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Abstract

In this paper, we introduce the weighted Morrey-Herz spaces. We also obtain

the necessary and sufficient conditions for the weighted Hardy-Littlewood mean

operators to be bounded on these weighted Morrey-Herz spaces. Results proved

in this paper can be viewed as significant refinement of several previously known

results.

1 Introduction

Let k ∈ Z, Bk = {x ∈ R
n : |x| ≤ 2k}, Dk = Bk − Bk−1 and let ϕk = ϕDk denote the

characteristic function of the set Dk. Moreover, for a measurable function f on R
n

and a non-negative weighted function ω(x), we write

‖f‖p,ω =

(
∫

Rn

|f(x)|pω(x)dx

)1/p

.

In what follows, if ω ≡ 1, then we will denote Lp(Rn, ω) (in brief Lp(ω)) by Lp(Rn).
Let α ∈ R

1, 0 < p, q <∞ and λ ≥ 0. The Morrey spaces Mλ
q (Rn) is defined by [1] as

follows:

Mλ
q (Rn) =

{

f ∈ Lq
loc(R

n) : sup
r>0,x∈Rn

1

rλ

∫

|x−y|<r

|f(y)|qdy <∞

}

, (1)

and the homogeneous Herz space K̇α,p
q (Rn) is defined by [2] as follows:

K̇α,p
q (Rn) = {f ∈ Lq

loc(R
n − {0}) : ‖f‖K̇α,p

q (Rn) <∞}, (2)

where

‖f‖K̇α,p
q (Rn) =

{

∑

k∈Z

2kαp‖fϕk‖
p
q

}1/p

. (3)

We can similarly define the non-homogeneous Herz space Kα,p
q (Rn).
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It is well-known that the Morrey spaces have important applications in the theory
of partial differential equations, in linear as well as in non-linear theory, and the Herz
spaces play an important role in characterizing the properties of functions and multi-
pliers on the classical Hardy spaces. In 2005, Lu and Xu [3] introduced the following
Morrey-Herz spaces:

DEFINITION 1.1 (See [3]). Let α ∈ R
1, 0 < p ≤ ∞, 0 < q < ∞ and λ ≥ 0. The

homogeneous Morrey-Herz space MK̇α,λ
p,q (Rn) is defined by

MK̇α,λ
p,q (Rn) = {f ∈ Lq

loc(R
n − {0}) : ‖f‖MK̇α,λ

p,q (Rn) <∞}, (4)

where

‖f‖MK̇α,λ
p,q (Rn) = sup

k0∈Z
2−k0λ

{

k0
∑

k=−∞

2kαp‖fϕk‖
p
q

}1/p

, (5)

with the usual modifications made when p = ∞. We can similarly define the non-
homogeneous Morrey-Herz spaces MKα,λ

p,q (Rn). It is easy to see that MK̇α,0
p,q (Rn) =

K̇α,p
q (Rn) andMλ

q (Rn) ⊂MK̇0,λ
q,q (Rn). In particular, K̇0,p

p (Rn) = Lp(Rn), K̇
(α/p),p
p (Rn) =

Lp(|x|αdx).

The aim of this paper is to introduce the following new weighted Morrey-Herz
spaces:

DEFINITION 1.2. Let α ∈ R
1, 0 < p ≤ ∞, 0 < q < ∞, λ ≥ 0 and ω1 and

ω2 be non-negative weight functions. The homogeneous weighted Morrey-Herz space
MK̇α,λ

p,q (ω1, ω2) is defined by

MK̇α,λ
p,q (ω1, ω2) = {f ∈ Lq

loc(R
n − {0}, ω2) : ‖f‖MK̇α,λ

p,q (ω1,ω2)
<∞}, (6)

where

‖f‖MK̇α,λ
p,q (ω1ω2)

= sup
k0∈Z

ω1(Bk0 )
−(λ/n)

{

k0
∑

k=−∞

[ω1(Bk)]αp/n‖fϕk‖
p
q,ω2

}1/p

. (7)

It is easy to see that when ω1 = ω2 = 1, we have MK̇α,λ
p,q (1, 1) = MK̇α,λ

p,q (Rn). We

can similarly define the non-homogeneous weighted Morrey-Herz spaces MKα,λ
p,q (ω1, ω2).

