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Abstract

In this paper, we introduce the weighted Morrey-Herz spaces. We also obtain
the necessary and sufficient conditions for the weighted Hardy-Littlewood mean
operators to be bounded on these weighted Morrey-Herz spaces. Results proved
in this paper can be viewed as significant refinement of several previously known
results.

1 Introduction

Let k€ Z, B, = {x € R" : |z| < 2*}, D}, = By, — Br_1 and let ¢, = ¢p, denote the
characteristic function of the set Djy. Moreover, for a measurable function f on R"
and a non-negative weighted function w(x), we write

o= ([ |f<x>|pw<x>dx)l/p.

In what follows, if w = 1, then we will denote L? (R™,w) (in brief L?(w)) by LP(R").
Let « € RY, 0 < p,q < oo and A > 0. The Morrey spaces M;‘(R") is defined by [1] as
follows:

/]

Mg (R") = {f € L, (R"): sup £ [f()|*dy < OO}, (1)

r>0,ccR™ A lz—y|<r
and the homogeneous Herz space K, & P(R™) is defined by [2] as follows:

RoP(R™) = {f € L (R" = {0}) ¢ [1f]| govneny < 50}, (2)

where
1/p
11l ieso ey = {Z 2’mp|f<pk|s} . (3)
kez

We can similarly define the non-homogeneous Herz space Kg'P(R").
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It is well-known that the Morrey spaces have important applications in the theory
of partial differential equations, in linear as well as in non-linear theory, and the Herz
spaces play an important role in characterizing the properties of functions and multi-
pliers on the classical Hardy spaces. In 2005, Lu and Xu [3] introduced the following
Morrey-Herz spaces:

DEFINITION 1.1 (See [3]). Let a € R, 0 < p < 00, 0 < ¢ < oo and A > 0. The
homogeneous Morrey-Herz space M Kﬁ;;‘ (R™) is defined by

MESMRY) = {f € L (R = {0)) : | fllysge ) < 50}, 4)
where
ko 1/p
1 e kg ey = 59D 2’““{ >, 2k“p|f<pk|5} : (5)
’ koeZ k——o0

with the usual modifications made when p = co. We can similarly define the non-
homogeneous Morrey-Herz spaces MK (R™). Tt is easy to see that MK )(R™) =
el n n - n : - ny — n ~(a/p), ny —
K&P(R™) and M) (R") € MK2(R™). Inparticular, K)?(R") = LP(R"), K,*'""P(R") =
LP(|z|*dx).

The aim of this paper is to introduce the following new weighted Morrey-Herz
spaces:

DEFINITION 1.2. Let « € R, 0 < p < 00, 0 < ¢ < 00, A > 0 and w; and
w2 be non-negative weight functions. The homogeneous weighted Morrey-Herz space
Mngq)‘(wl,wg) is defined by

MESMw1,ws) = {F € Lo (R" = {0h,02) : [ Fllyrkeporwn <0 (6)

24

where

ko 1/p
s oo rws) = SUP Wl(Bkr))()\/n){ Z [wl(Bk)]ap/n|f<Pk|§,wQ} (M

ko€z k=—oc0

It is easy to see that when w; = we = 1, we have MK&;I)‘(L 1) = MK&;I)‘(R"). We
can similarly define the non-homogeneous weighted Morrey-Herz spaces M K g’q)‘ (w1, wa).
2 Some Applications
As applications, we can discuss the boundedness of many operators on the weighted

Morrey-Herz spaces. They are significant generalizations of many known results. For
example, the classical Hardy-Littlewood mean operator Ty is defined by

To(f,z) = i/oxf(t)dt, ©>0. (8)
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In 1984, Carton-Lebrun and Fosset [4] introduced the weighted Hardy-Littlewood mean
operator T' defined by

T(f,x) = /0 fx)Y(t)dt, == (z1,9,...,7,) € R", (9)

where tx = (tx1,txe, ..., tx,) denotes an isotropic dilation, and v : [0,1] — [0, 00) is
a function, f be a measurable complex valued function on R™. If ¢y = 1 and n = 1,
then T' reduces to Tp. In what follows, Ao, denotes the weight function class of B.
Muckenhoupt, that is, there is a constant C' independent of the cube @ in R™, such

- (L [etons)on{ & [tus) <comocms, o

where |@Q| is the Lebesgue measure of @ (see [5]).
In 2001 Xiao [6] obtained the LP(R™) bounds of the operator T is defined by (9).
In this section, we obtain the following results.

