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Abstract

In this paper, we establish exact solutions for nonlinear Davey-Stewartson

equations. The sine-cosine method is used to construct periodic and solitary

wave solutions.

1 Introduction

The sine-cosine method (see e.g. [1-4]) has been used to to solve different types of
nonlinear systems of PDEs. The higher-dimensional nonlinear wave fields have richer
phenomena than one-dimensional ones, since various localized solitons may be consid-
ered in higher-dimensional space.

The Davey-Stewartson equation (DSE) was introduced in [6] to describe the evo-
lution of a three-dimensional wave-packet on water of finite depth. It is a system of
partial differential equations for a complex (wave-amplitude) field q(t, x, y) and a real
(mean-flow) field φ(t, x, y):

iqt + 1
2σ2

(

qxx + σ2qyy

)

+ λ |q|2 q − φxq = 0,

φxx − σ2φyy − 2λ
(

|q|2
)

x
= 0,

(1)

where λ = ±1 and σ2 = ±1. The case σ = 1 is called the DSI equation, while the
case σ = i is called the DSII equation. The parameter λ characterizes the focusing or
defocusing case [5]. The DS equation has four kinds of soliton solutions: the conven-
tional line, algebraic, periodic and lattice solitons. The conventional line soliton has an
essentially one-dimensional structure. On the other hand, the algebraic, periodic and
lattice solitons have a two-dimensional localized structure.

The DSI and DSII equations are two well-known examples of integrable equations
in two spacial dimensions, which arise as higher dimensional generalizations of the
nonlinear Schrodinger equation, as well as from physical considerations [6-7]. Indeed,
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104 Explicit Solutions for Davey-Stewartson Equations

they appear in many applications, for example in the description of gravity-capillarity
surface wave packets in the limit of shallow water. Therefore it is of interests to derive
explicit solutions of the DS equation.

During the past decades, quite a few methods for obtaining explicit traveling and
solitary wave solutions of nonlinear evolution equations have been proposed, such as
the inverse scattering method, bilinear transformation, the tanh-sech method, extended
tanh method and homogeneous balance method.

Concepts like solitons, peakons, kinks, breathers, cusps and compactons are being
thoroughly investigated in the scientific literature (see e.g. [8-10]).

2 Sine-Cosine Method

We introduce the wave variable ξ = x − ct into the PDE

P (u, ut, ux, , utt, uxx, ...) = 0, (2)

where u(x, t) is a traveling wave solution. This enables us to use the following changes
of variables:

∂

∂t
= −c

∂

∂ ξ
,

∂2

∂t 2
= c2 ∂2

∂ξ2
,

∂

∂x
=

∂

∂ξ

∂2

∂ξ2
, ... . (3)

One can immediately reduce the nonlinear PDE (2) into a nonlinear ODE

Q(u, uξ, uξξ, , uξξξ, ...) = 0. (4)

The ordinary differential equation (4) is then integrated as long as all terms contain
derivatives, where we neglect the integration constants.

The solutions of many nonlinear equations can be expressed in the form

u(x, t) =

{

λ1 sinβ(µξ), |ξ| ≤ π
µ

0, otherwise
, (5)

or in the form

u(x, t) =

{

λ1 cosβ(µξ), |ξ| ≤ π
2µ

0 otherwise
, (6)

where λ, µ and β are parameters to be determined, µ and c are the wave number and
the wave speed, respectively [2]. We use

u(ξ) = λ1 sinβ(µξ), (7)

un(ξ) = λn
1 sinnβ(µξ), (8)

(un)ξ = nµβλn
1 cos(µξ) sinn β−1(µξ), (9)

(un)ξξ = −n2µ2β2λn
1 sinnβ(µξ) + nµ2λn

1β(nβ − 1) sinnβ−2(µξ), (10)

and their derivatives.

u(ξ) = λ1 cosβ(µξ), (11)
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un(ξ) = λn
1 cosnβ(µξ), (12)

