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Abstract

In this article, we find traveling wave solutions of the coupled (2+1)-dimensional
Nizhnik-Novikov-Veselov and the (141)-dimensional Jaulent-Miodek (JM) equa-
tions. Based on the extended tanh method, an efficient method is proposed to
obtain the exact solutions to the coupled nonlinear evolution equations. The ex-
tended tanh method presents a wider applicability for handling nonlinear wave
equations.

1 Introduction

The investigation of the traveling wave solutions of nonlinear partial differential equa-
tions plays an important role in the study of nonlinear physical phenomena. Nonlinear
wave phenomena appears in various scientific and engineering fields, such as fluid me-
chanics, plasma physics, optical fibers, biology, solid state physics, chemical kinematics,
chemical physics and geochemistry. Nonlinear wave phenomena of dispersion, dissipa-
tion, diffusion, reaction and convection are very important in nonlinear wave equations.
In recent years, new exact solutions may help us find new phenomena. A variety of
powerful methods, such as the inverse scattering method [1, 13], bilinear transforma-
tion [7], tanh-sech method [10, 11], extended tanh method [5, 10], homogeneous balance
method [5] and Jacobi elliptic function method [15] were used to develop nonlinear dis-
persive and dissipative problems. The pioneer work of Malfiet in [10, 11] introduced
the powerful tanh method for reliable treatment of the nonlinear wave equations. The
useful tanh method is widely used by many authors such as [17-20] and the references
therein. Later, the extended tanh method, developed by Wazwaz [21, 22], is a direct and
effective algebraic method for handling nonlinear equations. Various extensions of the
method were developed as well. The next interest is in the determination of the exact
traveling wave solutions for the coupled (241)-dimensional Nizhnik-Novikov-Veselov
and the (1+1)-dimensional Jaulent-Miodek (JM) equations. Searching for the exact
solutions of nonlinear problems has attracted a considerable amount of research work
where computer symbolic systems facilitate the computational work. We implement
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236 Traveling Wave Solutions of Nonlinear Evolution Equations

the proposed method for the (2+1)-dimensional Nizhnik-Novikov-Veselov equations
16]
Ut + Klggs + TUyyy + Stz + quy = 3k(uv), + 3r(uw),, (1)
Uy = Vy, Uy = W,

and the (141)-dimensional Jaulent-Miodek (JM) equations

Ut + Ugpr + %vvmm + %vmvm — buu, — 6uvy, — %’UJI’U2 =0,
Vi + Vgpe — OULV — BUV, — %’UI’U2 =0,

(2)

where k,r,s and g are arbitrary constants. In the past years, many people studied
the Nizhnik-Novikov-Veselov equations. For instance, Pempinelli et al. [2] solved NNV
equations via the inverse scattering transformation, Zhang et al. [14] and Zhang et
al. [23] obtained the Jacobi elliptic function solution of the NNV equations by the
sinh-cosh method. Lou [9] analyzed the coherent structures of the NNV equation
by separation of variables approach. The coupled system of equations (2) associates
with the JM spectral problem [8], the relation between this system and Euler-Darboux
equation was found by Matsuno [12]. In recent years, much work associated with
the JM spectral problems has been done [24, 25]. Fan [4] has investigated the exact
solution of (2) using the unified algebraic method. Our first interest in the present work
is in implementing the extended tanh method to stress its power in handling nonlinear

equations so that one can apply it to models of various types of nonlinearity such as
(1) and (2).

2 The Extended Tanh Method

Wazwaz has summarized the use of the extended tanh method. A PDE

P(u, ug, gy Ugg, -..) = 0, (3)
can be converted to the following ODE

QU, U, U",U", ..)=0, (4)

by means of a wave variable £ = 2 — 8t so that u(x,t) = U(§) and using the following
change of variables (in the derivatives)

0 d 0 d 0? d?
_:_6_5 Q. T &0 —2:_25 (5)
ot d¢’ or  d§’ Ox dg

Eq. (4) is then integrated as long as all terms contain derivatives where integration
constants are considered zeros. Introducing a new independent variable
Y = tanh(e), (6)
leads to a change in the derivatives
d _ d
2 ¢ = (1 - Y2) ay 2
g = (=Y {2V % + (1 - Y?) 4= ), (7)

