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Abstract

The aim of this paper is to prove the existence of common fixed points for a
pair of weakly compatible selfmaps satisfying weakly contractive condition and
property (E. A).

1 Introduction

In 2002, Aamri and Moutawakil [1] introduced the notion of property (E. A). There
are a number of results (Aliouche [2], Imdad et al. [5], Liu et al. [8], Pathak et al. [9])
that use this concept to prove existence results in common fixed point theory.

Throughout this paper, (X, d) denotes a metric space; and f and T are selfmaps of
X.

DEFINITION 1.1. The pair (f, T ) is said to

(i) be compatible (Jungck [6]) if lim
n→∞

d(fTxn, T fxn) = 0, whenever {xn} is a

sequence in X such that lim
n→∞

fxn = lim
n→∞

Txn = t for some t in X;

(ii) be noncompatible if there is at least one sequence {xn} inX such that lim
n→∞

fxn=

lim
n→∞

Txn = t, for some t in X, but lim
n→∞

d(fTxn, T fxn) is either non-zero or non-

existent;

(iii) satisfy property (E. A) (Aamri and El Moutawakil [1]) if there exists a sequence
{xn} in X such that lim

n→∞

fxn = lim
n→∞

Txn = t, for some t in X;

(iv) be weakly compatible (Jungck [7]) if Tfx = fTx whenever fx = Tx, x ∈ X.

REMARK 1.2. Every pair of noncompatible selfmaps of a metric space (X, d)
satisfies property (E. A), but its converse need not be true as shown by the following
example.
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EXAMPLE 1.3. Let X = [0, 1) with the usual metric. We define mappings f and
T on X by

f(x) =

{

2
3 if 0 ≤ x < 2

3
1 − 1

2x if 2
3 ≤ x < 1

and T (x) =

{

2
3 if 0 ≤ x < 2

3
4
3 − x if 2

3 ≤ x < 1
.

Then the pair (f, T ) is compatible on X, for if {xn} is a sequence in [0, 1) with
lim

n→∞

fxn = lim
n→∞

Txn = z ∈ X, then z = 2
3 and lim

n→∞

Tfxn = lim
n→∞

fTxn = 2
3 so

that lim
n→∞

d(Tfxn, fTxn) = 0. Hence the pair (f, T ) is not noncompatible on X. We

observe that (f, T ) satisfies property (E,A).

REMARK 1.4. (i) Weak compatibility and property (E. A) are independent to
each other (Pathak et al. [9]). (ii) Every compatible pair is weakly compatible but its
converse need not be true (Jungck et al. [7]).

Throughout this paper, we denote R+ = [0,∞); and N , the set of all natural
numbers, and

Φ = {ϕ| ϕ : R+ → R+ is continuous, ϕ(0) = 0, ϕ(t) > 0 for t > 0}.

In 2007, Beg and Abbas [3] established the following existence theorem of common
fixed points of a pair of selfmaps.

THEOREM 1.5. (Beg and Abbas [3], Theorem 2.5). Let (X, d) be a metric space
and let T, f : X → X be weakly compatible selfmaps. Assume that there exists a
monotone increasing ϕ ∈ Φ with lim

t→∞

ϕ(t) = ∞ such that for all x, y ∈ X,

d(Tx, Ty) ≤ d(fx, fy) − ϕ(d(fx, fy)).

If T (X) ⊆ f(X) and f(X) is a complete subspace of X, then f and T have a unique
fixed point in X.

DEFINITION 1.6. A selfmap T : X → X is said to be weakly contractive with

respect to a selfmap f : X → X if there exists a ϕ ∈ Φ such that for all x, y ∈ X,

d(Tx, Ty) ≤ d(fx, fy) − ϕ(d(fx, fy)). (1)

The aim of this paper is to give a modified version of Theorem 1.5 by relaxing the
conditions ‘ϕ is monotonically increasing and lim

t→∞

ϕ(t) = ∞’. Further we prove the

existence of common fixed points for a pair of weakly compatible selfmaps satisfying
weakly contractive condition and property (E. A).

