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Abstract

In this paper, we study a uniqueness problem of entire functions that share
finite values with their derivatives. We deduce a theorem which generalizes some
previous results given by Rebel and Yang [13], Jank, Mues and Volkmann [7] and
Chang and Fang [3].

1 Introduction

Let f and g be two non-constant entire functions, and let a, b be two finite complex
numbers. If g(z) − b = 0 whenever f(z) − a = 0, then we denote this condition by
f(z) = a ⇒ g(z) = b. If f(z) = a ⇒ g(z) = a and g(z) = a ⇒ f(z) = a, we denote
it by f(z) = a ⇔ g(z) = a and say that f and g share a IM (ignoring multiplicity).
Provided that f − a and g − a have the same zeros with the same multiplicities, we
denote it by f(z) = a 
 g(z) = a and say that f and g share a CM (counting
multiplicity). If f(z) = a ⇒ g(z) = b and the multiplicity of the zero z of g − b is
greater than or equal to that of the zero z of f − a, then we denote this condition by
f(z)−a = 0 → g(z)−b = 0. In what follows, we assume that the reader is familiar with
the basic notation and results in the Nevanlinna value distribution theory, as found in
[6, 16].

The subject on sharing values between two meromorphic functions was studied for
almost 80 years. Meanwhile, a number of outstanding results have been obtained (see
[8, 9, 18]).

In 1977, Rubel and Yang [13] first studied the problem of sharing values between
entire functions and their derivatives. They proved that if a non-constant entire func-
tion f and its first derivative f ′ share two distinct finite numbers a, b CM, then f = f ′.
Since then, shared value problems, have been studied by many authors and a number
of profound results have been obtained (see [1, 11, 15]).

In 1986, Junk et al.[7] studied similar problems and proved the following results.

THEOREM A. Let f be a non-constant entire function, and let a be a non-zero
finite constant. If f , f ′ and f ′′ share the value a CM, then f = f ′.
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THEOREM B. Let f be a non-constant entire function, and let a be a non-zero
finite constant. If f = a ⇔ f ′ = a, f = a → f ′′ = a, then f = f ′.

In 2002, Chang and Fang [3] improved Theorem B and obtained the following result.

THEOREM C. Let f be a non-constant entire function, let a, c be two non-zero

constants. If f(z) = a ⇒ f ′(z) = a, f ′(z) = a ⇒ f ′′(z) = c, then f(z) = Ae
cz
a + ac−a2

c
or f(z) = Ae

cz
a + a, where A is a non-zero constant.

It is natural to ask what will happen if f ′′ is replaced by the k-th derivative f(k)? It
follows from the hypothesis of Theorem C that f ′ − a has simple zeros only. However,
if f ′′ is replaced by the k-th derivative f(k) (k ≥ 3) in Theorem C, we cannot deduce
the property that f ′−a only has simple zeros. Thus it does not seem that we can solve
this problem by similar methods. In this work, we use the theory of normal family
to deal with the problem and derive the following result, which is an improvement of
Theorem C.

THEOREM 1. Let f be a non-constant entire function, let a, c be two non-zero
constants. If f(z) = a ⇒ f ′(z) = a, f ′(z) = a ⇒ f ′′′(z) = c, then f(z) = Aeλz + a− a

λ
or f(z) = Aeλz + a, where A is a non-zero constant and λ2 = c

a .

REMARK 1. Recently, Chang and Fang [4] used a different way to solve the
problem. They replaced the assumption f ′(z) = a ⇒ f ′′′(z) = c by f ′(z) = a ⇒ f(k) =
a and deduced the similar conclusion. But, their method are complicated. In contrast,
our method is simple and easier to understand. This is the point of this work.

REMARK 2. If the hypothesis “f ′(z) = a ⇒ f ′′′(z) = c” is replaced by “f(z) =
a ⇒ f ′′′(z) = c”, the conclusion is not generally true, we give the following negative
example.

EXAMPLE. Let f(z) = 1+6e3z +2e3z/2. Then f ′(z) = 18e3z +3e3z/2 and f ′′′(z) =
162e3z + (27/4)e3z/2. One can easily check that f(z) = 1 ⇒ f ′(z) = 1 and f(z) = 1 ⇒
f ′′′(z) = 63/4. But f does not satisfy the conclusion of Theorem 1.

2 Some Lemmas

We state several preparatory Lemmas.

LEMMA 1. [2] Let f be an entire function, and let M be a positive number. If
f](z) ≤ M for any z ∈ C, then f is of exponential type.