2 Some Applications

As applications, we can discuss the boundedness of many operators on the weighted
Morrey-Herz spaces. They are significant generalizations of many known results. For
example, the classical Hardy-Littlewood mean operator T0 is defined by

T0(f, x) =
1

x

∫ x

0

f(t)dt, x > 0. (8)
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In 1984, Carton-Lebrun and Fosset [4] introduced the weighted Hardy-Littlewood mean
operator T defined by

T (f, x) =

∫ 1

0

f(tx)ψ(t)dt, x = (x1, x2, . . . , xn) ∈ R
n, (9)

where tx = (tx1, tx2, . . . , txn) denotes an isotropic dilation, and ψ : [0, 1] → [0,∞) is
a function, f be a measurable complex valued function on R

n. If ψ = 1 and n = 1,
then T reduces to T0. In what follows, A∞ denotes the weight function class of B.
Muckenhoupt, that is, there is a constant C independent of the cube Q in R

n, such
that

(

1

|Q|

∫

Q

ω(x)dx

)

exp

{

1

|Q|

∫

Q

ln(
1

ω(x)
)dx

}

≤ C, all Q ⊂ R
n, (10)

where |Q| is the Lebesgue measure of Q (see [5]).
In 2001 Xiao [6] obtained the Lp(Rn) bounds of the operator T is defined by (9).

In this section, we obtain the following results.

THEOREM 2.1. Let α ∈ R
1, 0 < p < ∞, 1 ≤ q < ∞ and λ > 0. Let ψ be a real-

valued nonnegative measurable function defined on [0, 1], and ω1 ∈ A∞, a non-negative
weight function ω2 which satisfies

ω2(tx) = tβω2(x), t > 0, β ∈ R
1, (11)

‖T‖ be the norm of the operator T which is defined by (9):

MK̇α,λ
p,q (ω1, ω2) → MK̇α,λ

p,q (ω1, ω2).

(1) If t−(β+n)/qψ(t) is a concave function on [0,1] and
∫ 1

0
t(λ−α)δ−(β+n)/qψ(t)dt <∞.

Then

‖T‖ ≤ C(p, α, λ)

∫ 1

0

t(λ−α)δ−(β+n)/qψ(t)dt, (12)

where

C(p, α, λ) =

{

C
(α−λ)/n
0 2(1/p)−2(1 + p)1/p(1 + 2|α−λ|δ), 0 < p < 1,

C
(α−λ)/n
0 21−(2/p)(1 + (1/p))(1 + 2|α−λ|δ), 1 ≤ p <∞,

(13)

(where C0 and δ are the constants given in (21), see § 3 below).
(2) If ‖T‖ <∞, then

∫ 1

0

t(λ−α)δ−(β+n)/qψ(t)dt ≤ ‖T‖. (14)

REMARK 1. ω2 is an extension of the power weight ω2(x) = |x|β, (x ∈ R
n). We

use the following notation

MKF = {f ∈MK̇α,λ
p,q (ω1, ω2) : F (t) = sup

x∈Rn

|f(tx)|ψ(t) is a concave function on [0, 1]}.
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Then MKF is a subspace of the space MK̇α,λ
p,q (ω1, ω2).

THEOREM 2.2. Let α ∈ R
1, 0 < p < ∞, 0 < q < 1 and λ > 0. Let ψ be a real-

valued nonnegative measurable function defined on [0, 1], and ω1, ω2 are as in Theorem
2.1 and ‖T‖ be the norm of the operator T defined by (9): MKF →MK̇α,λ

p,q (ω1, ω2).

(1) If t−(β+n)/qψ(t) is a concave function on [0, 1], and
∫ 1

0
t(λ−α)δ−(β+n)/qψ(t)dt <

∞, then

‖T‖ ≤ C(p, q, α, λ)

∫ 1

0

t(λ−α)δ−(β+n)/qψ(t)dt, (15)

where C(p, q, α, λ) is given by











C
(α−λ)/n
0 2(1/p)−(1/q)−2q−1/p(p + q)1/p(1 + q)1/q(1 + 2|λ−α)|δ), 0 < p ≤ q < 1,

C
(α−λ)/n
0 2(1/q)−2(1 + q)1/q(1 + 2|λ−α|δ), 0 < q ≤ p < 1,

C
(α−λ)/n
0 2(1/q)−(2/p)−1(1 + (1/p))(1 + q)1/q(1 + 2|λ−α|δ), 0 < q < 1 ≤ p <∞,

(16)
where C0 and δ are the constants given in (21), see § 3 below.