2 A Modified Version Of Beg and Abbas Theorem

The following theorem suggests that the conditions ‘ϕ is monotone increasing and
lim

t→∞

ϕ(t) = ∞’ of Theorem 1.5 are redundant.

THEOREM 2.1. Let T, f : X → X be weakly compatible selfmaps. If T is weakly
contractive with respect to f such that T (X) ⊆ f(X) and f(X) is a complete subspace
of X, then f and T have a unique common fixed point in X.
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PROOF. Let x0 ∈ X. Since T (X) ⊆ f(X), there exists x1 ∈ X such that Tx0 =
fx1. On continuing this process, inductively we get a sequence {xn} in X such that
yn = T (xn) = f(xn+1).

We now show that the sequence {d(fxn, fxn+1)} is a decreasing sequence. Now
consider,

d(fxn+1, fxn+2) = d(T (xn), T (xn+1)) ≤ d(f(xn), f(xn+1)) − ϕ(d(f(xn), f(xn+1)).
(2)

Hence,
d(fxn+1, fxn+2) ≤ d(f(xn), f(xn+1)) for all n = 0, 1, 2, .... (3)

Hence the sequence {d(f(xn), f(xn+1))} is a decreasing sequence of non-negative reals
and converges to a limit l (say) and l ≥ 0.

We claim that l = 0. Suppose l > 0. Letting n→ ∞ in (2), by the continuity of ϕ,
we get l ≤ l− ϕ(l), a contradiction. Hence, l = 0. i.e.,

lim
n→∞

d(f(xn), f(xn+1)) = 0. (4)

We now claim that {yn} is Cauchy. By (3) and (4), it is sufficient to show that {y2n}
is Cauchy. Otherwise, there exists an ε > 0 and there exist sequences {mk} and {nk}
with mk > nk > k such that

d(y2mk
, y2nk

) ≥ ε and d(y2mk−2, y2nk
) < ε. (5)

Hence,
ε ≤ lim inf

k→∞

d(y2mk
, y2nk

). (6)

For each positive integer k, by the triangle inequality we have,

d(y2mk
, y2nk

) ≤ d(y2mk
, y2mk−1) + d(y2mk−1, y2mk−2) + d(y2mk−2, y2nk

).

On taking limit supremum of both sides, as k → ∞, we get

lim sup
k→∞

d(y2mk
, y2nk

) ≤ ε. (7)

Hence, from (6) and (7), we have

lim
k→∞

d(y2mk
, y2nk

) = ε. (8)

Now
d(y2mk

, y2nk+1) ≤ d(y2mk
, y2nk

) + d(y2nk
, y2nk+1).

On taking limit supremum, as k → ∞, we get

lim sup
k→∞

d(y2mk
, y2nk+1) ≤ ε. (9)

Again we have

d(y2mk
, y2nk

) ≤ d(y2mk
, y2nk+1) + d(y2nk+1, y2nk

).
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On taking limit infimum, as k → ∞, we get

ε ≤ lim inf
k→∞

d(y2mk
, y2nk+1). (10)

From (9) and (10), we have

lim
k→∞

d(y2mk
, y2nk+1) = ε. (11)

Similarly, we can show that

lim
k→∞

d(y2mk−1, y2nk
) = ε. (12)

Now consider,

d(y2mk
, y2nk+1) = d(Tx2mk

, Tx2nk+1)

≤ d(fx2mk
, fx2nk+1) − ϕ(d(fx2mk

, fx2nk+1))

≤ d(Tx2mk−1, Tx2nk
) − ϕ(d(Tx2mk−1, Tx2nk

))

≤ d(y2mk−1, y2nk
) − ϕ(d(y2mk−1, y2nk

)). (13)

