(\frac{2 k \pi}{t}+\beta\right)=\cos \left(\frac{2 k(\ell+1) \pi}{t}+\beta\right), \ldots
$$

The first equality yields two possibilities

$$
\frac{2 k \ell \pi}{t}+\beta=2 N \pi \pm \beta \text { for some } N \in \mathbb{Z}
$$

The possibility $2 k \ell \pi / t+\beta=2 N \pi+\beta$ yields $N \pi=k \ell \pi / t$, which is impossible because $t \nmid k \ell, t \geq 3$ and so only the other possibility can hold which yields $\beta=N \pi-k \ell \pi / t$. Similarly, the second inequality yields $\beta=M \pi-2 k \pi / t-k \ell \pi / t$ for some $M \in \mathbb{Z}$. Equating the two values of β gives $(N-M) \pi=-2 k \pi / t$ which is not tenable because $t \nmid(2 k), t \geq 3$. Consequently, t is the least period.

If $s=2 k+1$ is odd, then the sequence

$$
\cos (n \theta+\beta)=\cos \left(\frac{n(2 k+1) \pi}{t}+\beta\right) \quad\left(n \in \mathbb{N}_{0}\right)
$$

is periodic of period $2 t$ with values in each period being
$\cos \beta, \cos \left(\frac{(2 k+1) \pi}{t}+\beta\right), \cos \left(\frac{2(2 k+1) \pi}{t}+\beta\right), \ldots, \cos \left(\frac{(2 t-1)(2 k+1) \pi}{t}+\beta\right)$.
There remains to show that $2 t$ is the least period in this case. If $2 t$ is not the least period, let its least period be m. Thus $m \mid 2 t, m<2 t$ and
$\cos \beta=\cos \left(\frac{(2 k+1) m \pi}{t}+\beta\right), \cos \left(\frac{(2 k+1) \pi}{t}+\beta\right)=\cos \left(\frac{(2 k+1)(m+1) \pi}{t}+\beta\right)$,
etc. The first equality yields two possibilities

$$
\frac{(2 k+1) m \pi}{t}+\beta=2 N \pi \pm \beta \text { for some } N \in \mathbb{Z}
$$

The possibility $(2 k+1) m \pi / t+\beta=2 N \pi+\beta$ yields $N \pi=(2 k+1) m \pi / 2 t$, which is impossible because $2 t \nmid(2 k+1) m, t \geq 2$ and so only the other possibility can hold which yields $2 \beta=2 N \pi-(2 k+1) m \pi / t$. Similarly, the second inequality yields $2 \beta=2 M \pi-2(2 k+1) \pi / t-(2 k+1) m \pi / t$ for some $M \in \mathbb{Z}$. Equating the two values of β gives $(N-M) \pi=-(2 k+1) \pi / t$ which is not tenable because $t \nmid(2 k+1), t \geq 2$. Consequently, $2 t$ is the least period.
(b) Assume that θ is not a rational multiple of π, say $\theta=\vartheta \cdot 2 \pi$, where $\vartheta \in \mathbb{R} \backslash \mathbb{Q}$. Writing

$$
\vartheta=[\vartheta]+\xi
$$

where $[\vartheta]$ denotes its integer part, and $\xi:=\{\vartheta\} \in(0,1)$ denotes its fractional part which must be irrational, for $n \in \mathbb{N}_{0}$ we have

$$
\cos (n \theta+\beta)=\cos (n \vartheta 2 \pi+\beta)=\cos (2 n \xi \pi+\beta)=\cos (\{n \xi\} 2 \pi+\beta)
$$

Since ξ is irrational, by the Kronecker's approximation theorem, see e.g. Corollary 6.4 on page 75 of [4], we know the set $\{\{n \xi\} ; k \in \mathbb{N}\}$ is dense in $[0,1]$. Consequently, the set $\{\{n \xi\} 2 \pi ; n \in \mathbb{N}\}$ is dense in $[0,2 \pi]$, implying that the range of values of
$\cos (\{n \xi\} 2 \pi+\beta) \quad(n \in \mathbb{N})$ is dense in $[-1,1]$.
When θ is a rational multiple of π, the values in a period can be distinct or otherwise as seen in the next example.