;2_33 = (1 -Y?){(6Y” - 2)% - 6Y(1-Y?) d§f2 +(1- Y2)2d(53 b
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and the remaining derivatives were derived similarly. The extended tanh method [19]
admits the use of finite expansion

U() = S(V) = a0+ S Jan¥* +a_, ¥ *, (8)
k=1

where m is a positive integer which will be determined. The parameter m is usually
obtained by balancing the highest order derivatives with the nonlinear terms in (4).
Substituting (8) into (4) results in algebraic equations in powers of Y, that will lead
to the determination of the parameters ay, (k =0,1,2,3,..m), a_, (k= 1,2,3,...,m)
and J3.

3 The (2+1)-Dimensional Nizhnik-Novikov-Veselov
Equations

In order to present some new types of the exact solutions to (1), we use the extended
tanh method. On using the traveling wave transformations

U€) =ao+ Y qlarY* +a_rY %],
’U(:E, Yy, t) = V(f) = bo + ZZ:l[bkyk + bfkyik], (9)
w(w,y,t) = Z(§) = co+ Sy [eaY * + eV A,

where £ = ax + \y — f5t, (1) becomes

—BU" + ka3U" 4+ rX3U" + saU’ + q\U' — 3ka(UV' +U'V) = 3rANUZ' +U'Z) = 0,
alU — AV =0,
AU —aZ' =0.
(10)
Balancing the U"’ term with the UZ’ in the first equation and U’ term with V' or U’
term with Z’ in the third equation in (10) gives

m+3=m+n+1lm+3=m+i+1lm+l=n+1lm+1=10+1, (11)

so that m = n = [ = 2. The extended tanh method admits the use of the finite
expansion
U(€) =ao+ a1Y +axV? + %5+ + 52,
V() =bo+biY + bV + 5L+ 522, (12)
Z(€) =co+aY +eY?+ 5 + 53
Substituting (12) into (10) and equating the coeflicient of the powers of Y to zero, we
obtain the following system of algebraic equations

0 = —pfai + 3aiboak + 3ag biak + 2a10° k — Ba_1 + 3bgaa_1 + 3bsaka_,
+20ka_1 + 3agherr + 3by aka_o + 3agakb_1 + 3asakb_;
+3a1akb_o — a1 A\qg — da_1q+ 2a1 M3 7 + 3aq \eor
+3apAc_17 4 3asAe_17 + 3ai c_or + 2X3a_17 + 3Acoa_1r
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+3Acea_17 4+ 3Ac1a_or — ajas — aa_18,
= 240ka_g — c_qaka_sb_o + 24X3a_or — 12Ac_sa_or,
6a’ka_1 — 9aka_sb_1 — 9 aka_1b_o 4+ 6 3a_17 — OAc_sa_17 — 9Ac_1a_or,
= 2Ba_g — 6byg aka_o — 400ka_q — 6aka_1b_1 — 6agakb_o
+c_oaka_sb_o +2Xa_oq — 6agAc_or — 6Ac_1a_11 — 40X3a_or
—6Acga_or + 12Xc_sa_or + 2aa_ss,
0 = aa_1—3bpaka_q1 —8c’ka_i — 3bjaka_s — 3agakb_1 + 9aka_sb_1
—3a1akb_o + 9aka_1b_o + Aa_1q — 3agAc_17 — 3a1Ac_or
—8X3a_17 — 3Acoa—_17 4+ 9Nc_2a_17 — 3Ac1a—_or + INc_1a_or + a1 s,

0 = —2Ba_o+ 6bgaka_o+ 16aka_s + 6aka_1b_q + 6agakb_o — 2 a_oq
+6agAc_or 4+ 6XAcra_17 + 16X3a_or + 6Acoa_or — 2ca_ss,

0 = —28as + 6asboak + 6a1biak + 6agbaak + 16a20k — 2a9)\q
+16a9 X3 + 6as\cor + 6aideir + 6aghear — 2azas,

0 = fBc_1 —3a1bgak — 3agbiak + 9asbiak 4+ 9a1boak — 8a1a’k

—3bacoka_1 — 3asb_1 + a1 A\q — 8ai \*r — a1 Acor — 3agherr
+9asc1r + 9a1 Acar — 3as Al — 3Acsa_17 + aias,