Letting k → ∞ in (13), using (11), (12) and the continuity of ϕ, we get ε ≤ ε−ϕ(ε), a
contradiction. Hence, {y2n} is Cauchy so that {yn} is a Cauchy sequence in X. Thus
{fxn+1} is a Cauchy sequence in X. Since f(X) is complete and {fxn+1} ⊂ f(X), we
have

lim
n→∞

fxn+1 = fu, for some u ∈ X. (14)

Next we claim that T (u) = f(u). Now consider,

d(fxn+1, Tu) = d(Txn, Tu) ≤ d(fxn, fu) − ϕ(d(fxn, fu)). (15)

Letting n→ ∞, from (14) using (15) and the continuity of ϕ, we get

d(fu, Tu) ≤ d(fu, fu) − ϕ(d(fu, fu)) = 0.

Hence, Tu = fu = z (say). Since the pair of maps (f, T ) is weakly compatible, we
have Tfu = fTu and hence Tz = fz.

We now claim that Tz = z. Suppose Tz 6= z. Consider

d(Tz, z) = d(Tz, Tu) ≤ d(fz, fu) − ϕ(d(fz, fu)) = d(Tz, z) − ϕ(d(Tz, z)),

a contradiction. Hence, Tz = z. Hence, fz = Tz = z. The uniqueness of z follows
from the weakly contractive nature of T . Hence, the theorem follows.

The following is an example in support of our Theorem 2.1.

EXAMPLE 2.2. Let X = R+ with the usual metric. We define mappings f and T
on X by

f(x) =







1
3

if 0 ≤ x < 2
3

2
3

if x = 2
3

5
6 if x > 2

3

and T (x) =

{

5
6

if 0 ≤ x < 2
3

2
3 if x ≥ 2

3

.
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Clearly, the pairs (f, T ) is weakly compatible, T (X) ⊆ f(X) and f(X) = { 1
3 ,

2
3 ,

5
6} is

complete.
We define ϕ : R+ → R+ by

ϕ(t) =

{ 3
2t

2 if 0 ≤ t ≤ 1
3

2
9(1+t) if t ≥ 1

3
.

Clearly ϕ ∈ Φ. With this ϕ, T is weakly contractive with respect to f . Hence, f and
T satisfy all the conditions of Theorem 2.1 and 2

3
is the unique common fixed point of

f and T . Here ϕ is not monotonically increasing on R+, and lim
n→∞

ϕ(t) 6= ∞ so that

Theorem 1.5 is not applicable.

3 Main Result

Our main result is the following.

THEOREM 3.1. Let (X, d) be a metric space and let T, f : X → X be weakly
compatible selfmaps satisfying property (E. A). Assume that T is weakly contractive
with respect to f . If f(X) is closed, then f and T have a unique common fixed point
in X.

PROOF. Since the pair (f, T ) satisfies property (E. A), there exists a sequence
{xn} in X such that lim

n→∞

fxn = lim
n→∞

Txn = z, for some z in X. Since f(X) is closed,

z = f(u) for some u ∈ X. Now replacing u for x and xn for y in (1), we get

d(Tu, Txn) ≤ d(fu, fxn) − ϕ(d(fu, fxn)). (16)

Letting n→ ∞ in (16), by the continuity of ϕ, we get

d(Tu, z) ≤ d(fu, z) − ϕ(d(fu, z)) = 0.

Hence, Tu = z, and
fu = Tu = z. (17)

Since f and T are weakly compatible, from (17), we have fz = Tz. If z 6= Tz, then
from the inequality (1), we have

d(Tz, z) = d(Tz, Tu) ≤ d(fz, fu) − ϕ(d(fz, fu)) = d(Tz, Tu)− ϕ(d(Tz, Tu)),

a contradiction. Hence, Tz = z, and fz = Tz = z. The uniqueness of z follows from
the inequality (1). This complete the proof the Theorem.