(un)ξ = −nµβλn
1 sin(µξ) cosnβ−1(µξ), (13)

(un)ξξ = −n2µ2β2λn
1 cosnβ(µξ) + nµ2λn

1 β(nβ − 1) cosnβ−2(µξ) (14)

and so on. We substitute (7)-(10) or (11)-(14) into the reduced equation (4), balance
the terms of the cosine functions when (7)-(10) are used, or balance the terms of
the sine functions when (11)-(14) are used, and solve the resulting system of algebraic
equations by using computerized symbolic packages. We next collect all terms with the
same power in cosk(µξ) or sink(µξ) and set to zero their coefficients to get a system of
algebraic equations among the unknowns λ, µ and β, and solve the subsequent system.

3 The Davey-Stewartson Equation

In this section, we deal with the Davey–Stewartson equation (1). Take the following
transformations of (1)

q(x, y, t) = U(ξ)eiθ, φ(x, y, t) = V (ξ), (15)

ξ = x + y − c t, θ = K1x + K2 y + K3t, (16)

where K1, K2 and K3 are real constants [11]. It is easy to derive from (15), (16) and
(1) that

c = σ2k1 + k2, (17)

σ2
{

(1 + σ2)U ′′
}

−
[

2k3 + σ2(k2
1 + σ2k2

2) + 2V ′
]

U + 2λU3 = 0, (18)

(1 − σ2)V ′′ − 2λ(U2)′ = 0. (19)

Integrating (19) with respect to ξ and setting the constant of integration to zero, we
find

V ′ =
2λ

1 − σ2
U2. (20)

Substituting (20) into (18) gives

σ2
{

(1 + σ2)U ′′
}

−
[

2k3 + σ2 (k2
1 + σ2 k2

2)
]

U + 2λ

[ −2

1 − σ2
+ 1

]

U3 = 0. (21)

Seeking solutions of the form (5), we get

σ2(1 + σ2 )
[

−µ2β2λ1 sinβ(µξ) + µ2β2λ1β(β − 1) sinβ−2(µξ)
]

−
[

2k3 + σ2 (k2
1 + σ2 k2

2)
]

λ1 sinβ(µξ) + 2λ

[ −2

1 − σ2
+ 1

]

λ3
1 sin3β(µξ)

= 0. (22)

Equating the exponents and the coefficients of each pair of the sine functions we find
the following algebraic system:

3β = β − 2,

β − 1 6= 0,

σ2(1 + σ2)µ2λ1β(β − 1) + 2λ
[

1 − 2
1−σ2

]

λ3
1 = 0,

−σ2(1 + σ2)µ2β2λ1 −
[

2k3 + σ2(k2
1 + σ2k2

2)
]

λ1 = 0.

(23)
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By solving the algebraic system (23), we get, when
2k3+k2

1
σ2+k2

2

σ2 < 0,

β = −1,

µ = ±
√

−2k3+k2

1
σ2+k2

2

σ2 ,

λ1 = ±
√

−2k3+k2

1
σ2+k2

2

λ
.

(24)

In view of (5), (15), (16) and (24), for
2k3+k2

1
σ2+k2

2

σ2 < 0, we obtain the periodic solutions

q(x, y, t) = ±
√

−2k3 + k2
1σ

2 + k2
2

λ
ei(k1x+k2y+k3t) csc

[

±
√

−2k3 + k2
1σ

2 + k2
2

σ2
(x + y − ct)

]

,

(25)
where

0 <

[

±
√

−2k3 + k2
1σ

2 + k2
2

σ2
(x + y − ct)

]

< π,

and

q(x, y, t) = ±
√

−2k3 + k2
1σ

2 + k2
2

λ
ei(k1x+k2y+k3t) sec

[

±
√

−2k3 + k2
1σ

2 + k2
2

σ2
(x + y − ct)

]

