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Abstract

The theory of instability in a detailed Lotka-Volterra model has been investi-
gated for the spatially homogeneous and inhomogeneous cases. In the spatially
homogeneous case, we show that the occurrence of oscillation (instability) is due to
the partial neglect of the initiation step and/or constant reactant approximation–
a violation of the detailed chemistry. In the spatially distributed case, the exis-
tence of a finite blow-up time (tb) is found to be due to a combination of diffusion
coefficient and the reaction rates. The intervals of existence of tb are obtained.

1 Introduction

In the strict sense of the term, reaction-diffusion systems are systems involving con-
stituents locally transformed into each other by chemical reactions and transported
in space by diffusion. The word reaction has been used in a very broad sense, much
broader than the one used in physical chemistry to mean “chemical reaction”. Although
they arise quite naturally in chemistry and chemical engineering, they also serve as a
reference for the study of a wide range of phenomena encountered beyond the strict
realm of chemical science such as environmental and life sciences [1–11, 13–16]. For
example, the reaction-diffusion equation has served as a means of explaining compe-
titions between birth and death rates, relation between people and disease, activator
and inhibitor system, prey and predator model, see e.g. [1, 2].

The mathematical theory of reaction-diffusion systems in a closed vessel in the
absence of external forces evolve eventually to a state of equilibrium, whereby the
constituents involved are distributed uniformly in space and each elementary reactive
step is counteracted by its inverse. Thus, there is a spontaneous transfer from the
zones of high concentrations of the constituents to those of lower concentration. In this
case, diffusion provides the transport of the constituents, the coupling between species
reaction and also create organizations in space [10].

In the past, the sustained oscillations in the Lotka scheme has been shown to be due
to an effective source term arising from the neglect of fuel consumption [3], while [4]
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further stressed the need to be careful when making approximations as the inclusion of
a small parameter could alter the stability of a system. The reaction step in which the
reactant species decomposes to produce the intermediates (radical or chain carrier),
which propagates reactions is known as the initiation step and is often neglected. This
neglect, which is largely due to its transient nature serves as a safe simplification for
easy mathematical handling [6]. However, since emphasis is laid on satisfying basic
physical principles and on preserving chemical reasonableness as simple as possible,
the initiation step is sometimes included [11, 15]. In the spatially distributed system,
diffusion was known to be a stabilizing quantity [10]. However, it has been shown
that for a given parameter regime and realistic approximations, diffusion could be a
destabilizing quantity [8.16]. A frequently used approximation is the constant reactant
or chemical pool approximation. In this case, intermediates are supposed to be much
more reactive than the relatively stable reactant F , so that their concentrations will
always be relatively low compared with the initial concentration of the reactant F [3–7].

In view of the above, we study the behaviour of solutions in a detailed or modified
Lotka-Volterra model, which is formulated by incorporating the hitherto neglected
initiation step into the Lotka-Volterra model [3].

2 Problem Formulation

We consider a complete reaction kinetics consisting of the following elementary steps:
(1)-initiation, (2)-branching, (3)-propagation and (4)-termination steps

F
k′

i−→ A, wi = k′iF, (1)

F +A
k′

1−→ 2A, w1 = k′1FA, (2)

A+ B
k′

2−→ 2B, w2 = k′2AB, (3)

F +B
k′

3−→ P, w3 = k′3FB, (4)

where F represents reactant concentration and P is the inert product; A and B rep-
resent the two intermediates (radicals) formed autocatalytically; wi, w1, w2 and w3

represent the local reaction rates and k′i, k
′
1, k

′
2 and k′3 are the rate constants. The

above example involves the irreversible conversion of a reactant F to a final product P
through two intermediates A and B. The initiation step kick starts the reaction and
also lead to the production of radicals; the propagation step leads to the production
of radicals of the same proportion; the branching step is a form of propagation usually
leading to the production of additional radicals of same or different types; while the
termination reaction leads to the consumption or termination of the radicals.