Since two noncompatible selfmaps of a metric space (X, d) satisfy the property (E.
A), we get the following corollary.

COROLLARY 3.2. Let (X, d) be a metric space and let f, T : X → X be noncom-
patible and weakly compatible selfmaps. Assume that T is weakly contractive with
respect to f . If f(X) is closed, then f and T have a unique common fixed point in X.

In Theorem 3.1, if we choose ϕ ∈ Φ such that ϕ(t) = t − ψ(t), where ψ ∈ Φ with
ψ(t) < t for t > 0, we get the following Corollary.
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COROLLARY 3.3. Let (X, d) be a metric space and let T, f : X → X be weakly
compatible selfmaps satisfying property (E. A). Assume that there exists a ψ ∈ Φ with
ψ(t) < t for t > 0 such that

d(Tx, Ty) ≤ ψ(d(fx, fy)) for all x, y ∈ X. (18)

If f(X) is closed, then f and T have a unique common fixed point in X.

In this case, when T and f satisfy the inequality (18), we say that T is a Boyd-Wong

type contraction with respect to f [4].
The following is an example in support of Theorem 3.1.

EXAMPLE 3.4. Let X = [ 12 , 1] with the usual metric. We define mappings f and
T on X by

f(x) =

{

1 if 1
2
≤ x < 2

3
x if 2

3
≤ x ≤ 1

and T (x) =

{

1
2

if 1
2
≤ x < 2

3
1 − 1

2
x if 2

3
≤ x ≤ 1

.

Since the sequence {xn}, xn = 2
3

+ 1
n
, n ≥ 4, in X with lim

n→∞

fxn = lim
n→∞

Txn = 2
3
,

the pair (f, T ) satisfy property (E. A). Clearly, the pairs (f, T ) is weakly compatible
and f(X) = [ 2

3
, 1] is closed. We define ϕ : R+ → R+ by

ϕ(t) =

{ 3
2t

2 if 0 ≤ t ≤ 2
3

10
9(1+t) if t ≥ 2

3
.

Clearly ϕ ∈ Φ. With this ϕ, T is weakly contractive with respect to f . Hence,
f and T satisfy all conditions of Theorem 3.1 and 2

3
is the unique common fixed

point of f and T . Further we mention that the pair (f, T ) is not compatible, for
lim

n→∞

d(fTxn, T fxn) = 1
6 6= 0.

Here we observe that neither T (X) ⊆ f(X) nor f(X) ⊆ T (X), and ϕ is not mono-
tonically increasing on R+, so that Theorem 1.5 and Theorem 2.1 are not applicable.

EXAMPLE 3.5. Let l∞ be the set of all bounded nonnegative real numerical se-
quences {xn}. We define metric d on l∞ by d(x, y) = sup{|xn − yn| : n ∈ N}, where
x = {xn} and y = {yn} in l∞. Then (l∞, d) is a complete metric space. We de-
fine T : l∞ → l∞ by T ({xn}) = { xn

1+xn
} and f = I, the identity map on l∞. Let

x = {xn}, y = {yn} ∈ l∞. Then

d(Tx, Ty) = d

({

xn

1 + xn

}

,

{

yn

1 + yn

})

= sup

{
∣

∣

∣

∣

xn

1 + xn

−
yn

1 + yn

∣

∣

∣

∣

: n ∈ N

}

≤ sup

{

|xn − yn|

1 + |xn − yn|
: n ∈ N

}

≤
sup{|xn − yn| : n ∈ N}

1 + sup{|xn − yn| : n ∈ N}

= d({xn}, {yn}) − ϕ(d({xn}, {yn}))

= d(x, y) − ϕ(d(x, y)),
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where ϕ(t) = t
2

1+t
for t ≥ 0. Thus T is a weakly contractive map with respect to f .

