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Abstract

In this paper, a survey of the most basic results on characterizations, methods

of classification and processes of construction of D-semiclassical orthogonal poly-

nomials is presented. In particular, the standard perturbation, the symmetriza-

tion process are revisited and some examples are carefully analyzed. Symmetriza-

tion after perturbation is studied and some examples are given.

1 Introduction and Preliminaries

By D-classical monic orthogonal polynomials sequences: (MOPS), we refer to Hermite,
Laguerre, Bessel and Jacobi polynomials where D is the derivative operator. The
orthogonality considered here is related to a form (regular linear form) [6,30] not only
to an inner product. Since 1939, a natural generalization of the D-classical character is
the D-semiclassical one introduced by J. A. Shohat in [41]. From 1985, this theory has
been developed, from an algebraic aspect and a distributional one, by P. Maroni and
extensively studied by P. Maroni and coworkers in the last decade [1,12,16,30,34,36].
A form u is called D-semiclassical when it is regular and satisfies the Pearson equation

D(Φu) + Ψu = 0 (1)

where (Φ, Ψ) are two polynomials , Φ monic with deg Φ ≥ 0 and deg Ψ ≥ 1. The corre-
sponding (MOPS) {Bn}n≥0 is called D-semiclassical. Moreover, if u is D-semiclassical,
the class of u, denoted s is defined by

s := min

(
max(deg Φ− 2, deg Ψ − 1)

)
(2)

where the minimum is taken over all pairs (Φ, Ψ) satisfying (1). In particular, the class
s is greater to 0 and when s = 0 the D-classical case is recovered [34].
In 1985, M. Bachene [3, page 87] gave the system fulfilled by the coefficients of the three-
term recurrence relation of a D-semiclassical (MOPS) of class 1 using the structure
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relation (see (26) below). In 1992, S. Belmehdi [4,page 272] gave the same system (in
a more simple way) using the Pearson equation (1). This system is not linear and it is
very difficult to solve. As a consequence, D-semiclassical forms of class 1 are classified
by S. Belmehdi in [4] through a distributional study by taking into account (1) and by
giving an integral representation for any canonical case except the case of Bessel kind.

In 1996, J. Alaya and P. Maroni have established the linear system fulfilled by
the coefficients of the three-term recurrence relation of a symmetric D-Laguerre-Hahn
(MOPS) of class 1 [1] that is to say the (MOPS) associated with a regular form u

satisfying the functional equation

D(Φu) + Ψu + B
(
x−1u2

)
= 0

where Φ, Ψ, B are three polynomials with Φ monic and

max

(
deg Ψ − 1, max(deg Φ, deg B) − 2

)
= 1.

Consequently, the authors give the classification of symmetric D-semiclassical forms of
class 1 as a particular case (B ≡ 0). There are three canonical situations:

• The generalized Hermite formH(µ) (µ 6= 0 , µ 6= −n− 1
2 , n ≥ 0) and its (MOPS)

satisfying

{
βn = 0 , γn+1 = 1

2 (n + 1 + µ(1 + (−1)n)) , n ≥ 0,

D(xH(µ)) + {2x2 − (2µ + 1)}H(µ) = 0.
(3)

• The generalized Gegenbauer G(α, β) (α 6= −n−1 , β 6= −n−1 , β 6= −1
2

, α+β 6=
−n− 1 , n ≥ 0) and its (MOPS) satisfying





βn = 0 , n ≥ 0,

γ2n+1 = (n+β+1)(n+α+β+1)
(2n+α+β+1)(2n+α+β+2) , n ≥ 0,

γ2n+2 = (n+1)(n+α+1)
(2n+α+β+2)(2n+α+β+3)

, n ≥ 0,

D
(
x(x2 − 1)G(α, β)

)
+

{
− 2(α + β + 2)x2 + 2(β + 1)

}
G(α, β) = 0.

(4)

For further properties of the generalized Hermite polynomials, the generalized
Gegenbauer polynomials and their orthogonality relations see [1,4,6,14,40].

• The form B[ν ] of Bessel kind (ν 6= −n− 1 , n ≥ 0) and its (MOPS) satisfying






βn = 0 , γ1 = − 1
4(ν+1) ,

γ2n+2 = 1
4

n+1
(2n+ν+1)(2n+ν+2) , n ≥ 0,

γ2n+3 = −1
4

n+1+ν
(2n+ν+2)(2n+ν+3)

, n ≥ 0,

D
(
x3B[ν ]

)
−

{
2(ν + 1)x2 + 1

2

}
B[ν ] = 0.