THEOREM 2.1. Let « € R', 0 < p < 00,1 < g < 0o and A > 0. Let v be a real-
valued nonnegative measurable function defined on [0, 1], and w; € A, a non-negative
weight function wy which satisfies

wo(tx) = tPws(z), t>0, BeR, (11)
IT]] be the norm of the operator T' which is defined by (9):

MESMNwr,wa) — MESNwr,ws).

(1) If ¢t~ (B+n)/a4)(t) is a concave function on [0,1] and fol tA=a)d=(B+n)/ay,(t)dt < oco.
Then

1
7] < Clova, ) [ 10 ey, (12)
0
where
(a=X)/no(1/p)—2 1/p la—A|s
Clpoov\) = c%aﬂ)/nzl X (14+p)P(1+2 A)5, 0<p<l1, (13)
Co 217 C/(1 + (1/p)) (1 + 216729), 1 < p < o0,
(where Cp and ¢ are the constants given in (21), see § 3 below).
(2) If | T < oo, then
1
|ty < g, (14)

REMARK 1. ws is an extension of the power weight ws(z) = |z|%, (z € R™). We
use the following notation

MKF ={fe¢ MK&;I)‘(wl,WQ) cF(t) = mseu}%:)n | f(tx)|¥(t) is a concave function on [0, 1]}.



162 Weighted Morrey-Herz Spaces and Applications

Then M KF is a subspace of the space MK&;I)‘(wl, wa).

THEOREM 2.2. Let c € R, 0 < p < 00,0 < ¢g< 1and XA > 0. Let ¢ be a real-
valued nonnegative measurable function defined on [0, 1], and wy, ws are as in Theorem
2.1 and ||T|| be the norm of the operator T defined by (9): MKF — MK&;I)‘(wl,wg).

(1) If t=(B+n)/a4)(t) is a concave function on [0, 1], and fol tA=a)d=(Btn)/ay,(t)dt <
00, then
1
I7] < Clova. ) [ O CHlay e, (15)
0
where C(p, ¢, a, \) is given by

CleN/mo/p =/ =2¢=1/p(p 4 /P14 g)/a(1+ 2208 0 <p<g<1,

CleTV/m/D=2(1 4 g)l/a(1 4 2IA—ald), 0<g<p<l,
C§N/ma(/0=C/M=1(1 4 (1/p))(1 + ) /9(1 + 2A—019), 0<g<1<p<oo,
(16)
where C and ¢ are the constants given in (21), see § 3 below.
(2) If | T|| < oo, then
1
/ (A=)~ ay,(p)dr < T (17)
0

REMARK 2. There are some similar results for the non-homogeneous weighted
Morrey-Herz spaces. We omit the details here.

REMARK 3. Take limits as A — 07 in Theorem 2.1 and 2.2, we obtain the
corresponding results of the operator T is defined by (9) on the weighted Herz spaces.

3 Proofs of Theorems

We require the following Lemmas to prove our results.
LEMMA 3.1. Let f be a nonnegative measurable function on [0,1]. If 1 < p < oo,

then ) » )
(/0 f) <[ (18)

Lemma 3.1 is an immediate consequences of Holder inequality.

LEMMA 3.2 (See [7, 8]). Let f be a nonnegative measurable and concave function
on [a,b],0 < a < 8. Then

b % b o
{% / [f(x)]"d:c} s{‘;f; / [f(x)]“d:c} . (19)

Set a=0,b=1. For a =p, § =1, that is, 0 < p < 1, we obtain from (19) that

(/01 ) p+1

(20)
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By the properties of A, weights, we have

LEMMA 3.3 (See [5]). If w € Aw, then there exist 6 > 0, Cy > 0, such that for
each ball B and measurable subset £ of B,

w(E) [£2h%
2(B) SCO(|B|> ' )

where |E| is the Lebesgue measure of E and w(E) = [, w(x)dz.

LEMMA 3.4 (See [8]). (Cp inequality ) Let a1,as,...,a, be arbitrary real (or
complex) numbers, then

n p n

(ZW) <Cp Y larP, 0<p< oo, (22)
k=1 k=1

where

1, 0<p<l,

Cp = { nP~l, 1 <p<oo. (23)

In what follows, we shall write simply M Kﬁ;;‘ (w1,ws2) to denote MK.