(2) If ‖T‖ <∞, then

∫ 1

0

t(λ−α)δ−(β+n)/qψ(t)dt ≤ ‖T‖. (17)

REMARK 2. There are some similar results for the non-homogeneous weighted
Morrey-Herz spaces. We omit the details here.

REMARK 3. Take limits as λ → 0+ in Theorem 2.1 and 2.2, we obtain the
corresponding results of the operator T is defined by (9) on the weighted Herz spaces.

3 Proofs of Theorems

We require the following Lemmas to prove our results.

LEMMA 3.1. Let f be a nonnegative measurable function on [0, 1]. If 1 ≤ p < ∞,
then

(
∫ 1

0

f

)p

≤

∫ 1

0

fp. (18)

Lemma 3.1 is an immediate consequences of Hölder inequality.

LEMMA 3.2 (See [7, 8]). Let f be a nonnegative measurable and concave function
on [a, b], 0 < α ≤ β. Then

{

β + 1

b − a

∫ b

a

[f(x)]βdx

}
1
β

≤

{

α+ 1

b− a

∫ b

a

[f(x)]αdx

}
1
α

. (19)

Set a = 0, b = 1. For α = p, β = 1, that is, 0 < p ≤ 1, we obtain from (19) that

(
∫ 1

0

f

)p

≤
p+ 1

2p

∫ 1

0

fp. (20)
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By the properties of A∞ weights, we have

LEMMA 3.3 (See [5]). If ω ∈ A∞, then there exist δ > 0, C0 > 0, such that for
each ball B and measurable subset E of B,

ω(E)

ω(B)
≤ C0

(

|E|

|B|

)δ

. (21)

where |E| is the Lebesgue measure of E and ω(E) =
∫

E
ω(x)dx.

LEMMA 3.4 (See [8]). (Cp inequality ) Let a1, a2, . . . , an be arbitrary real (or
complex) numbers, then

(

n
∑

k=1

|ak|

)p

≤ Cp

n
∑

k=1

|ak|
p, 0 < p <∞, (22)

where

Cp =

{

1, 0 < p < 1,
np−1, 1 ≤ p <∞.

(23)

In what follows, we shall write simply MK̇α,λ
p,q (ω1, ω2) to denote MK.

PROOF OF THEOREM 2.1. First, we prove (12). Using Minkowski’s inequality
for integrals and (11), and setting u = tx, we get

‖(Tf)ϕk‖q,ω2 ≤
∫ 1

0 {
∫

Dk
|f(tx)|qω2(x)dx}

1/qψ(t)dt

=
∫ 1

0 {
∫

2k−1t<|u|≤2kt |f(u)|
qω2(u)du}

1/qt−(β+n)/qψ(t)dt.

For each t ∈ (0, 1), there exists an integer m such that 2m−1 < t ≤ 2m. Setting

Ak,m = {u ∈ Rn : 2k+m−1 < |u| ≤ 2k+m},

we obtain

‖(Tf)ϕk‖q,ω2 ≤
∫ 1

0
{
∫

A(k−1),m
|f(u)|qω2(u)du

+
∫

Ak,m
|f(u)|qω2(u)du}

1/qt−(β+n)/qψ(t)dt

≤
∫ 1

0
(‖fϕk+m−1‖q,ω2 + ‖fϕk+m‖q,ω2)t

−(β+n)/qψ(t)dt.

(24)

It follows that

‖Tf‖MK ≤ sup
k0∈Z

[ω1(Bk0)]
−(λ/n){

k0
∑

k=−∞

[ω1(Bk)]αp/n

×[
∫ 1

0 (‖fϕk+m−1‖q,ω2 + ‖fϕk+m‖q,ω2)t
−(β+n)/qψ(t)dt]p}1/p.

(25)

Now, we consider two cases for p:
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CASE 1. 0 < p < 1. In this case, it follows from (25) and (20) that

‖Tf‖MK ≤ (1+p)1/p

2
sup
k0∈Z

[ω1(Bk0 )]
−(λ/n){

k0
∑

k=−∞

[ω1(Bk)]αp/n

×
∫ 1

0
(‖fϕk+m−1‖

p
q,ω2

+ ‖fϕk+m‖p
q,ω2

)t−(β+n)p/qψp(t)dt}1/p

≤ 2(1/p)−2(1 + p)1/p sup
k0∈Z

[ω1(Bk0)]
−(λ/n)

×{[
∫ 1

0

k0
∑

k=−∞

ω1(Bk+m−1)
αp/n‖fϕk+m−1‖

p
q,ω2

( ω1(Bk)
ω1(Bk+m−1) )

αp/n

× t−(β+n)p/qψp(t)dt]1/p + [
∫ 1

0

k0
∑

k=−∞

ω1(Bk+m)αp/n‖fϕk+m‖p
q,ω2

×( ω1(Bk)
ω1(Bk+m) )

αp/nt−(β+n)p/qψp(t)dt]1/p}.