0 = 20as —6asbpak — 6a1byak — 6agboak + 12asboak — 40a203k
+2a9\q — 40as\3r — 6as Acor — 6ajAeir — 6agAcer + 12asAcor + 2asas,
0 = —Y9asbiak — Yarbsak + 6a10°k 4+ 6a1 \3r — Yasherr — a1 Acor,

=  —12asbscrk + 24as0’k + 24asb3r — 12asAcor, —Aby + a1+ a1 — Ab_1,

= —2aa_o+2X\b_o,
= ac_1—MAa_q,

= —2ac_s+ 2 a_g,
= —=2Xbs + 2a00q,

= 2Xby — 2aq2cx

= —2as\+ 2aco,

= —am A+ acy,

= b —aiq,

= 2a9) — 2aco,

= —2as\+ 2aco,

= —am A+ acy,

= b —aiq,

= 2a9) — 2aco,

= —2ac_o+2Xa_o

= ac_1—Aa_q
)

O O O O O O O O O o o o o o o o

= 2ac_9—2Xa_o,
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0 = mA—acy—ac_1+ Aa_q,

These algebraic equations can be solved by Mathematica and give the following sets
of solutions. The first set is

bQZb,QZC,QZCQZQ,QZQQZO,
1
bo = — {0+ Mg+ as — 3\cor},
3ak

A a_ir arl \2r al A Aa_1
b_1= ,b1 = —_— .
ko

The second set is
bQZb,QZC,QZCQZblzcl:CL,QZCLQZCLl:O,
1
bo = — {8+ Aqg + as — 3\cor},
3ak

b Na_qr Aa_1
= Cc_1 = .
a?k o

The third set is

bi1=bj=ci=c1=a_1=a; =0,
1

B A2k (3a3k + 3X3r)

+0 N ar — 6 ag N2aPkr — 16X akr — 3X2at cokr + N agr — 3ag A2

—8\"ar? — 3\5acor? + Aa’ks + XNa?rs},

b_o = 2a2, by = 2a2, Cco = 2)\2, C_o9 = 2)\2, as = 2a\,a_s = 2a\.

bo {BAa* k — 3apa’k? — 8Xa"k? + N2akq

The fourth set is

b22022b71:b12012071:0:a2:a,1:a1:0,
1

© Aa2k(3a3k + 3\3r)

+0 N ar — 6 ag N2aPkr — 16X atkr — 3X2at cokr + N agr — 3ag N2

—8X\"ar? — 3\5acor? + Aa’ks + XNa?rs},

b_o = 2a2, C_o = 2)\2, a_o = 2.

bo {Bra? k — 3apaSk? — 8Xa"k? + N2a'kq

The fifth set is

b,220722b71:b12012071ZQ,QZCL,l:CLl:O,
1

© Aa2k(3a3k + 3\3r)

+0B N ar — 6 ag N2aPkr — 16X atkr — 3X2at cokr + N agr — 3ag A2

—8\"ar? — 3\5acor? + Aa’ks + XNa?rs},

by = 2a2, Cco = 2)\2, as = 2.

bo {BAa* k — 3apalk? — 8Xa"k? + N2akq
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In view of these we obtain the following kinds of solutions

ui(z,y,t) = ag + a1 tanh & + a_1 coth &,
2

a1 N1 A a_1r
3 tanh{ —+ Wcothf,

ka

1
vy (z,y,t) = ga—k{ﬂ + Ag + as — 3hcor} +

A Aa_
wi(z,y,t) =co+ gtanhﬁ 4 20t coth¢,
a a
ug(x,y,t) = a—1 coth &,
1 Na_qir
vz, y,t) = 3a—k{6+ Aq + as — 3heor} + Wcoth{,
Aa_
w2($ayat)200+ C;lCOthé.a

uz(x, y,t) = ag + 2ha{tanh® & 4 coth? £},
v3(x, y,t) = by + 202 {tanh® £ + coth? £},
w3(z,y,t) = co + 2X*{tanh?® £ + coth? £},

ug(z,y,t) = ag + 2\ coth? €,
va(z,y,t) = by + 202 coth? €,
wy(z,y,t) = co + 22% coth? €,

and

us(z,y,t) = ap + 2 a tanh? €,
vs(x,y,t) = by + 202 tanh? ¢,
ws(z,y,t) = co + 20?7 tanh? €,

where & = ax + \y — (t, ag,a1,a—1 and ¢y are arbitrary constants, by defined in the
fifth set.