PROOF OF THEOREM 2.1. First, we prove (12). Using Minkowski’s inequality
for integrals and (11), and setting u = tx, we get

ITHkllgwe < Jy LU, 1F(E2)|%ws(x)da} /9 (t)dt
= Jo Lo | F () wa(u)du} at= G /ay(t)t.

For each t € (0, 1), there exists an integer m such that 2™~ < ¢ < 2™. Setting
Apn = {u € R™: 2Mm=1 < Jy| < 2kFmy,

we obtain

IN

ITHerlgws < Jotha, . 1@ 7w2(u)du

+ [ap [F )]0z (w)du} /et ay(t)dt (24)
< Jo ferpm-tllaws + | forrmllgw @™/ 28 dt.

It follows that

ITfllmx < sup [wi(Bg,)]~A™{ % [w1(B)] P/
ko€Z k=—o00 (25)

1 — n
o (N rtm—1llgws + [ forrmllguws )t~ T 9p(8)dt]P e,

Now, we consider two cases for p:



164 Weighted Morrey-Herz Spaces and Applications

CASE 1. 0 < p < 1. In this case, it follows from (25) and (20) that

1/p ko
ITfllux < %ksu%[wlwk =ML S wi(By)]er/n
0E k=—o0

V(L Phtm1 [ + L Prm [y ) HmIP a2 (1) }1/7

< 2<1?p> 2(1 4 p)/» Sup[wl(Bk )]~
ko
ko
1 ap/m T e
x{fo kZ w1 (Brgm—1)"/ ||f¢k+m*1||gw2(%> v

x =G/ aye (£)de) /e [ [ Z W1 (Brorm) " || foresm 1

x (St yap/ng= <ﬁ+n>P/W( ] 7,

wl(Bk+m 26
o (26)
By (21) and |Bk| = W n, we have
w1 (Bg) | By| —(m—1)né
< = (Cp27\m—on 27
1 Brm) = OBy — (27)
and (By)
w1 k —mnd
— " (02 . 28
o B = 0 (28)
It follows from (26), (27) and (28) that
Tl < CETVM2WD=2(1 4 )L e [y (27 (D@0
+ 27Ny =(B+n)/ay () dt (20)
< O TVMD=2 (14 p)UP(L 4 219 A9)| £

X fol tA=e)d=(B+n)/aq)(t) dt
CASE 2. 1 < p < oo. In this case, it follows from (25), (18), (20) and (28) that

1T fllarxc

IN

217(1/]0)311101@ ezlw1(Bry)] ™ ()\/n){Zk_ oo[wl(Bk)]ap/n

X JH N Frrmat B + | Frrml|E )t~ FFmPl oy (1) de} /e
CL=Nmg1=@ID(1 4 (1/p))(1 + 2~ 0) | fllarc

X [ #O=008=(B+m) /@) (1) dt

(30)

IN

Hence, by (29) and (30), we get

1
IT] < Cp,a, N) / {08 a4 1), (31)
0

where C'(p, o, \) is defined by (13).
To prove the opposite inequality, putting e € (0, 1), we set wy(By) = 2¥0, wo(x) =
|z|? and
fo(x) = x| Ae)=Bin)/a 4 c R™ (32)

We need to consider two cases :
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CASE 1. @ # A. Then

k

2 2
q = (A—=a)qd—(B+n),.n—1 ﬁd =C 2k()\70¢)q6
Hf0</7k|‘q,w2 F(Tl/2) ‘/27671 T T r-ar n ,

where
o 2an/2 |1 — 27()\704)116
" T(n/2)] (A—a)gs
It follows that
ko 1
_ —koXé kpad 1/qok(A—a)d\p\1/p _ 1/q
I follasse = sup 2 {k;ooz (O 12t AP RIP = Ol s~y 33)
CASE 2. a = \. Then || fogr |7, = 202 (2 = ldr = 222 132, Thus
o= A 0%kllqws = T(ny2) Jor—1 =~ T(n/2) :
27/21n 2 _
[ follvex = (W)l/q x (2020 — 1)~ (/P (34)
It follows from (33) and (34) that fo € M K. By (9), we obtain
1 1
T(fora) = [ foltaoitdt = fo(w) [ 100 agioar, )
0 0
and |7 foll v = | follarw [ tO~*9=(F+m)/ay(t)dt. Thus,
T 1
) > ol _ / t= 0T (1) dt. (36)
| foll v xc 0

This completes the proof of Theorem 2.1.
The idea of proof of theorem 2.2 is similar to that of Theorem 2.1, we omit the
details here.
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