(5)
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For an integral representation of B[ν ] and some additional features of the associated
(MOPS) see [13,39].

Other families of D-semiclassical orthogonal polynomials of class greater to 1 were
revealed by solving functional equations of the type

P (x)ũ = Q(x)u (6)

where P, Q are two polynomials cunningly chosen and u, ũ two forms. In fact, the
product of a form by a polynomial is one of the old construction process of forms;
in 1858, Christoffel proved that the product of a positive definite form by a positive
polynomial is still a positive definite form [7]. This result has been generalized by J.
Dini and P. Maroni in [9] since 1989 where it was proved that, under certain regularity
conditions, the product of a regular form ũ by a polynomial P is a regular form. In
that work, the D-semiclassical character is studied. It is also interesting to consider the
inverse problem, which consists of the determination of all regular form ũ satisfying (6)
where Q(x) = −λ ∈ C − {0} and u is a given regular form. P. Maroni has considered
the case P (x) = x − τ , τ ∈ C in 1990 [31], the case P (x) = x2 in 1996 [35] and the
case P (x) = x3 in 2003 [36].

In 1992, F. Marcellan and P. Maroni have considered the case P (x) = Q(x) =
x− τ , where u is a given regular D-semiclassical form [23]. For other published papers
concerning the problem (6) see [12,15,17,21,22,43].

Symmetric D-semiclassical forms of class 2 satisfying (1) with Φ(0) = 0 are well
described in [39] by M. Sghaier and J. Alaya (in 2006) through there an original char-
acterization by taking into account (6). In 2007, symmetric D-semiclassical forms of
class 2 are also classified by a distributional study likewise in [4], by A. M. Delgado
and F. Marcellan [8] but it seems that integral representations are given only in the
positive definite cases (see Remark 4.2. below).
For other relevant research work on the subject from other points of view and with
perhaps other operators see [2,5,20,38].

The aim of this survey is threefold. First, to present an overview about the char-
acterizations and processes of construction of D-semiclassical orthogonal polynomials
( see section 1 and section 2). Then, to revise the standard perturbation (see (6) for
deg P = 1 and deg Q = 0) by taking into account the framework [31] and the limiting
case (q → 1) in [12] and to analyze the symmetrization process according to [2,33] by
adding some complementary results (see section 3 and section 4). Finally, to highlight
some examples of D-semiclassical orthogonal polynomials of class greater to 1 by using
[37] ( see section 2), by applying the standard perturbation ( see section 3) and by
combining the processes of symmetrization and perturbation (see section 4).

Now, we are going to introduce the material concerning orthogonal polynomials
and regular forms that find their origin in the book of T. S. Chihara (1978) [6] and
developed by P. Maroni since 1981 [24,25,29,30].

Let P be the vector space of polynomials with coefficients in C and let P ′ be its
topological dual. We denote by 〈u, f〉 the effect of u ∈ P ′ on f ∈ P. In particular,
we denote by (u)n := 〈u, xn〉 , n ≥ 0 the moments of u. Moreover, a form u is called
symmetric if (u)2n+1 = 0, n ≥ 0. For any form u, any polynomial g , let gu , be the
form defined by duality

〈gu, f〉 := 〈u, gf〉 , f ∈ P. (7)
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For f ∈ P and u ∈ P ′, the product uf is the polynomial

(uf) (x) :=

〈
u,

xf (x) − ζf (ζ)

x− ζ

〉
. (8)

The derivative u′ = Du of the form u is defined by

〈u′, f〉 := −〈u, f ′〉 , f ∈ P. (9)

We have [30]
(fu)′ = f ′u + fu′ , u ∈ P ′ , f ∈ P . (10)

The formal Stieltjes function of u ∈ P ′ is defined by

S (u) (z) := −
∑

n≥0

(u)n

zn+1
. (11)

Similarly, with the definitions

〈hau, f〉 := 〈u, haf〉 = 〈u, f (ax)〉 , u ∈ P ′ , f ∈ P , a ∈ C− {0} , (12)

〈τbu, f〉 := 〈u, τ−bf〉 = 〈u, f (x + b)〉 , u ∈ P ′ , f ∈ P , b ∈ C (13)

and
〈δc, f〉 := f(c) , f ∈ P , c ∈ C. (14)

The form u is called regular if we can associate with it a polynomial sequence {Pn}n≥0,
deg Pn = n, such that

〈u, PmPn〉 = rnδn,m , n, m ≥ 0 ; rn 6= 0 , n ≥ 0. (15)