LEMMA 2. [14] Let F be a family of meromorphic functions in domain D, then F
is normal in D if and only if the spherical derivatives of functions f ∈ F are uniformly
bounded on compact subsets of D.

LEMMA 3. [17] Let f be a non-constant entire function of finite order, and let a
be a non-zero constant. If f and f ′ share a CM, then

f ′ − a

f − a
= c,

for some non-zero constant c.
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LEMMA 4. Let f be a transcendental entire function with ρ(f) ≤ 1, and let a, c
be two non-zero constants. If f(z) = 0 ⇒ f ′(z) = a, f ′(z) = a ⇒ f ′′′(z) = c and

N
(

r, f
f ′−a

)

= S(r, f), then f(z) = Aeλz − a
λ , where A is a constant and λ2 = c

a .

PROOF. Suppose that 0 is a Picard value of f . Noting that ρ(f) ≤ 1, we can set
f(z) = Aeλz, where A, λ are two non-zero constants. Thus

S(r, f) = N

(

r,
f

f ′ − a

)

= N

(

r,
1

f ′ − a

)

= N

(

r,
1

Aeλz − a

)

= T (r, f) + S(r, f),

a contradiction.

In the following, we assume that 0 is not a Picard value of f . It follows from
f(z) = 0 ⇒ f ′(z) = a that f only has simple zeros. Let

ϕ =
af ′′′ − cf ′

f
. (1)

It is obvious that ϕ is an entire function. By the lemma of logarithmic derivative, we
have

T (r, ϕ) = m(r, ϕ) = S(r, f).

We now distinguish the following two cases.

Case 1. ϕ = 0.

Then, af ′′′ = cf ′. By solving the differential equation, we obtain

f(z) = Aeλz + Be−λz + C0, (2)

where A, B, C0 are constants.

If AB 6= 0, combining f(z) = 0 ⇒ f ′(z) = a and (2) yields that f(z) = 0 


f ′(z) = a. Then, it follows from Lemma 2 that f ′
−a
f = c1, where c1 is a constant.

Furthermore, with the above differential equation, we deduce that f(z) = Aeλz − a
λ ,

which contradicts (2).

If AB = 0. Without loss of generality, we assume A 6= 0. Then, it is easy to deduce
that f(z) = Aeλz − a

λ
and λ2 = c

a
.

Case 2. ϕ 6= 0.

Rewriting (1) as f = af ′′′
−cf ′

ϕ
. A routine calculation leads to

[

1 + c

(

1

ϕ

)′

]

f ′ = a

(

1

ϕ

)′

f ′′′ − c
1

ϕ
f ′′ + a

1

ϕ
f(4). (3)

Since ϕ is an entire function, then 1+c( 1
ϕ)′ 6= 0. From (3), we derive that m

(

r, f ′

f ′−a

)

=

S(r, f). Furthermore, we have

m

(

r,
1

f ′ − a

)

≤ m

(

r,
a

f ′ − a

)

+ O(1) ≤ m

(

r,
f ′

f ′ − a
− 1

)

+ O(1) = S(r, f) (4)
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and

T (r, f) = m(r, f) = m

(

r,
af ′′′ − cf ′

ϕ

)

≤ m(r, f ′) + S(r, f)

≤ T (r, f ′) + S(r, f) ≤ T (r, f) + S(r, f),

which implies that
T (r, f) = T (r, f ′) + S(r, f).

The fact N
(

r, f
f ′−a

)

= S(r, f) leads to

N

(

r,
1

f

)

= N

(

r,
1

f ′ − a

)

+ S(r, f).

Thus,

m

(

r,
1

f

)

= T (r, f) − N

(

r,
1

f

)

+ O(1) = T

(

r,
1

f ′ − a

)

− N

(

r,
1

f

)

+ O(1)

= m

(

r,
1

f ′ − a

)

+ N

(

r,
1

f ′ − a

)

− N

(

r,
1

f

)

+ O(1) = S(r, f).

Let

µ =
f ′ − a

f
. (5)

Obviously, µ is an entire function. Noting that f is transcendental, then we have µ 6= 0.
With (5), it is easy to derive that

T (r, µ) = m(r, µ) ≤ m

(

r,
a

f

)

+ S(r, f) ≤ S(r, f).

Rewriting (5) as f ′ = fµ + a and differentiating it twice yields

f ′′′ = f(µ3 + 3µµ′ + µ′′) + a(µ2 + 2µ′).

Combining f(z) = 0 ⇒ f ′′′(z) = c and m
(

r, 1
f

)

= S(r, f) leads to a(µ2 + 2µ′) = c.