Clearly, f and T satisfy property (E. A), by choosing the sequence {xn}, xn =
(0, 0, ...) ∈ l∞ for all n = 1, 2, .... Since the null vector is the only coincidence point
of f and T , we have f and T are weakly compatible on l∞. Further, f(l∞) = l∞ is
closed. Hence, f and T satisfy all conditions of Theorem 3.1 and the null vector is the
unique common fixed point of f and T in l∞.

We observe that T is not a contraction on l∞, for taking x = (0, 0, ...), for all
k ∈ (0, 1) there exists y = (t, 0, 0, ...) ∈ l∞, where t ∈ (0, 1−k

k
), such that d(Tx, Ty) =

t

1+t
> k t = k d(x, y).

COROLLARY 3.6. Let K be a nonempty closed subset of a metric space (X, d)
and T : X → X. Assume that there exists a ϕ ∈ Φ such that

d(Tx, Ty) ≤ d(x, y) − ϕ(d(x, y)),

for all x, y ∈ X. If there exists a sequence {xn} in K such that lim
n→∞

Txn = lim
n→∞

xn =

z, z ∈ K, then z is the fixed point of T in K.

The following is an example in support of Corollary 3.6.

EXAMPLE 3.7. Let X = R+ with the usual metric and K = {0}∪ [ 13 , 1]. We define
a mapping T on K by

Tx =

{

1
3 if x = 0
1
3 + 1

2x if 1
3 ≤ x ≤ 1

.

Then T satisfies all the conditions of Corollary 3.6 with ϕ : R+ → R+ defined by

ϕ(t) = t
2

1+t
, t ≥ 0 and 2

3 is the unique fixed point of T .

We observe that the sequence {xn}, xn = 2
3 + 1

n
, n ≥ 4, is in K with lim

n→∞

Txn =

lim
n→∞

xn = 2
3 .

REMARK 3.8. If we delete the condition ‘f(X) is closed’ from Theorem 2.1, then
the maps f and T may have no common fixed points, which is shown by the following
example.

EXAMPLE 3.9. Let X = [ 12 , 1] with the usual metric. We define mappings f and
T on X by

f(x) =

{

1 if 1
2
≤ x ≤ 2

3
x if 2

3
< x ≤ 1

and T (x) =

{

1
2

if 1
2
≤ x ≤ 2

3
1 − 1

2
x if 2

3
< x ≤ 1

.

Since the sequence {xn}, xn = 2
3 + 1

n
, n ≥ 4, in X with lim

n→∞

fxn = lim
n→∞

Txn = 2
3 , the

pair (f, T ) satisfies property (E. A). Clearly, the pair (f, T ) is weakly compatible. We
define ϕ : R+ → R+ by ϕ(t) = 3

2 t
2, t ≥ 0. Clearly ϕ ∈ Φ. With this ϕ, T is weakly

contractive with respect to f . But f(X) = (2
3 , 1] is not closed. We observe that f and

T have no common fixed points.

REMARK 3.10. In Theorem 3.1, if we relax the condition ‘f and T satisfy property
(E. A)’ then they may have no common fixed points.
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EXAMPLE 3.11. Let X = [ 12 , 1] with the usual metric. We define mappings f and
T on X by

f(x) =

{

1 if 1
2 ≤ x ≤ 2

3
2
3 if 2

3 < x ≤ 1
and T (x) =

{

2
3 if 1

2 ≤ x ≤ 2
3

1
2 if 2

3 < x ≤ 1
.

Here f and T are trivially weakly compatible on X and f(X) = { 2
3 , 1} is closed.

Further, T is weakly contractive with respect to f with ϕ(t) = 1
2 t, t ≥ 0. But f

and T do not satisfy property (E. A), since for any sequence {xn} in X we have
lim

n→∞

fxn 6= lim
n→∞

Txn in X. We observe that f and T have no common fixed points.

REMARK 3.12. In Theorem 1.5, the authors assumed the condition T (X) ⊆ f(X),
where as in the results of this paper, this condition is relaxed by imposing the condition
property (E. A).
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