The polynomial sequence {Pn}n≥0 is then said orthogonal with respect to u. Necessar-
ily, {Pn}n≥0 is an (OPS) where every polynomial can be supposed monic and it fulfils
the three-term recurrence relation






P0 (x) = 1 , P1 (x) = x− β0 ,

Pn+2 (x) = (x− βn+1)Pn+1 (x) − γn+1Pn (x) , n ≥ 0
(16)

with βn =
〈u,xP2

n
〉

〈u,P2
n
〉 and γn+1 =

〈u,P2
n+1〉

〈u,P2
n
〉 6= 0, n ≥ 0. Moreover, the regular form u,

associated to the (MOPS) {Pn}n≥0 satisfying (16), is said to be positive definite if and
only if βn ∈ R and γn+1 > 0 for all n ≥ 0.

The form u is said to be normalized if (u)0 = 1. In this paper, we suppose that any
form will be normalized.
From the linear application p 7→ (θcp) (x) =

p(x)−p(c)
x−c

, p ∈ P , c ∈ C , we define

(x− c)
−1

u by 〈
(x− c)−1

u, p
〉

:= 〈u, θcp〉 (17)

and we have [30,33]

(x − c)
(
(x− c)−1u

)
= u ; (x− c)−1

(
(x− c)u

)
= u− (u)0δc, u ∈ P ′, c ∈ C. (18)
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Finally, we introduce the operator σ : P −→ P defined by (σf)(x) := f(x2) for all
f ∈ P. Consequently, we define σu by duality

〈σu, f〉 := 〈u, σf〉 , f ∈ P , u ∈ P ′ (19)

and we have for f ∈ P , u ∈ P ′ [33]

f(x)σu = σ(f(x2)u) ; σu′ = 2(σ(xu))′. (20)

2 Overview about D-Semiclassical Forms

Now, we will expose the D-semiclassical character according to P. Maroni [26,27,28,30].
Let Φ monic and Ψ be two polynomials , deg Φ = t , deg Ψ = p ≥ 1. We suppose

that the pair (Φ, Ψ) is admissible , i.e. when p = t−1 , writing Ψ (x) = apx
p + ..., then

ap 6= n + 1 , n ∈ N.

DEFINITION 2.1. A form u is called D-semiclassical when it is regular and satisfies
the functional equation

(Φu)′ + Ψu = 0 (21)

where the pair (Φ, Ψ) is admissible. The corresponding orthogonal sequence {Pn}n≥0

is called D-semiclassical.

REMARKS 2.1.
1. The D-semiclassical character is kept by shifting( see [30]). In fact, let

{
a−n (ha ◦ τ−bPn)

}
n≥0

, a 6= 0 , b ∈ C;

when u satisfies (21), then ha−1 ◦ τ−bu fulfils the equation

(
a−tΦ (ax + b)

(
ha−1 ◦ τ−bu

))′1−t

Ψ(ax + b)
(
ha−1 ◦ τ−bu

)
= 0. (22)

2. The D-semiclassical form u is said to be of class s = max(p− 1, t− 2) ≥ 0 if and
only if ∏

c∈ZΦ

{∣∣∣Ψ(c) + Φ′(c)
∣∣∣ +

∣∣∣
〈
u, θcΨ + θ2

c Φ
〉 ∣∣∣

}
> 0, (23)

where ZΦ is the set of zeros of Φ. The corresponding orthogonal sequence {Pn}n≥0 will
be known as of class s [30].

3. When s = 0, the form u is usually called D-classical
(
Hermite, Laguerre, Bessel,

and Jacobi
)
[34].

We can state characterizations of D-semiclassical orthogonal sequences. {Pn}n≥0

is D-semiclassical of class s, if and only if one of the following statements holds (see
[31] and q = 1 in section 2. of [12])

(1). The formal Stieltjes function of u satisfies a non homogeneous first order linear
differential equation

Φ(z)S′ (u) (z) = C0 (z)S (u) (z) + D0 (z) , (24)
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where {
C0(z) = −Ψ(z) −Φ′(z),
D0(z) = −(uθ0Φ)′(z) − (uθ0Ψ)(z).

(25)

Φ and Ψ are the same polynomials as in (21).
(2). {Pn}n≥0 satisfies the following structure relation

Φ (x)P ′
n+1 (x) =

1

2
(Cn+1 (x)− C0 (x))Pn+1 (x)− γn+1Dn+1 (x)Pn (x) , n ≥ 0, (26)

where

Cn+1 (x) = −Cn (x) + 2 (x− βn)Dn (x) , n ≥ 0 (27)

γn+1Dn+1 (x) = −Φ (x) + γnDn−1 (x)

+ (x− βn)
2
Dn (x)− (x− βn)Cn (x) , n ≥ 0, (28)

Φ, Ψ, C0, D0 are the same parameters introduced in (1); βn, γn are the coefficients of
the three term recurrence relation (16). Notice that D−1 (x) := 0, deg Cn ≤ s + 1 and
deg Dn ≤ s, n ≥ 0.