Clearly, c− 2aµ′ 6= 0. If µ is not a constant, then 2T (r, µ) = T (r, c− 2aµ′) ≤ T (r, µ)+
S(r, µ), which indicates T (r, µ) = S(r, µ), a contradiction. Hence µ must be a constant.
By (5) and our assumption, we can easily deduce that f(z) = Aeλz − a

λ
and λ2 = c

a
.

Putting the form of f into (1) yields ϕ = 0, a contradiction. This completes the proof
of this lemma.

For our proof, we also need the following result. It can be easily obtained from [10,
Theorem 1].

LEMMA 5. Let F be a family of holomorphic functions in a domain D, and let
a, c be two non-zero constants. If for every f ∈ F , f(z) = 0 ⇒ f ′(z) = a and
f ′(z) = a ⇒ f ′′′ = c, then F is normal in D.

LEMMA 6. [18] Let f1 and f2 be two non-constant meromorphic functions satisfying

N(r, fi) + N

(

r,
1

fi

)

= S(r), i = 1, 2.
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Then either
N0(r, 1; f1, f2) = S(r)

or there exist two integers s, t (|s| + |t| > 0) such that

fs
1 ft

2 = 1,

where N0(r, 1; f1, f2) denotes the reduced counting function of f1 and f2 related to the
common 1-point and T (r) = T (r, f1) + T (r, f2), S(r) = o(T (r)) (r → ∞, r /∈ E) only
depending on f1 and f2.

LEMMA 7. [12], [5, Theorem 4.1] Let f be an entire function of order at most 1
and k be a positive integer, then

m

(

r,
f(k)

f

)

= o(log r), as r → ∞.

3 Proof of Theorem 1

From the assumption, we derive that f is a transcendental entire function. Now, let us
show that f is of exponential type. Set g = f − a. Then

g(z) = 0 ⇒ g′(z) = a, g′(z) = a ⇒ g′′′(z) = c.

Set F = {g(z + w) : w ∈ C}. Then F is a family of holomorphic functions on the unit
disc 4. For any function F (z) = g(z + w), we have

F (z) = 0 ⇒ F ′(z) = a, F ′(z) = a ⇒ F ′′′(z) = c.

It follows from Lemma 5 that F is normal in 4. Then, by Lemma 2, there exists a
positive number M satisfying g](z) ≤ M for all z ∈ C. Furthermore, with Lemma 1,
we deduce that g is of exponential type. So, ρ(f) = ρ(g) ≤ 1. We also have

f(z) = a ⇒ f ′(z) = a, f ′(z) = a ⇒ f ′′′(z) = c. (6)

Suppose that a is a Picard value of f , then f(z) = Aeλz + a, where A, λ are two
non-zero constants. From (6) and the form of f , it is easy to obtain that λ2 = c

a
.

In the following, we assume that a is not a Picard value of f .
Let

ϕ =
af ′′′ − cf ′

f − a
. (7)

By (6), we derive that ϕ is an entire function. From Lemma 7, we have

T (r, ϕ) = m(r, ϕ) = m

(

r,
af ′′′ − cf ′

f − a

)

≤ m

(

r,
af ′′′

f − a

)

+ m

(

r,
cf ′

f − a

)

+ log2 = o(log r),

which implies that ϕ reduces to a constant. Suppose ϕ = c2.
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We now consider into two cases.
Case 1. c2 6= 0.
We first analyze the property of the equation

f ′′′ −
c

a
f ′ =

c2

a
(f − a). (8)

Noting that g = f − a, then

g′′′ −
c

a
g′ =

c2

a
g. (9)

By (6) and (9), it is easy to deduce

g = 0 ⇔ g′ = a ⇒ g′′′ = c. (10)

We divide into two subcases as follows.
Subcase 1.1. N(2(r,

1
g′−a ) = S(r, g). Then

N(r,
g

g′ − a
) ≤ N(2(r,

1

g′ − a
) = S(r, g). (11)

By Lemma 4, we get f(z) = g(z) + a = Aeλz + a − a
λ , where A is a non-zero constant

and λ2 = c
a . Thus ϕ = c2 = 0, which is a contradiction.

Subcase 1.2. N(2(r,
1

g′−a ) 6= S(r, g).

It implies g′ − a has infinitely many multiple zeros. Again, we divide into two
subcases.