4 The (1+1)-Dimensional Jaulent-Miodek (JM) Equa-
tions

In this section, we will use the extended tanh method to handle (2). Let

u(x, t) = U(f) = ag + Z;n:l[akyk + a,kY*k],

n _ 1
o, 1) = VIE) = bo+ T Y™ +b0Y 7, 19)
where £ = a(x + t). Then (2) becomes

afU’ + PV + 3GV 4 GV — 6ol — 6aUVY! — UVE=0, ()

afBV' + V" —6aU'V — 6aUV’ — L52y'V2 = (.
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Balancing the highest derivatives term with highest nonlinear terms in (14) gives
m+3=2n+3=m=2n,n+3=3n+1, (15)
so that m = 2,n = 1. The extended tanh method admits the use of the finite expansion

U(f) = CL0—|—CL1Y—|—CL2Y2+ a% + (;/;22,

V(€) =by+biY + %2 (16)

Substituting (16) into (14) and equating the coeflicient of the powers of Y to zero, we
obtain the following system of algebraic equations

3
0 = pfaja—6agaia — §a1bga — 6agbobia — 2a10° — 3b0b1a3 + Baa_1 — 6agaa_q
—b6asaa_q1 — 5()30[@,1 — §bfoza,1 —2a3a_1 — 6ajaa_o — 6agboarb_1

—3&1()10&(),1 - 3b00[3b,1 - 3b1aa,1b,1 - galabal

0 = —24a’a_s+ 12aa%, — 18a°b? | + 9aa_sb? |,

15aa_1b>
0 = —60[3 a_1+ 18()[&,1&,2 - 9boagb,1 + 12()00[&,2(),1 + %,
0 = 6aa31 — 2a1aa_9 + 12ap0a_o + 3bgaa,2 +4003a_q — 1204@32

+9bgaa_1b_1 + 6biaa_sb_1 + 6a0ab%1 + 30 agbal — 9aa,2b%1,
3bgaa,1

5 +8a% a_1 + 6ara_o — 18aa_1a_o + 6aghgab_1

0 = —Paa_1+6 apaa_q +

9a;ab? 15ca_1b2
—|—12b0 O[Bbfl + 3b1aa,1b,1 —12 bo O[Q,Qbfl + N1 - ad-1 71,

2 2
0 = =3bgbiaa_q — 6aa31 + 2Baa_s — 12agaa_o — 3 bgaa,g -3 bfaa,g —16 a®a_y
—|—3 alboab,1 -9 boaaflbfl - 6b1aa,2b,1 -6 aoabal + 3 CLQQb%l - 12a3b31,
0 = —6&?0[ + 2Basa — 12 ag asax — 3 as bga —9 a1 bgbiaa — 6 aob?a — 16 aza®

—12 bfo;’ + 3 b2 blaa,l + 3bfo¢a,2 - 3&1()00[(),1 - 6&2()10[(),1 - 3a2ab31,

0 = —faia+6 apara— 18ajasa + galbga + 6agbobrar — 12a2bpb
—%al bfoz +8a1a® + 12b0b1a3 + 6asaa_1 + gbfaa,l + 3a1biab_1q,
0 = 6aja—2Baza + 12apa2a — 12a3a + 3az by + 9a1bobra
+6 agbiar — 9 agbia + 40aza® + 30 b3a® + 6azbiab_q,
0 = 18ajasa + 12a0bgbiax + galbfa — 6a1a® — 9b0b1a3,
0 = 12a3a + 9azbia — 24aza’® — 18b7a?,
0 = —6aibpa+ Bbia — 6apghiar — %bg bia — 2b1a® — 6bgava_1 — 6 braa_s + afb_q
15 15