(3). Each polynomial Pn+1, n ≥ 0 satisfies a second order linear differential equa-
tion

J (x, n)P ′′
n+1 (x) + K (x, n)P ′

n+1 (x) + L (x, n)Pn+1 (x) = 0 , n ≥ 0, (29)

with 



J (x, n) = Φ (x)Dn+1 (x) ,

K (x, n) = Dn+1 (x)
(
Φ′ (x) + C0 (x)

)
−D′

n+1 (x)Φ (x) ,

L (x, n) = 1
2

(
Cn+1 (x)− C0 (x)

)
D′

n+1 (x)−
−1

2

(
C ′

n+1 −C ′
0

)
(x)Dn+1 (x)−Dn+1 (x)Σn (x) , n ≥ 0.

(30)

and

Σn (x) :=

n∑

k=0

Dk(x) , n ≥ 0. (31)

Φ, Cn, Dn are the same in the previous characterization. Notice that deg J(., n) ≤
2s + 2 , deg K(., n) ≤ 2s + 1 and deg L(., n) ≤ 2s. In particular, when s = 0 that is to
say the D-classical case, the coefficients of the structure relation (26) become





Cn+1(x)−C0(x)
2

= 1
2
Φ′′(0)((n + 1)x− Sn)+

+(Ψ′(0)− Φ′′(0)(n + 1))βn+1 + (Ψ(0)− Φ′(0)(n + 1)),

Dn+1(x) = 1
2
Φ′′(0)(2n + 1)− Ψ′(0), n ≥ 0,

(32)

with Sn =
∑n

k=0 βk, n ≥ 0. Also we get for (30)






J(x, n) = Φ(x) ,

K(x, n) = −Ψ(x) ,

L(x, n) = (n + 1)(Ψ′(0)− 1
2Φ′′(0)n) , n ≥ 0.

(33)
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In 1990, P. Maroni gives the following result about order of zero of a D-semiclassical
polynomial Pn+1 of class s [31].

REMARK 2.2. Taking into account the structure relation (26), the polynomial
sequence {Dn+1}n≥0 gives us some information about zeros of the polynomial Pn+1.
In fact, if c is a zero of order η of Pn+1, n ≥ 1 with η ≥ 2, then η ≤ s + 1 and c is a
zero of order η − 1 of Dn+1.

In 1996, J. Alaya and P. Maroni give the following result to a symmetric D-Laguerre-
Hahn form [1] which remains valid in the symmetric D-semiclassical case

PROPOSITION 2.1. Let u be a symmetric D-semiclassical form of class s satisfying
(21). The following statements hold

i) When s is odd then the polynomial Φ is odd and Ψ is even.
ii) When s is even then the polynomial Φ is even and Ψ is odd.

Finally, about integral representation (P. Maroni [32] in 1995), let u be a D-
semiclassical form satisfying (21). We are looking for an integral representation of
u and consider

〈u, f〉 =

∫ +∞

−∞
U(x)f(x)dx , f ∈ P, (34)

where we suppose the function U to be absolutely continuous on R, and is decaying as
fast as its derivative U ′. From (21) we get

∫ +∞

−∞

(
(ΦU)′ + ΨU

)
f(x)dx− Φ(x)U(x)f(x)

]+∞
−∞ = 0 , f ∈ P.

Hence, from the assumptions on U , the following conditions hold

Φ(x)U(x)f(x)
]+∞
−∞ = 0 , f ∈ P, (35)

∫ +∞

−∞

(
(ΦU)′ + ΨU

)
f(x)dx = 0 , f ∈ P. (36)

Condition (36) implies
(ΦU)′ + ΨU = ωg, (37)

where ω 6= 0 arbitrary and g is a locally integrable function with rapid decay repre-
senting the null-form ∫ +∞

−∞
xng(x)dx = 0 , n ≥ 0. (38)

Conversely, if U is a solution of (37) verifying the hypothesis above and the condition

∫ +∞

−∞
U(x)dx 6= 0, (39)

then (35)-(36) are fulfilled and (34) defines a form u which is a solution of (21).
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In particular, from
(
(Φu)′ + Ψu

)
n

= 0, n ≥ 0, writing

Φ(x) =

t∑

k=0

ckxk; Ψ(x) =

p∑

k=0

akxk

and by taking into account (9), we have for the moments of u

(u)0 = 1 ;

p∑

k=0

ak(u)k = 0;

p+1∑

k=1

ak−1(u)n+k − (n + 1)

t∑

k=0

ck(u)n+k = 0, n ≥ 0. (40)

In [37], P. Maroni and M. Ihsen Tounsi (2004) have described all (MOPS) which are
identical to their second associated sequence that is to say those satisfying (16) with

βn+2 = βn; γn+3 = γn+1 , n ≥ 0.