EXAMPLE 1. Take $\theta=s \pi / t=2 \pi / 3, \beta=0$. The sequence

$$
\left(u_{n}\right)_{n \in \mathbb{N}_{0}}=\left(\cos \left(\frac{2 n \pi}{3}\right)\right)_{n \in \mathbb{N}_{0}}
$$

is periodic of length 3 with each period being

$$
\cos (0)=1, \quad \cos (2 \pi / 3)=-1 / 2, \quad \cos (4 \pi / 3)=-1 / 2
$$

showing that there are exactly $2<3=t$ distinct sequence values.
EXAMPLE 2. Take $\theta=s \pi / t=2 \pi / 3, \beta=\pi / 2$. The sequence

$$
\left(u_{n}\right)_{n \in \mathbb{N}_{0}}=\left(\cos \left(\frac{\pi}{2}+\frac{2 n \pi}{3}\right)\right)_{n \in \mathbb{N}_{0}}
$$

is periodic of length 3 with each period being

$$
\cos \left(\frac{\pi}{2}\right)=0, \cos \left(\frac{\pi}{2}+\frac{2 \pi}{3}\right)=-\frac{\sqrt{3}}{2}, \cos \left(\frac{\pi}{2}+\frac{4 \pi}{3}\right)=\frac{\sqrt{3}}{2}
$$

showing that there are exactly $3=t$ distinct sequence values.

3 Linear Combination of Cosine Functions

In this section, we consider a linear combination of cosine functions. Such expression is always periodic as we now see.

THEOREM 3.1. Let $\theta_{1}=s_{1} / t_{1}, \ldots, \theta_{d}=s_{d} / t_{d}\left(s_{r}, t_{r} \in \mathbb{N}, \operatorname{gcd}\left(s_{r}, t_{r}\right)=1\right)$ be rational numbers in the open interval $(0,1)$, and let α_{r}, β_{r} be real numbers such that the purely periodic sequence

$$
u_{n}=\sum_{r=1}^{d} \alpha_{r} \cos \left(2 \pi \theta_{r} n+\beta_{r}\right)
$$

is not identically zero. Let $T:=$ l.c.m. $\left(t_{1}, \ldots, t_{d}\right)$. Then the least period of the sequence $\left(u_{n}\right)$ is a divisor of T.

PROOF. As seen in the proof of Theorem 2.3, the sequence

$$
u_{n}=\sum_{r=1}^{d} \alpha_{r} \cos \left(2 n \pi \frac{s_{r}}{t_{r}}+\beta_{r}\right) \quad\left(n \in \mathbb{N}_{0}\right)
$$

is purely periodic with a period T and the values in such a period correspond to $n \in\{0,1,2, \ldots, T-1\}$, namely,

$$
\begin{aligned}
& \sum_{r=1}^{d} \alpha_{r} \cos \beta_{r}, \sum_{r=1}^{d} \alpha_{r} \cos \left(2 \pi \frac{s_{r}}{t_{r}}+\beta_{r}\right), \sum_{r=1}^{d} \alpha_{r} \cos \left(4 \pi \frac{s_{r}}{t_{r}}+\beta_{r}\right), \ldots, \\
& \sum_{r=1}^{d} \alpha_{r} \cos \left(2(T-1) \pi \frac{s_{r}}{t_{r}}+\beta_{r}\right) .
\end{aligned}
$$

From Theorem 3.1, there then arises a natural question of determining when T is the least period. A rather surprising fact that T is always the least period of such sequence is now proved. To proceed further, let us note the following useful fact. Since

$$
\sum_{n=0}^{T-1} \exp \left(2 i \pi n s_{r} / t_{r}\right)=0
$$

it follows that $\sum_{n=0}^{T-1} u_{n}=0$.
THEOREM 3.2. For $r \in\{1,2, \ldots, d\}$, let $s_{r} / t_{r}\left(s_{r}, t_{r} \in \mathbb{N}, \operatorname{gcd}\left(s_{r}, t_{r}\right)=1\right)$ be rational numbers in the unit interval $(0,1)$, and let $\alpha_{r}(\neq 0), \beta_{r}$ be real numbers. If the purely periodic, non-identically zero sequence $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ is defined by

$$
u_{n}=\sum_{r=1}^{d} \alpha_{r} \cos \left(\frac{2 \pi n s_{r}}{t_{r}}+\beta_{r}\right)
$$

then its least period is equal to $T:=$ l.c.m. $\left(t_{1}, t_{2}, \ldots, t_{d}\right)$.
PROOF. Let ℓ be the least period of $\left(u_{n}\right)$. Since $\ell \mid T$, let $T=\ell L$ for some $L \in \mathbb{N}$. We proceed to prove the theorem by induction on d.