In view of the reaction (1)-(4), the one-dimensional governing equations for the
reactive system taking place within an interval Ω are,

∂F

∂t
= D1

∂2F

∂x2
+WF , (5)
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∂A

∂t
= D2

∂2A

∂x2
+WA, (6)

∂B

∂t
= D3

∂2B

∂x2
+WB , (7)

where Di(i = 1, 2, 3), denote the diffusion species; WF , WA and WB represent the
global reaction rates. The relations between the global and local reaction rates are

WF = −wi − w1 − w3 = −k′iF − k′1FA− k′3FB,

WA = wi + w1 − w2 = k′iF + k′1FA− k′2AB,

WB = w2 −w3 = k′2AB − k′3FB.

(8)

Assuming that the reactant F diffuses into the system from the outside, where its value
is assumed constant at F0, then, (5)-(8) become

∂F

∂t
= D1

∂2F

∂x2
− k′i(F − F0) − k′1FA− k′3FB, (9)

∂A

∂t
= D2

∂2A

∂x2
+ k′i(F − F0) + k′1FA− k′2AB, (10)

∂B

∂t
= D3

∂2B

∂x2
+ k′2AB − k′3FB. (11)

The relevant initial and boundary conditions for the system are

F (x, 0) = F0(x) ≥ 0, A(x, 0) = A0(x) ≥ 0, B(x, 0) = B0(x) ≥ 0, x ∈ Ω,
F (x, t) = A(x, t) = B(x, t) = 0, t > 0, x ∈ ∂Ω.

(12)

It is convenient to use the dimensionless variables

f =
F

F0
, u =

A

F0
, v =

B

F0
, τ = k2t, and x′ =

x

L
, (13)

where L is a characteristic length. After dropping primes, equations (9)-(12) become

∂f

∂τ
= d1

∂2f

∂x2
+ ki(1 − f) − k1F0fu − k3F0fv, (14)

∂u

∂τ
= d2

∂2u

∂x2
− ηki(1 − f) + k1F0fu − F0uv, (15)

∂v

∂τ
= d3

∂2v

∂x2
+ F0uv − k3F0fv, (16)

where

ki =
k′i
k2
, kj =

k′j

k2
, dj =

Dj

k2L2
, where (j = 1, 2, 3),

and η is introduced for case study;

η =

{

0, Lotka-Volterra model
1, modified Lotka-Volterra model.

(17)
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The dimensionless initial and boundary conditions are

f(x, 0) = f0(x), u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω (18)

and
f(x, τ) = 0, u(x, τ) = 0, v(x, τ) = 0, x ∈ ∂Ω (19)

where u0 = A0

F0

, v0 = B0

F0

. Investigations and analysis of most practical applications re-
quire detailed information of the physics of the problem. Often times, studies are based
on simplifying mathematical approximations in order to allow for easy mathematical
handling and interpretations.

3 Spatially Homogeneous System

The reduced spatially homogeneous forms of (14)-(16) are

df

dτ
= ki(1 − f) − k1F0fu− k3F0fv, (20)

du

dτ
= −ηki(1 − f) + k1F0fu − F0uv, (21)

dv

dτ
= F0uv − k3F0fv. (22)

The steady-state, or time-independent solutions of the above systems are obtained by
setting df

dτ
= du

dτ
= dv

dτ
= 0. It may be desirable to study these equilibrium solutions

and their stability for the 3-dimensional space for some special cases. The Jacobian
matrix of a 3-dimensional system has 3 eigenvalues; one which must be real and the
other two can be either both real or complex conjugate. The nature of these stationary
points depend on the signs of these eigenvalues.

3.1 Modified Lotka-Volterra Model (η = 1, ki 6= 0)
This case represents the detailed reaction scheme incorporating initiation with rate

constant ki and fuel consumption.

df

dτ
= ki(1 − f) − k1F0fu− k3F0fv, (23)

du

dτ
= −ki(1 − f) + k1F0fu − F0uv, (24)

dv

dτ
= F0uv − k3F0fv. (25)

The above system has a non-trivial singularity at the point f = u = 1
4

(

−ki +
√

k2
i + 8ki

)

,

v = 0. The characteristic equation obtained from the Jacobian matrix shows that the
eigenvalues are given by (λ1, λ2, λ3) = (0, 0,−ki). There is no indication of any oscil-
lation and the system will decay to equilibrium. The field and parametric plots are
shown in Figures 2 and 3 respectively.
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Figure 1: Field plot v(t) and u(t) ki=k1=k3=1, η=0.