The resulting polynomials are D-semiclassical of class s ≤ 3. In fact there are five
canonical situations itemized (a)-...-(e) (see Proposition 3.5 in [37]). The characteristic
elements of the structure relation (26) and the second-order differential equation (29)
are given explicitly by using the quadratic decomposition [33]. Integral representa-
tions of the corresponding forms are also given by an other process which consists of
representing the corresponding Stieljes function (11). So, our interest in the follow-
ing example is to describe the canonical situation (d) in that work but with processes
exposed in this section.

EXAMPLE 2.1. Let’s consider the D-semiclassical form u of class 1 and its (MOPS)
{Pn}n≥0. We have [37]





βn = (−1)n, γn+1 = −1
4

, n ≥ 0 ,
(

x(x2 − 1))u

)′2
+ x + 2)u = 0.

(41)

For the moments of u, from (40)-(41) we get

{
(u)0 = 1, (u)1 = 1 ,

−(n + 4)(u)n+2 + (u)n+1 + (n + 2)(u)n = 0 , n ≥ 0.
(42)

Consequently, it is easy to prove by induction that

(u)2n+1 = (u)2n , n ≥ 0. (43)

Now, taking n← 2n in the second equality in (42) and by virtue of (43) we get

(u)2n+2 =
2n + 3

2n + 4
(u)2n , n ≥ 0

from which we derive the following

(u)2n+1 = (u)2n =
1

n + 1

(2n + 1)!

22n(n!)2
, n ≥ 0. (44)
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For an integral representation of u of type (34), equation (37) with ω = 0 and hypothesis
becomes

U ′(x) +

{
−1

x
+

1
2

x− 1
−

1
2

x + 1

}
U(x) = 0. (45)

A possible solution of (45) is the function

U(x) =






0 , x ≤ −1,

ρ x
√

1+x
1−x

, −1 < x < 1,

0 , x ≥ 1.

(46)

First, condition (35) is fulfilled because

x(x2 − 1)xnρ x

√
1 + x

1− x

]+1

−1

= 0 , n ≥ 0.

Second, with the change of variable t =
√

1+x
1−x

the normalization constant ρ satisfies

ρ−1 =

∫ 1

−1

x

√
1 + x

1− x
dx =

∫ +∞

0

4t2(t2 − 1)

(t2 + 1)3
dt = 4J1 − 12J2 + 8J3

where

Jk =

∫ +∞

0

dt

(t2 + 1)k
, k ≥ 1.

But, upon integration by parts we get

Jk+1 =
2k − 1

2k
Jk, k ≥ 1.

In particular, J1 = π
2 , J2 = π

4 and J3 = 3π
16 . Thus, ρ−1 = π

2 and u has the following
integral representation

〈u, f〉 =
2

π

∫ 1

−1

x

√
1 + x

1− x
f(x) dx , f ∈ P. (47)

For the structure relation (26), we may write it as follows

x(x2−1)P ′
n+1(x) =

(
(n+1)x2 + bnx+ cn

)
Pn+1(x)+

1

4

(
dnx+en

)
Pn(x) , n ≥ 0. (48)

The problem is then to determine the coefficients bn, cn, dn, en, n ≥ 0. Taking x = 0,
x = 1, x = −1 respectively in (48) we get






cnPn+1(0) + 1
4
enPn(0) = 0(

(n + 1) + bn + cn

)
Pn+1(1) + 1

4
(dn + en)Pn(1) = 0(

(n + 1)− bn + cn

)
Pn+1(−1) + 1

4
(−dn + en)Pn(−1) = 0

, n ≥ 0. (49)
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Moreover, from (41) and (48), the formulas in (25)-(26) become

{
Cn(x) = (2n + 1)x2 + (2bn−1 − 1)x + 2cn−1 − 1

Dn(x) = dn−1x + en−1
, n ≥ 0 (50)

where b−1 := 0, c−1 := 0, d−1 := 2, e−1 := 2. Consequently, replacing in (27)-(28)
we get after identification





dn = 2(n + 2)