Subcase 1.2.1. The equation λ3 − c
aλ − c2

a = 0 has a multiple zero.
Then, we deduce the multiplicity of the zero is two. Thus,

g(z) = (C11 + C12z)eλ1z + C2e
λ2z. (12)

Suppose C12 6= 0, then

g′′(z) = (2λ1C12 + C11λ
2
1 + C12λ

2
1z)eλ1z + C2λ

2
2e

λ2z. (13)

Let zn be the multiple zero of g′ − a. Then g(zn) = 0 and g′′(zn) = 0. Combining (12)
and (13) yields

2λ1C12 + C11(λ
2
1 − λ2

2) + C12(λ
2
1 − λ2

2)zn = 0.

In view of zn → ∞, we derive λ2
1 = λ2

2 and C12 = 0, this is a contradiction.
Now, we assume C12 = 0. Then

g(z) = C11e
λ1z + C2e

λ2z .

If C11C2 6= 0, similarly as above, we conclude that λ1 = −λ2. So,

g(z) = C11e
λ1z + C2e

−λ1z . (14)

From (10) and (14), we derive that

g(z) = 0 
 g′(z) = a, (15)



F. Lü 181

which implies that N(2(r,
1

g′−a ) = 0, a contradiction.
If C11C2 = 0, obviously, this is absurd.
Subcase 1.2.2. The equation λ3 − c

aλ − c2

a = 0 only has simple zeros.
From (9), we have

g(z) = c1e
λ1z + c2e

λ2z + c3e
λ3z. (16)

If c1c2c3 = 0, similarly as above, we can get a contradiction.
Suppose c1c2c3 6= 0. Let zn be the multiple zero of g′ − a. Then g(zn) = 0,

g′(zn) = a and g′′(zn) = 0. With (16), it is not difficult to deduce that

eλjzn = Dj (1 ≤ j ≤ 3), (17)

where Dj 6= 0 (1 ≤ j ≤ 3) are constants. Assume that

fj(z) = eλjz/Dj (1 ≤ j ≤ 3). (18)

Noting that (18) and the fact that the multiplicity of a-points of g′ is 2, we derive that

N(2

(

r,
1

g′ − a

)

≤ 2N0(r, 1; f1, f2).

So
N0(r, 1; f1, f2) 6= S(r)

and

N(r, fi) + N(r
1

fi
) = S(r), i = 1, 2.

Thus by Lemma 6, there exist two integers s1, t1 (|s1| + |t1| > 0) such that

fs1

1 ft1
2 = 1.

Then λ1s1 + λ2t1 = 0, λ2 = − s1

t1
λ1. Similarly, we can deduce that λ3 = − s2

t2
λ1. Let

λ1 = t1t2λ = p1λ. Then

λ2 = −s1t2λ = p2λ, λ3 = −s2t1λ = p3λ.

From the equation

λ3 −
c

a
λ −

c2

a
= 0, (19)

we derive
p1λ + p2λ + p3λ = λ1 + λ2 + λ3 = 0,

which implies that
p1 + p2 + p3 = 0, (20)

where p1, p2, p3 are three integers.
By (20), we know there exist a positive integer and a negative integer in {p1, p2, p3}.

Without loss of generality, we assume p1 > 0 and p2 < 0. Noting that p2 6= p3, we
suppose p3 > p2.
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Rewriting (16) as
g(z) = c1e

p1λz + c2e
p2λz + c3e

p3λz. (21)

Set
P (z) = c1z

p1 + c2z
p2 + c3z

p3 (22)

and
Q(z) = λ[c1p1z

p1 + c2p2z
p2 + c3p3z

p3 ]. (23)

Then
g(z) = P (eλz) and g′(z) = Q(eλz). (24)

From (10), we obtain that g(z) only has simple zeros.
If p1 > p3, from (22) we have P has m simple roots and m = p1 − p2. It follows

from (23) that Q − a at most has m roots. Then, combining (10) and (24) leads to

g = 0 
 g′ = a,

which indicates that N(2

(

r, 1
g′
−a

)

= 0, a contradiction.

If p1 < p3, similarly as above, we also deduce a contradiction.
Case 2. c2 = 0.
Then

af ′′′ = cf ′.

Solving the above differential equation yields

f(z) = C1e
λ1z + C2e

−λ1z + C0, (25)

where C0 is a constant. We divide into two cases.
Case 2.1. C1C2 6= 0.
With (25) and f(z) = a ⇒ f ′(z) = a, it is not difficult to derive that

f(z) = a 
 f ′(z) = a.

Thus, we deduce that f(z) = Aeλz + a − a
λ
, which contradicts (25).

Case 2.2. C1C2 = 0.
Without loss of generality, we suppose C2 = 0. Then, after a simple calculation, we

obtain the conclusion of Theorem 1.
Thus we complete the proof of the theorem.
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