3.2 Modified Lotka-Volterra Model (η = 0)
This case corresponds to partial initiation process and the system of equations

(20)-(22) reduce to the Lotka-Volterra scheme.

df

dτ
= ki(1 − f) − k1F0fu− k3F0fv, (26)

du

dτ
= k1F0fu − F0uv, (27)

dv

dτ
= F0uv − k3F0fv. (28)

It is evident that the system possesses singularities at points P1 (f = 1, u = v = 0)

and P2

(

f = u = v = 1
4

(

−ki +
√

k2
i + 8ki

))

. The steady state P1 which corresponds

to the initial data is saddle in nature, which is unstable. This is because there is
at least one positive eigenvalue. Similarly, at point P2, computation shows that the
eigenvalues have one real and a pair of complex conjugate eigenvalues with positive
real part, which is an unstable focus. This is consistent with the oscillatory behaviour
obtained numerically [3, 4]. The field and parametric plots are shown in Figures 1 and
4 respectively.

3.3 Neglect of Initiation (ki = 0)
In the absence of initiation process, equations (20)-(22) reduce to

df

dτ
= −k1F0fu − k3F0fv, (29)

du

dτ
= k1F0fu − F0uv, (30)

dv

dτ
= F0uv − k3F0fv. (31)
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Figure 2: Field plot v(t) and u(t) ki=k1=k3=η=1.

u(t)

v(t)

Figure 3: Parametric plots u(t) and v(t), u(0)=v(0)=0.1, f(0)=1.

There is no realistic non-trivial steady state solution satisfying the system. However,
since the system can be obtained by fixing ki = 0 in section 3.2, the trivial steady state
solution depicts stability as there is no indication of any oscillation. The non-oscillatory
character is shown in Figure 5, which confirms [3].

3.4 Neglect of Reactant (F = F0)

In this case, assuming that the reactant is constant(f = F0 = 1), then equations
(20)-(22) reduce to a two-dimensional system

du

dτ
= k1F0fu − F0uv, (32)

dv

dτ
= F0uv − k3F0fv. (33)

The singularity of equations (32) and (33) occur at (u, v)=(0, 0) and (u, v)=(k3, k1).
The corresponding eigenvalues for the trivial(initial data) steady state is λ1 = k1 and
λ2 = −k3 (saddle), while it is λ1,2 = ±i

√
k1k3(spiral) for the non-trivial case. Further

analysis shows that oscillation is in the non-trivial critical point [3, 4].
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u(t)

v(t)

Figure 4: Parametric plots u(t) and v(t), u(0)=v(0)=0.1, f(0)=1.

u(t)

v(t)

Figure 5: Parametric plots u(t) and v(t), u(0)=v(0)=0.1, f(0)=1.

u(t)

v(t)

Figure 6: Parametric plots u(t) and v(t), u(0)=v(0)=0.1.
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4 Spatially Distributed System

Assume that the reactant (F ) is constant (f = 1), the system of equations reduce to

∂u

∂τ
= d2

∂2u

∂x2
+ k1u− uv, (34)

∂v

∂τ
= d3

∂2v

∂x2
+ uv − k3v, (35)

subject to
u(x, 0) = u0(x), v(x, 0) = v0(x). (36)

A solution of the above system of partial differential equation is a signal that is propa-
gated into a space-time domain from the boundary of that domain. Thus, using these
initial conditions, we apply ansatz to equations (33) and (34) in the forms [8, 16],

u(x, τ) = θ(τ )
(

ψ(τ ) + x2
)

and v(x, τ) = φ(τ ) exp(−x2µ(τ )). (37)

For a one dimensional system with concentrations u(x, t) and v(x, τ), the system can
be maintained at

u(0, t) = 1 and v(0, t) =
1√
2π
, (38)

u(x, 0) = x2 and v(x, 0) =
1√
2π

exp

(

−x2

2

)

. (39)