2bn + 2bn−1 − 2en−1 = 2
(
1− 2(−1)n(n + 1)

)

2cn + 2cn−1 + 2(−1)nen−1 = 2

2bn−1 + en−1 = 1 + (−1)n(−2n + 1)

−2(−1)nbn−1 + 2cn−1 − 2(−1)nen−1 = 2n + 1
2 − (−1)n

−2(−1)ncn−1 + 1
4
en + 3

4
en−1+ = (−1)n+1

, n ≥ 0. (51)

On the other hand, regarding (49) we are going to compute Pn(0), Pn(1), Pn(−1) for
any n ≥ 0.

For Pn(0), taking x = 0 in (16) and on account of (41) we obtain

Pn+2(0) = −(−1)n+1Pn+1(0) +
1

4
Pn(0), n ≥ 0 ; P0(0) = 1 ; P1(0) = −1.

Thus,




(
Pn+2(0) + (−1)n+1

2
Pn+1(0)

)
= (−1)n

2

(
Pn+1(0) + (−1)n

2
Pn(0)

)
, n ≥ 0,

P1(0) + 1
2P0(0) = −1

2 .

Therefore,

Pn+1(0) = −(−1)n

2
Pn(0)− (−1)

(n−1)n
2

2n+1
, n ≥ 0

from which we deduce that

Pn(0) =
n + 1

2n
(−1)

n(n+1)
2 , n ≥ 0. (52)

For Pn(1), taking x = 1 in (16) and on account of (41) we obtain

Pn+2(1) = (1− (−1)n+1)Pn+1(1) +
1

4
Pn(1), n ≥ 0 ; P0(1) = 1 ; P1(1) = 0. (53)

With n← 2n and n← 2n− 1 successively in (53) we deduce

{
P2n+2(1) = 2P2n+1(1) + 1

4
P2n(1), n ≥ 0

P2n+1(1) = 1
4P2n−1(1), n ≥ 1

which gives

P2n+1(1) = 0, n ≥ 0 ; P2n(1) =
1

22n
, n ≥ 0. (54)
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For Pn(−1), taking x = −1 in (16) and on account of (41) we obtain
{

Pn+2(−1) = −(1 + (−1)n+1)Pn+1(−1) + 1
4
Pn(−1) , n ≥ 0,

P0(−1) = 1 ; P1(−1) = −2.
(55)

With n← 2n and n← 2n− 1 successively in (55) we deduce
{

P2n+2(−1) = 1
4
P2n(−1), n ≥ 0

P2n+1(−1) = 1
4P2n−1(−1) − 1

22n−1 , n ≥ 1

which gives

P2n(−1) =
1

22n
, n ≥ 0 ; P2n+1(−1) = − n + 1

22n−1
n ≥ 0. (56)

Now, replacing the numbers in (52), (54), (56) in the system (49) and by taking into
account the second system (51) we obtain






b2n = 1 ; b2n+1 = 0

c2n = −(2n + 1) ; c2n+1 = −2(n + 1)

dn = 2(n + 2)

e2n = −4(n + 1) ; e2n+1 = 2(2n + 3)

, n ≥ 0. (57)

So, it is quite straightforward to get the expressions in (26) and (30) for the structure
relation and the second order linear differential equation.

3 The Standard Perturbation Revisited

3.1 On the standard perturbation

Let u be a regular form. Denoting by {Pn}n≥0 its (MOPS) satisfying (16). Let ũ ∈ P ′

satisfying
(x− τ )ũ = λu , τ ∈ C, λ ∈ C− {0}. (58)

According to (18) relation (58) is equivalent to

ũ = δτ + λ(x − τ )−1u (59)

with constraints (ũ)0 = 1, (u)0 = 1 and λ + τ = (ũ)1.

Suppose ũ regular and let {P̃n}n≥0 be its (MOPS)






P̃0(x) = 1 , P̃1(x) = x− β̃0 ,

P̃n+2(x) = (x− β̃n+1)P̃n+1(x)− γ̃n+1P̃n(x) , n ≥ 0.

(60)

The connection between P̃n and Pn is (see [31])

P̃0(x) = 1 , P̃n+1(x) = Pn+1(x) + anPn(x) , n ≥ 0, (61)
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with

an = −Pn+1(τ ) + λP
(1)
n (τ )

Pn(τ ) + λP
(1)
n−1(τ )

6= 0 , n ≥ 0, (62)

where

P (1)
n (x) :=

〈
u,

Pn+1(x)− Pn+1(ξ)

x− ξ

〉
, n ≥ −1.

