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Abstract

For θ, β ∈ [−π, π) and θ /∈ {−π, 0} , it is shown that as n runs through the
nonnegative integers, the nonzero sequence (cos(nθ + β)) takes infinitely many
positive and negative values; and if θ = s/t is a rational multiple of π, the
sequence is purely periodic whose least period is equal to t when s is even and
equal to 2t when s is odd; while if θ is not a rational multiple of π, the range
of values of the sequence is dense in the unit interval (0, 1). Any sequence of

the form
“

P

d

r
αr cos (2nπsr/tr) + βr

”

, with rational sr/tr belonging to the unit

interval (0, 1), is shown to be purely periodic whose least period is equal to the
least common multiple of t1, . . . , td.

1 Introduction

Let θ, β ∈ [−π, π) and θ /∈ {−π, 0} . The distribution of the values of cos(nθ + β) as n
varies over the nonnegative integers N0 := N ∪ {0} has been of much interest recently.
To mention one instance, in the course of establishing the positivity of elements in a
binary sequence, it is shown by Halava, Harju and Hirvensalo ([2, Lemma 5], see also
[3]) using elementary means that the inequality cos(nθ + β) ≥ 0 cannot hold for all
n ∈ N0. We endeavor here to carry out two particular tasks. In the next section,
we improve upon the above-mentioned result of Halava-Harju-Hirvensalo by showing
that both positive and negative values occur infinitely often. When θ is not a rational
multiple of π, through the use of a theorem of Kronecker in Diophantine approximation,
we show even more that the value set of such cosine function is dense in the closed
interval [−1, 1].

Our second task arises from a result of Bell and Gerhold, [1, Lemma 8], dealing
with a linear combination of cosine functions which states that: If θ1 , . . . , θd are rational

∗Mathematics Subject Classifications: 33B10, 30D35, 11B83.
†Department of Mathematics, Kasetsart University, Bangkok 10900, and Centre of Excellence in

Mathematics, CHE, Si Ayutthaya Road, Bangkok 10400, Thailand

184



Laohakosol et al. 185

numbers in the open interval (0, 1), and if αi, βi are real numbers such that the purely
periodic sequence

un =

d
∑

i=1

αi cos(2πθin + βi)

is not identically zero, then the sequence (un) takes both positive and negative values.
Our next objective is to obtain more information about the periodicity of the se-

quence (un). We show that the least period of the sequence (un) is exactly equal to T ,
the least common multiple of the denominators t1, . . . , td.

2 Positive and Negative Values

We begin with a result on negative values. For an angle γ, it is convenient to use the
phrase γ mod (−π, π], when we mean an angle γ0 ∈ (−π, π] for which γ ≡ γ0 mod 2π.
Clearly, the method employed here can also be adapted to examine the values taken
by other trigonometric functions.

PROPOSITION 2.1. Let θ, β ∈ [−π, π) and θ /∈ {−π, 0} . There are infinitely many
n ∈ N0 such that cos(nθ + β) < 0.

PROOF. Assume that there are only finitely many n ∈ N0, say n1, . . . , nL, such
that

cos(nθ + β) < 0 (n = n1, . . . , nL).

Thus,
cos (((nL + 1)θ + β) + kθ) = cos ((nL + 1 + k)θ + β) ≥ 0

for all k ∈ N0, which contradicts the result in Lemma 5 of [2] when ϕ is replaced by
(nL + 1)θ + β mod (−π, π].

PROPOSITION 2.2. Let θ, β ∈ [−π, π) and θ /∈ {−π, 0} .
(i) The relation cos(nθ + β) ≤ 0 cannot hold for all n ∈ N0.
(ii) There are infinitely many n ∈ N0 such that cos(nθ + β) > 0.

PROOF. (i) Assume that cos(nθ + β) ≤ 0 for all n ∈ N0, which implies that for
each n ∈ N0,

nθ + β ∈
[−3π

2
+ k2π,

−π

2
+ k2π

]

,

for some k ∈ Z. Then β ∈ [−π,−π/2] or β ∈ [π/2, π).
If β ∈ [−π,−π/2], since |θ| < π, we have

θ + β ∈
[−3π

2
,
−π

2

]

.

Inductively, we obtain nθ +β ∈ [−3π/2,−π/2] for all n ∈ N0. Since θ 6= 0, this implies
|nθ + β| → ∞ (n → ∞), which is a contradiction.

If β ∈ [π/2, π), since |θ| < π, we have

θ + β ∈
[

π

2
,
3π

2

]

.
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Inductively, we obtain nθ + β ∈ [π/2, 3π/2] for all n ∈ N0. Since θ 6= 0, this implies
|nθ + β| → ∞ (n → ∞), which is again a contradiction.

(ii) Assume that there are only finitely many n ∈ N0, say n1, . . . , nL, such that

cos(nθ + β) > 0 (n = n1, . . . , nL).