1
—6&00&(),1 - 6&20&(),1 - ?bgab,1 - b%o&b,1 - 20[3(),1 — ;blabal,

2
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15ab3
0 = —6a%_1 + 18aa_sh_; + O; -1
0 = 12()00[&,2 + 12aa,1b,1 + 15()00&()%1 = 0, 6b00[CL,1 + 6b1aa,2 - 60&(),1 + 6&00&(),1

15b2ab_ 1561 aub? 15ab?
B o R T YN AN Il s B L |
2 2 2
0 = —12bpaa_g —12aa_1b_; — 15bgab® | = 0, —12a3 boar — 12 arbyar — —15bgb3a,
1 1
0 = 6&1()00& - ozbloz + 6&0()10& - 18&210[ + ;bg bla - ;bi’a
15

+8 b1a® + 6asab_1 + ?bfab,l,

0 = 12asbga + 12a1b1a + 15bbiar,
15

0 = 18ashia+ ?bi’a — 6b1a’.

These algebraic equations can be solved by Mathematica to yield the following sets
of solutions. The first set is

a; = a—-1 = bo = ap = 0, a2 = a_92 = 20[2, bl = b,1 = —2’L'O[,6 = —160[2.

The second set is

ag=a_1=byg=by=a3y=0,a_o = 2a2, b_1=—2ia,a9 = —a2,6 = —4a2.

The third set is

o? 3o

bop=a1=a_1=0,bp =b_1=—ia,=ag = 7,a2:a,2: I,ﬂ:—4a2.
The fourth set is
a_1=a_o=0b_1=0,a0= ?(% +a?),a; = ib%a,bl = —ia,ap = fiTa,
8= %(Gbg —2a?).
The fifth set is
bo=a, =a_1 =0,a0 = —20°, a3 = a_o = 2a%, by = —2ia,b_; = 2ia, B = 8a’.

In view of these we obtain the following kinds of solutions

u1(z,t) = 202 {tanh?(a[z — 16a%t]) + coth?(afz — 16a%t])},
vy (z,t) = —2iaf(tanh(afz — 16a°t]) + coth(afz — 16a°t])},

uz(z,t) = —a® 4 202 coth?(afz — 40°t]),
va(z,t) = —2iccoth(afr — 4a’t]),
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2
us(, t) % + %O‘{tanhz’(a[x — 402t)) + coth?(afz — 4a24])},

v3(w,t) = —ia{(tanh(afr — 4a*t]) + coth(alr — 4at])},

—1 b2 b 1
wae,t) = S(L+ad)+ ! ;O‘ tanh(afz + 5 (657 — 20°)¢))
1
+‘%O‘ tanh® (afz + (653 — 202)1)),
1
ve(x,t) = by — iatanh(afz + 5(6()8 —2a)t)),

and

us(x,t) = —2a2 + 2% {tanh®(a[z + 8a’t]) + coth?(afz + 8a’t])},
vs(x,t) = —2iaf(tanh(a[z + 8a*t]) — coth(afz + 8a?t])},

where by is arbitrary constant.

5 Conclusions

In this article, the extended tanh method was applied to give the traveling wave
solutions of the coupled (2+1)-dimensional Nizhnik-Novikov-Veselov and the (1+1)-
dimensional Jaulent-Miodek (JM) equations. The extended tanh method was success-
fully used to establish these solutions. Many well know nonlinear wave equations were
handled by this method to show the new solutions compared to the solutions obtained
in [4, 16]. The performance of the extended tanh method is reliable and effective and
gives more solutions. The applied method will be used in further works to establish
entirely new solutions for other kinds of nonlinear wave equations.

Acknowledgment. The authors would like to thank the referees for their com-
ments on this paper.

References

[1] H. Segur and M. J. Ablowitz, Solitons and Inverse Scattering Transform, Philadel-
phia: STAM; 1981.

[2] F. Pempinelli, M. Manna, J. J. P. Leon and M. Boiti, On the spectral transform of
the Korteweg-de Vries equation in two spatial dimensional, Inverse Probl., 2(1986),
271-279.

[3] M. A. Abdou and S. A. El-Wakil, New exact traveling wave solutions using mod-
ified extended tanh function method, Chaos Soliton Fractal, 31(2007), 840-852.