It is obvious from (39) that

θ(0) = 1, ψ(0) = 0, φ(0) =
1√
2π
, µ(0) =

1

2
. (40)

After putting equations (37) into (34)-(35) and collecting terms (in x0 and x2), we
obtain the ordinary differential equations,

x0 : θψ′ + θ′ψ = 2d2θ + k1θψ, (41)

x2 : θ′ = k1θ, (42)

x0 : φ′ = −2d3µφ+ φθψ − k3φ, (43)

x2 : − µ′ = 4d3µ
2 + θ. (44)

By direct integration of (41)–(42) subject to initial conditions (40)

ψ(τ ) = 2d2τ and θ(τ ) = exp(k1τ ). (45)

After inserting the expression for θ(τ ) in (45) into (44), the Riccati equation (44) gives
[12, 14]

µ(τ ) =

√

exp(k1τ )

4d3









Y1

(

4
√

d3 exp(k1τ)

k1

)

− C1J1

(

4
√

d3 exp(k1τ)

k1

)

−Y0

(

4
√

d3 exp(k1τ)

k1

)

+C1J0

(

4
√

d3 exp(k1τ)

k1

)









, (46)
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where C1 =

√
d3Y0

„

4
√

d3

k1

«

+Y1

„

4
√

d3

k1

«

√
d3J0

„

4

√
d3

k1

«

+J1

„

4

√
d3

k1

« . Substituting (45) and (46) into (43), we have a

separable first order differential equation

dφ

φ
=









−
√

d3 exp(k1τ )

Y1

(

4
√

d3 exp(k1τ)

k1

)

−C1J1

(

4
√

d3 exp(k1τ)

k1

)

−Y0

(

4
√

d3 exp(k1τ)

k1

)

+ C1J0

(

4
√

d3 exp(k1τ)

k1

) + U









dτ, (47)

where U = U(τ ) = 2d2τ exp(k1τ ) − k3. Taking integration of (47) and using the fact
that d

dx
J0(x) = −J1(x),

d
dx
Y0(x) = −Y1(x),

φ = C2
exp [V (τ )]

√

−Y0

(

4
√

d3 exp(k1τ)

k1

)

+C1J0

(

4
√

d3 exp(k1τ)

k1

)

, (48)

where

V (τ ) =
2d2

k1

(

τ − 1

k1

)

exp(k1τ ) − k3τ, (49)

and C2 can be determined using φ(0) = 1√
2π

. The closed-form solutions are

u(x, τ) = exp(k1τ )
[

2d2τ + x2
]

, (50)

v(x, τ) =
C2 exp

(

V (τ ) − x2µ(τ )
)

√

−Y0

(

4
√

d3 exp(k1τ)

k1

)

+C1J0

(

4
√

d3 exp(k1τ)

k1

)

. (51)

It is observed from (51) that v(x, τ) exhibits finite time blow-up, which occurs when

J0

(

4
√

d3 exp(k1τ)

k1

)

(√
d3Y0

(

4
√

d3

k1

)

+ Y1

(

4
√

d3

k1

))

−Y0

(

4
√

d3 exp(k1τ)

k1

)

(√
d3J0

(

4
√

d3

k1

)

+ J1

(

4
√

d3

k1

))

= 0,
(52)

provided
k1 > 0, and d3 > 0. (53)

Analysis of (52) in an interactive manner shows that as k1 → ∞ for d3 fixed, the
blow-up time satisfies the condition

1 < τb ≤ 1.5. (54)

Similarly, for fixed k1 (k1 = 1) shows that d3 is bounded in the interval 0 < d3 ≤ 1,
while the blow-up time satisfies the condition

1 < τb <∞. (55)
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5 Conclusion

The behaviour of the modified Lotka-Volterra model for the spatially homogeneous
and distributed cases have been examined. In the spatially homogeneous case, using
stability analysis, the destabilizing effect of approximations on the system is observed
and confirms previous works in the literature. In the spatially distributed case, it has
been suggested that not only is the diffusion coefficient responsible for finite time blow-
up, the rate constant(s) are also significant. Finally, it is necessary to state that the
conjectures raised in this paper may provoke mathematical questions in other areas
other than kinetic theory.
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