We have [30]

P
(1)
n+1(x)Pn+1(x)− Pn+2(x)P (1)

n (x) =

n∏

k=0

γk+1 , n ≥ 0. (63)

Denoting

λn = − Pn(τ )

P
(1)
n−1(τ )

, n ≥ 1 , λ0 = 0. (64)

Let us recall the fundamental result owing to P. Maroni (1990) [31]

PROPOSITION 3.1. Let u be a regular form. The following statements are equiv-
alent

i) The form ũ = δτ + λ(x − τ )−1u is regular.
ii) λ 6= λn, n ≥ 0.

We may write
γn+1

an

+ an+1 − βn+1 = −τ , n ≥ 0, (65)

β̃0 = β0−a0 = τ+λ , β̃n+1 = βn+1+an−an+1 , γ̃n+1 = −an(an−βn+τ ) , n ≥ 0, (66)





(x− τ )Pn(x) = P̃n+1(x) + (βn − an − τ )P̃n(x) , n ≥ 0 ,

(x− τ )Pn+1(x) = (x− an − τ )P̃n+1(x) + an(an − βn + τ )P̃n(x) , n ≥ 0.

(67)

In particular, if the regular form u is symmetric then the form ũ = δ0+λx−1u is regular
for any λ 6= 0 and we have (γ0 := 1 ; γ−1 := 1) **






a2n = −λ
n∏

k=0

γ2k

γ2k−1
, n ≥ 0,

a2n+1 = 1
λ

n∏
k=0

γ2k+1

γ2k
, n ≥ 0.

(68)

3.2 The D-semiclassical case

Suppose u be a D-semiclassical form of class s satisfying (21). Multiplying (21) by λ

and on account of (58) we get

(
Φ̃ũ

)′
+ Ψ̃ũ = 0, (69)
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with
Φ̃ (x) = (x − τ )Φ (x) , Ψ̃ (x) = (x− τ )Ψ (x) . (70)

Now, taking q = 1 in section 3.1 of [12], we recover the following result concerning the
class of ũ [31]

THEOREM 3.1. If the D-semiclassical form u is of class s then the form ũ is
D-semiclassical of class s̃ = s + 1 for

Φ(τ ) 6= 0 , λ 6= λn, n ≥ 0 or Φ(τ ) = 0 , λ 6= λn, n ≥ −1, (71)

where

λ−1 = − Ψ(τ ) + Φ′(τ )

〈u, θτΨ + θ2
τΦ〉 . (72)

REMARK 3.1. Also, taking q = 1 in section 3.2 of [12], we recover again the

results in [31] concerning the structure relation of
{

P̃n

}

n≥0
and the second order

linear differential equation satisfied by P̃n+1, n ≥ 0.

Finally, if we suppose that the form u has the following integral representation:

〈u, f〉 =
∫ +∞

−∞
U (x) f (x)dx , f ∈ P ;

∫ +∞

−∞
U (x)dx = 1

where U is a locally integrable function with rapid decay and continuous at the point
x = τ then in view of (59) we may write

〈ũ, f〉 =

{
1− λP

∫ +∞

−∞

U (x)

x− τ
dx

}
f (0) + λP

∫ +∞

−∞

U (x)

x− τ
f (x) dx , f ∈ P , (73)

where

P

∫ +∞

−∞

U (x)

x− τ
dx := lim

ε 0+

(∫ τ−ε

−∞

U (x)

x− τ
dx +

∫ +∞

τ+ε

U (x)

x− τ
dx

)
. (74)

In particular, taking q = 1 in (5) of the document [12], the moments of ũ are given by

(ũ)0 = 1 ; (ũ)n = τn + λ

n∑

k=1

τn−k(u)k−1, n ≥ 1. (75)

EXAMPLE 3.1. Let us consider u the D-semiclassical form of class 1 studied in
Example 2.1. and ũ = δ−1 + λ(x + 1)−1u be its standard perturbed (τ = −1). Taking
x = −1 in (63), by virtue of (41) and the fact that Pn(−1) 6= 0, n ≥ 0 ( see (56)) we
get

P
(1)
n+1(−1) =

Pn+2(−1)

Pn+1(−1)
P (1)

n (−1) +
(−1)n+1

22n+2Pn+1(−1)
, n ≥ 0

which gives

P
(1)
n+1(−1) =

n∏

k=0

(
Pk+2(−1)

Pk+1(−1)