Thus,
cos (((nL + 1)θ + β) + kθ) = cos ((nL + 1 + k)θ + β) ≤ 0

for all k ∈ N0, which contradicts the preceding lemma when β is replaced by (nL+1)θ+β
mod (−π, π].

Next, we derive more information by invoking upon a result in Diophantine approx-
imation known as the Dirichlet approximation theorem.

THEOREM 2.3. Let θ, β ∈ [−π, π) with θ /∈ {−π, 0}.

(a) If θ = sπ/t (s ∈ Z, t ∈ N, gcd(s, t) = 1) is a rational multiple of π, then the
sequence (cos(nθ + β))n∈N0

is purely periodic. Moreover, if s is even, then the
least period of the sequence (cos(nθ + β))n∈N0

is t, while if s is odd, then its least
period is 2t.

(b) If θ is not a rational multiple of π, then as n varies over N0 the range of values
of cos(nθ + β) is dense in [−1, 1].

PROOF. (a) Since the cosine function is periodic of period 2π, the sequence

cos(nθ + β) = cos
(nsπ

t
+ β

)

(n ∈ N0)

is purely periodic with at most 2t values in a period, corresponding to n = 0, 1, 2, . . . , 2t−
1, namely,

cosβ, cos
(sπ

t
+ β

)

, cos

(

2sπ

t
+ β

)

, . . . , cos

(

s(2t − 1)π

t
+ β

)

.

If t = 1, then either θ = 2kπ or θ = (2k + 1)π for some k ∈ Z. In either case,
θ 6∈ [−π, π) \ {−π, 0}, and so there is nothing to consider.

Let now t ≥ 2. If s is even, say s = 2k, then t must be odd and the sequence

cos(nθ + β) = cos

(

2nkπ

t
+ β

)

(n ∈ N0)

is periodic of period t with values in each period being

cos β, cos

(

2kπ

t
+ β

)

, cos

(

4kπ

t
+ β

)

, . . . , cos

(

2k(t − 1)π

t
+ β

)

.

If t is not the least period, let its least period be `. Thus ` | t, ` < t and

cos β = cos

(

2k`π

t
+ β

)

, cos

(

2kπ

t
+ β

)

= cos

(

2k(` + 1)π

t
+ β

)

, . . .
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The first equality yields two possibilities

2k`π

t
+ β = 2Nπ ± β for some N ∈ Z.

The possibility 2k`π/t + β = 2Nπ + β yields Nπ = k`π/t, which is impossible because
t - k`, t ≥ 3 and so only the other possibility can hold which yields β = Nπ − k`π/t.
Similarly, the second inequality yields β = Mπ − 2kπ/t − k`π/t for some M ∈ Z.
Equating the two values of β gives (N − M)π = −2kπ/t which is not tenable because
t - (2k), t ≥ 3. Consequently, t is the least period.

If s = 2k + 1 is odd, then the sequence

cos(nθ + β) = cos

(

n(2k + 1)π

t
+ β

)

(n ∈ N0)

is periodic of period 2t with values in each period being

cosβ, cos

(

(2k + 1)π

t
+ β

)

, cos

(

2(2k + 1)π

t
+ β

)

, . . . , cos

(

(2t − 1)(2k + 1)π

t
+ β

)

.

There remains to show that 2t is the least period in this case. If 2t is not the least
period, let its least period be m. Thus m | 2t, m < 2t and

cosβ = cos

(

(2k + 1)mπ

t
+ β

)

, cos

(

(2k + 1)π

t
+ β

)

= cos

(

(2k + 1)(m + 1)π

t
+ β

)

,

etc. The first equality yields two possibilities

(2k + 1)mπ

t
+ β = 2Nπ ± β for some N ∈ Z.

The possibility (2k + 1)mπ/t + β = 2Nπ + β yields Nπ = (2k + 1)mπ/2t, which
is impossible because 2t - (2k + 1)m, t ≥ 2 and so only the other possibility can
hold which yields 2β = 2Nπ − (2k + 1)mπ/t. Similarly, the second inequality yields
2β = 2Mπ − 2(2k + 1)π/t − (2k + 1)mπ/t for some M ∈ Z. Equating the two values
of β gives (N − M)π = −(2k + 1)π/t which is not tenable because t - (2k + 1), t ≥ 2.
Consequently, 2t is the least period.

(b) Assume that θ is not a rational multiple of π, say θ = ϑ · 2π, where ϑ ∈ R \ Q.
Writing

ϑ = [ϑ] + ξ,

where [ϑ] denotes its integer part, and ξ := {ϑ} ∈ (0, 1) denotes its fractional part
which must be irrational, for n ∈ N0 we have

cos(nθ + β) = cos(nϑ2π + β) = cos(2nξπ + β) = cos ({nξ} 2π + β) .

Since ξ is irrational, by the Kronecker’s approximation theorem, see e.g. Corollary 6.4
on page 75 of [4], we know the set {{nξ} ; k ∈ N} is dense in [0,1]. Consequently,
the set {{nξ}2π ; n ∈ N} is dense in [0, 2π], implying that the range of values of
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cos ({nξ} 2π + β) (n ∈ N) is dense in [−1, 1].