The case $d=1$ is contained in Part (a) of Theorem 2.3. Assume now that $d \geq 2$ and that the theorem holds up to $d-1$.

If $t_{r} \mid \ell$ for every $r \in\{1,2, \ldots, d\}$, then $\ell=T$ and we are done. Suppose then that not all of the t_{r} 's divide ℓ. If there are some t_{r} 's that divide ℓ and some t_{r} 's that do not divide ℓ. Without loss of generality, assume that ℓ is divisible by $t_{1}, t_{2}, \ldots, t_{m}$, but not divisible by $t_{m+1}, t_{m+2}, \ldots, t_{d}$ for some $m \in\{1,2, \ldots, d-1\}$. For $k, j \in \mathbb{N}_{0}$, we have

$$
\begin{aligned}
L u_{j} & =\sum_{k=0}^{L-1} u_{k \ell+j}=\sum_{k=0}^{L-1} \sum_{r=1}^{d} \alpha_{r} \cos \left(\frac{2 \pi s_{r}}{t_{r}}(k \ell+j)+\beta_{r}\right) \\
& =\sum_{r=1}^{m} \alpha_{r} \sum_{k=0}^{L-1} \cos \left(\frac{2 \pi s_{r}}{t_{r}} j+\beta_{r}\right)+\sum_{r=m+1}^{d} \alpha_{r} \operatorname{Re}\left(\sum_{k=0}^{L-1} \exp \left(\frac{2 i \pi s_{r}}{t_{r}}(k \ell+j)+i \beta_{r}\right)\right) \\
& =L \sum_{r=1}^{m} \alpha_{r} \cos \left(\frac{2 \pi s_{r}}{t_{r}} j+\beta_{r}\right) \\
& +\sum_{r=m+1}^{d} \alpha_{r} \operatorname{Re}\left(\exp \left(\frac{2 i \pi s_{r}}{t_{r}} j+i \beta_{r}\right) \frac{1-\exp \left(2 i \pi \ell L s_{r} / t_{r}\right)}{1-\exp \left(2 i \pi \ell s_{r} / t_{r}\right)}\right)
\end{aligned}
$$

$$
=L \sum_{r=1}^{m} \alpha_{r} \cos \left(\frac{2 \pi s_{r}}{t_{r}} j+\beta_{r}\right)
$$

Thus, $u_{j}=\sum_{r=1}^{m} \alpha_{r} \cos \left(\frac{2 \pi s_{r}}{t_{r}} j+\beta_{r}\right)$, which shows that u_{n} has $m \leq d-1$ terms, the induction hypothesis finishes this case.

If none of the t_{r} 's divides ℓ, the same arguments as in the last steps shows that $u_{n} \equiv 0$, which is untenable.

We remark that the above proof can clearly be applied, with appropriate adjustments, to certain other trigonometric functions and/or periodic functions.

Acknowledgment. The authors are supported by the Commission on Higher Education, the Thailand Research Fund RTA5180005, and the Centre of Excellence in Mathematics, CHE, Thailand.

References

[1] J. P. Bell and S. Gerhold, On the positivity set of a linear recurrence sequence, Israel J. Math. 157(2007), 333-345.
[2] V. Halava, T. Harju and M. Hirvensalo, Positivity of second order linear recurrent sequences, Discrete Applied Math., 154(2006), 447-451.
[3] V. Laohakosol and P. Tangsupphathawat, Positivity of third order linear recurrence sequences, Discrete Applied Mathematics, 157(2009), 3239-3248.
[4] I. Niven, Irrational Numbers, The Carus Mathematical Monographs Number 11, The Mathematical Association of America, 1967.

[^0]: *Mathematics Subject Classifications: 33B10, 30D35, 11B83.
 \dagger Department of Mathematics, Kasetsart University, Bangkok 10900, and Centre of Excellence in Mathematics, CHE, Si Ayutthaya Road, Bangkok 10400, Thailand