,

(26)
where

∣

∣

∣

∣

∣

[

±
√

−2k3 + k2
1σ

2 + k2
2

σ2
(x + y − ct)

]
∣

∣

∣

∣

∣

<
π

2
,

and for
2k3+k2

1
σ2+k2

2

σ2 > 0, the following solitary solutions

q(x, y, t) = ±i

√

−2k3 + k2
1σ

2 + k2
2

λ
ei(k1x+k2y+k3t) csc h

[

±
√

2k3 + k2
1σ

2 + k2
2

σ2
(x + y − ct)

]

;

(27)
and

q(x, y, t) = ±
√

−2k3 + k2
1σ

2 + k2
2

λ
ei(k1x+k2y+k3t) sec h

[

±
√

2k3 + k2
1σ

2 + k2
2

σ2
(x + y − ct)

]

;

(28)
where

c = σ2 k1 + k2.

To find the solutions φ(x, y, t), according to (20), we have

V (ξ) =
2λ

1 − σ2

∫

U2(ξ)dξ (29)

By means of the equations (15), (16), (5) and (29) and using equation (24), we have
the following perodic solutions for φ(x, y, t):
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• When
2k3+k2

1
σ2+k2

2

σ2 < 0, we get

φ(x, y, t) =
−2σ

√
λ

1 − σ2
cot

[
√

−2k3 + k2
1σ

2 + k2
2

σ2
(x + y − ct

]

(30)

and

φ(x, y, t) =
−2σ

√
λ

1 − σ2
tan

[
√

−2k3 + k2
1σ

2 + k2
2

σ2
(x + y − ct

]

. (31)

• When
2k3+k2

1
σ2+k2

2

σ2 > 0, we get the following solitary wave solutions

φ(x, y, t) =
2σ

√
−λ

1 − σ2
coth

[
√

2k3 + k2
1σ

2 + k2
2

σ2
(x + y − ct

]

, (32)

and

φ(x, y, t) =
2σ

√
−λ

1 − σ2
tanh

[
√

2k3 + k2
1σ

2 + k2
2

σ2
(x + y − ct

]

(33)

where

c = σ2 k1 + k2.

4 Illustrations

We now plot a few solutions found in our previous discussions.

(a) (b)

Figure 1: q(x, y, t) in (25) and φ(x, y, t) in (30) where y = 0.1, k1 = 0.3, k2 = 0.5,

k3 = 1.5, σ = I, λ = 1.
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(a) (b)

Figure 2: q(x, y, t) in (25) and φ(x, y, t) in (30) where y = 0.1, k1 = 0.3, k2 = 0.5,

k3 = 1.5, σ = I, λ = −1.

(a) (b)

Figure 3: q(x, y, t) in (26) and φ(x, y, t) in (31) where y = 0.3, k1 = 1.3, k2 = 1.5,

k3 = 0.3, σ = I, λ = 1.

(a) (b)

Figure 4: q(x, y, t) in (26) and φ(x, y, t) in (31) where y = 0.3, k1 = 1.3, k2 = 1.5,

k3 = 0.3, σ = I, λ = −1.
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(a) (b)

Figure 5: q(x, y, t) in (27) and φ(x, y, t) in (32) where y = −0.1, k1 = 1.5, k2 = 0.3,

k3 = −0.6, σ = I, λ = 1.

(a) (b)

Figure 6: q(x, y, t) in (27) and φ(x, y, t) in (32) where y = −0.1, k1 = 1.5, k2 = 0.3,

k3 = −0.6, σ = I, λ = −1.

(a) (b)

Figure 7: q(x, y, t) in (28) and φ(x, y, t) in (33) where y = 0.6, k1 = −2, k2 = 0.7,

k3 = 0.5, σ = I, λ = 1.
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(a) (b)

Figure 8: q(x, y, t) in (28) and φ(x, y, t) in (33) where y = 0.6, k1 = −2, k2 = 0.7,

k3 = 0.5, σ = I, λ = −1.
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