When θ is a rational multiple of π, the values in a period can be distinct or otherwise
as seen in the next example.

EXAMPLE 1. Take θ = sπ/t = 2π/3, β = 0. The sequence

(un)n∈N0
=

(

cos

(

2nπ

3

))

n∈N0

is periodic of length 3 with each period being

cos(0) = 1, cos (2π/3) = −1/2, cos (4π/3) = −1/2,

showing that there are exactly 2 < 3 = t distinct sequence values.

EXAMPLE 2. Take θ = sπ/t = 2π/3, β = π/2. The sequence

(un)n∈N0
=

(

cos

(

π

2
+

2nπ

3

))

n∈N0

is periodic of length 3 with each period being

cos
(π

2

)

= 0, cos

(

π

2
+

2π

3

)

= −
√

3

2
, cos

(

π

2
+

4π

3

)

=

√
3

2
,

showing that there are exactly 3 = t distinct sequence values.

3 Linear Combination of Cosine Functions

In this section, we consider a linear combination of cosine functions. Such expression
is always periodic as we now see.

THEOREM 3.1. Let θ1 = s1/t1, . . . , θd = sd/td (sr , tr ∈ N, gcd(sr , tr) = 1) be
rational numbers in the open interval (0, 1), and let αr, βr be real numbers such that
the purely periodic sequence

un =

d
∑

r=1

αr cos(2πθrn + βr)

is not identically zero. Let T := l.c.m.(t1, . . . , td). Then the least period of the sequence
(un) is a divisor of T .

PROOF. As seen in the proof of Theorem 2.3, the sequence

un =

d
∑

r=1

αr cos

(

2nπ
sr

tr
+ βr

)

(n ∈ N0)
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is purely periodic with a period T and the values in such a period correspond to
n ∈ {0, 1, 2, . . . , T − 1}, namely,

d
∑

r=1

αr cos βr,

d
∑

r=1

αr cos

(

2π
sr

tr
+ βr

)

,

d
∑

r=1

αr cos

(

4π
sr

tr
+ βr

)

, . . . ,

d
∑

r=1

αr cos

(

2(T − 1)π
sr

tr
+ βr

)

.

From Theorem 3.1, there then arises a natural question of determining when T is
the least period. A rather surprising fact that T is always the least period of such
sequence is now proved. To proceed further, let us note the following useful fact. Since

T−1
∑

n=0

exp (2iπnsr/tr) = 0,

it follows that
∑T−1

n=0
un = 0.

THEOREM 3.2. For r ∈ {1, 2, . . . , d}, let sr/tr (sr , tr ∈ N, gcd(sr , tr) = 1) be
rational numbers in the unit interval (0, 1), and let αr(6= 0), βr be real numbers. If the
purely periodic, non-identically zero sequence (un)n∈N0

is defined by

un =
d
∑

r=1

αr cos

(

2πnsr

tr
+ βr

)

,

then its least period is equal to T := l.c.m.(t1, t2, . . . , td).

PROOF. Let ` be the least period of (un). Since ` | T , let T = `L for some L ∈ N.
We proceed to prove the theorem by induction on d.

The case d = 1 is contained in Part (a) of Theorem 2.3. Assume now that d ≥ 2
and that the theorem holds up to d − 1.

If tr | ` for every r ∈ {1, 2, . . . , d}, then ` = T and we are done. Suppose then that
not all of the tr’s divide `. If there are some tr ’s that divide ` and some tr ’s that do
not divide `. Without loss of generality, assume that ` is divisible by t1, t2, . . . , tm, but
not divisible by tm+1 , tm+2, . . . , td for some m ∈ {1, 2, . . . , d − 1}. For k, j ∈ N0, we
have

Luj =

L−1
∑

k=0

uk`+j =

L−1
∑

k=0

d
∑

r=1

αr cos

(

2πsr

tr
(k` + j) + βr

)

=

m
∑

r=1

αr

L−1
∑

k=0

cos

(

2πsr

tr
j + βr

)

+

d
∑

r=m+1

αrRe

(

L−1
∑

k=0

exp

(

2iπsr

tr
(k` + j) + iβr

)

)

= L

m
∑

r=1

αr cos

(

2πsr

tr
j + βr

)

+

d
∑

r=m+1

αrRe

(

exp

(

2iπsr

tr
j + iβr

)

1 − exp (2iπ`Lsr/tr)

1 − exp (2iπ`sr/tr)

)
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= L

m
∑

r=1

αr cos

(

2πsr

tr
j + βr

)

.

Thus, uj =
∑m

r=1
αr cos

(

2πsr

tr

j + βr

)

, which shows that un has m ≤ d − 1 terms, the

induction hypothesis finishes this case.
If none of the tr’s divides `, the same arguments as in the last steps shows that

un ≡ 0, which is untenable.

We remark that the above proof can clearly be applied, with appropriate adjust-
ments, to certain other trigonometric functions and/or periodic functions.
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