(26)

By (21) and |Bk| = πn/2

Γ((n/2)+1)
2kn, we have

ω1(Bk)

ω1(Bk+m−1)
≤ C0(

|Bk|

|Bk+m−1|
)δ = C02

−(m−1)nδ (27)

and
ω1(Bk)

ω1(Bk+m)
≤ C02

−mnδ. (28)

It follows from (26), (27) and (28) that

‖Tf‖MK ≤ C
(α−λ)/n
0 2(1/p)−2(1 + p)1/p‖f‖MK

∫ 1

0
(2−(m−1)(α−λ)δ

+ 2−m(α−λ)δ)t−(β+n)/qψ(t)dt

≤ C
(α−λ)/n
0 2(1/p)−2(1 + p)1/p(1 + 2|α−λ|δ)‖f‖MK

×
∫ 1

0
t(λ−α)δ−(β+n)/qψ(t)dt.

(29)

CASE 2. 1 ≤ p <∞. In this case, it follows from (25), (18), (20) and (28) that

‖Tf‖MK ≤ 21−(1/p) supk0∈Z [ω1(Bk0)]
−(λ/n){

∑k0

k=−∞[ω1(Bk)]αp/n

×
∫ 1

o (‖fϕk+m−1‖
p
q,ω2

+ ‖fϕk+m‖p
q,ω2

)t−(β+n)p/qψp(t)dt}1/p

≤ C
(α−λ)/n
0 21−(2/p)(1 + (1/p))(1 + 2|α−λ|δ)‖f‖MK

×
∫ 1

0
t(λ−α)δ−(β+n)/q)ψ(t)dt.

(30)

Hence, by (29) and (30), we get

‖T‖ ≤ C(p, α, λ)

∫ 1

0

t(λ−α)δ−(β+n)/qψ(t)dt, (31)

where C(p, α, λ) is defined by (13).
To prove the opposite inequality, putting ε ∈ (0, 1), we set ω1(Bk) = 2knδ, ω2(x) =

|x|β and
f0(x) = |x|(λ−α)δ−(β+n)/q, x ∈ R

n. (32)

We need to consider two cases :
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CASE 1. α 6= λ. Then

‖f0ϕk‖
q
q,ω2

=
2πn/2

Γ(n/2)

∫ 2k

2k−1

r(λ−α)qδ−(β+n)rn−1rβdr = Cn2k(λ−α)qδ,

where

Cn =
2πn/2

Γ(n/2)

∣

∣

∣

∣

1 − 2−(λ−α)qδ

(λ − α)qδ

∣

∣

∣

∣

.

It follows that

‖f0‖MK = sup
k0∈Z

2−k0λδ{

k0
∑

k=−∞

2kpαδ(C1/q
n 2k(λ−α)δ)p}1/p = C1/q

n

1

(2pλδ − 1)1/p
. (33)

CASE 2. α = λ. Then ‖f0ϕk‖
q
q,ω2

= 2πn/2

Γ(n/2)

∫ 2k

2k−1 r
−1dr = 2πn/2

Γ(n/2)
ln 2. Thus

‖f0‖MK = (
2πn/2 ln 2

Γ(n/2)
)1/q × (2pλδ − 1)−(1/p). (34)

It follows from (33) and (34) that f0 ∈MK. By (9), we obtain

T (f0, x) =

∫ 1

0

f0(tx)ψ(t)dt = f0(x)

∫ 1

0

t(λ−α)δ−(β+n)/qψ(t)dt. (35)

and ‖Tf0‖MK = ‖f0‖MK

∫ 1

0
t(λ−α)δ−(β+n)/qψ(t)dt. Thus,

‖T‖ ≥
‖Tf0‖MK

‖f0‖MK
=

∫ 1

0

t(λ−α)δ−(β+n)/qψ(t)dt. (36)

This completes the proof of Theorem 2.1.
The idea of proof of theorem 2.2 is similar to that of Theorem 2.1, we omit the

details here.
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