244 Traveling Wave Solutions of Nonlinear Evolution Equations

[4] E. G. Fan, Uniformly constructing a series of explicit exact solutions to nonlinear
equations in mathematical physics, Chaos Solitons Fractals, 16(2003), 819-839.

[5] H. Zhang and E. Fan, A note on the homogeneous balance method, Phys. Lett. A
, 264(1998), 403-406.

[6] E. Fan, Extended tanh function method and its applications to nonlinear equa-
tions, Phys. Lett. A, 277(2002), 212-218.

[7] R. Hirota, Direct method of finding exact solutions of nonlinear evolution equa-
tions, In: Bullough R, Caudrey P, editors. Backlund tansformations, Berlin:
Springer; (1980) 1157-1175.

[8] K. Miodek and M. Jaulent, Nonlinear evolution equations associated with energy
dependent Schrodinger potentials, Lett. Math. Phys., 1(1976), 243-250.

[9] S. Y. Lou, On the coherent structures of the Nizhnik Novikov Veselov equation,
Phys. Lett. A, 277(2000), 94-100.

[10] W. Malfliet, Solitory wave solutions of nonlinear wave equations, Am. J. Phys.,
60(1992), 650-654.

[11] W. Hereman and W. Malfliet, The tanh method I: exact solutions of nonlinear
evolution and wave equations, Phys. Scripta, 54(1996) , 563-568.

[12] Y. Matsuna, Reduction of dispersionless coupled KdV equations to the Euler-
Darboux equation, J. Math. Phys., 42(2001), 1744-1760.

[13] A. J. Morrison, E. J. Parkes and V. O. Vakhnenko , A Bécklund transforma-
tion and the inverse scattering transform method for the generalised Vakhnenko
equation, Chaos Soliton Fractal, 17(2003), 683-692.

[14] H. Q. Zhang and Y. J. Ren, A generalized F-expansion method to find abundant
families of Jacobi Ellipitic function solutions of the (2+41)-dimensional Nizhnik
Novikov Veselov, Chaos Solitons Fractal, 27(2006), 959-979.

[15] Z. Yan, Abundant families of Jacobi elliptic function solutions of the (2+1)-
dimensional integrable Davey-Stewartson-type equation via a new method, Chaos
Soliton Fractal, 18(2003), 299-309.

[16] A. Bakir and E. Yusufoglu, Exact solutions of nonlinear evolution equations, Chaos
Solitons Fractals, 37(2008), 842-848.

[17] A. M. Wazwaz, The tanh method for traveling wave solutions of nonlinear equa-
tions, Appl. Math. Comput., 154(2004), 713-723.

[18] A. M. Wazwaz, Traveling wave solutions of generalized forms of Burger, Burger-
KdV and Burger-Huxley equations, Appl. Math. Comput.,169(2005), 639-656.

[19] A. M. Wazwaz, The tanh method: exact solutions of the Sine-Gordon and Sinh-
Gordon equations, Appl. Math. Comput., 167(2005), 1196-1210.



E. M. E. Zayed and H. M. Rahman 245

[20] A. M. Wazwaz, The tanh method: solitons and periodic solutions for the Dodd-
Bullough-Mikhailov and the Tzitzeica-Dodd-Bullough equations, Chaos Soliton
Fractal, 25(2005), 55-63.

[21] A. M. Wazwaz, The extended tanh method for new soliton solutions for many
forms of the fifth-order KdV equations, Appli. Math. Comput. 184(2007), 1002—
1014.

[22] A. M. Wazwaz, New solitary wave solutions to modified forms of Degasperis-
Procesi and Camassa-Holm equations, Appl. Math. Comput., 186(2007), 130-141.

[23] H. Q. Zhang, B. Li and T. C. Xia, new explicit and exact solutions for the Nizhnik-
Novikov-Veselov equation, Appl. Math. E. Notes, 1(2001), 139-142.

[24] Y. P. Zheng, Separability and dynamical r-matrix for the constrainted flows of the
Jaulent Miodek hierarchy, Phys. Lett. A, 216(1996), 26-32.

[25] R. G. Zhou, The finite band solution of the Jaulent Miodek equation, J. Math.
Phys. 38(1999), 2535-2546.