){
1 +

n∑

k=0

(−1)k+1

22k+2Pk+1(−1)

k∏

l=0

(
Pl+1(−1)

Pl+2(−1)

)}
, n ≥ 0.
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Consequently, in accordance with (56) it follows

P
(1)
2n+1(−1) = 0 ; P

(1)
2n (−1) =

1

22n
, n ≥ 0. (76)

Thus, (62) and (64) can be written as

a2n = 2n + 2− λ ; a2n+1 =
1

4(2n + 2− λ)
, n ≥ 0 (77)

λ2n+1 = 2(n + 1) , n ≥ 0. (78)

By virtue of Proposition 3.1., The form ũ = δ−1 + λ(x + 1)−1u is regular if and only if
λ 6= 2(n + 1), n ≥ −1. In particular, from (41) and (77), the relations in (66) become






β̃0 = λ− 1

β̃2n+1 = 2n + 1− λ − 1
4(2n+2−λ)

β̃2n+2 = 1
4(2n+2−λ)

− 2n− 3 + λ

γ̃2n+1 = −(2n + 2− λ)(2n− λ) ; γ̃2n+2 = − 1
16(2n+2−λ)2

, n ≥ 0. (79)

In accordance with Theorem 3.1. ũ is D-semiclassical of class 2 for any λ 6= 2(n +
1), n ≥ −1 satisfying the functional equation

(
x(x− 1)(x + 1)2)ũ

)′2
+ x + 2)ũ = 0. (80)

For the moments of ũ, with (44) and (75) we get

(ũ)2n = 1 ; (ũ)2n+1 = λ− 1 , n ≥ 0. (81)

For an integral representation of ũ, in view of (47) and (73) and by the fact that∫ 1

−1
x√

1−x2
dx = 0 we may write

〈ũ, f〉 = f(−1) + λ

∫ 1

−1

x√
1− x2

f(x) dx , f ∈ P. (82)

3.3 The study of δ0 + λx
−1B(α)

Consider u = B(α), α 6= −n
2
, n ≥ 0 the D-classical Bessel form. we have [32]






β0 = − 1
α
, βn+1 = 1−α

(n+α)(n+α+1) , n ≥ 0,

γn+1 = − (n+1)(n+2α−1)
(2n+2α−1)(n+α)2(2n+2α+1) , n ≥ 0,

(
x2B(α)

)′
− 2(αx + 1)B(α) = 0,

(83)

and for α ≥ 6
(

2
π

)4
, f ∈ P

〈B(α), f〉 = T−1
α

∫ +∞

0

1

x2

∫ +∞

x

(x

t

)2α

exp

(
2

t
− 2

x

)
s(t)dtf(x)dx, (84)
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with

Tα =

∫ +∞

0

1

x2

∫ +∞

x

(x

t

)2α

exp

(
2

t
− 2

x

)
s(t)dtdx, (85)

s(x) =






0, x ≤ 0,

exp(−x
1
4 ) sin x

1
4 , x > 0.

(86)

where s represents the null-form and given in 1895 by T. J. Stieljes [42]. The integral
representation (84) of the D-classical Bessel form is given by P. Maroni (1995) in [32].
In fact, the history of the Bessel form is more tortured than that other D-classical
forms and the reason is certainly that the Bessel form is not positive definite for any
value of the parameter α. For others representations through a function, a distribution
or through an ultra-distribution see A. J. Duran (1993) [10], A. M. Krall (1981)[19]
and W. D. Evans et al. (1992)[11], S. S. Kim et al. (1991) [18] respectively.

Taking into account the functional equation in (83), it is easy to see that the
moments of B(α) are

(B(α))n = (−1)n2n Γ(2α)

Γ(n + 2α)
, n ≥ 0, (87)

where Γ is the Gamma function.
Putting x = 0 in (26) and by virtue of (83) and (32) we get

Pn(0) = 2n Γ(n + 2α− 1)

Γ(2n + 2α− 1)
, n ≥ 0. (88)

Also, taking x = 0 in (63) and in accordance with(88) and (83) we obtain the recurrence
relation

P
(1)
n+1(0) =

n + 2α

(2n + 2α + 1)(n + α + 1)
P (1)

n (0) + (−1)n+12n+1 Γ(2α)

Γ(2n + 2α + 2)
, n ≥ 0.

Therefore, an easy computation yields the equality

P (1)
n (0) = 2n+1 Γ(2α)Γ(n + 2α)

Γ(2n + 2α + 1)

n∑

k=0

(−1)kk!(k + α)

Γ(k + 2α)
, n ≥ 0.

By induction, we can easily prove that

n∑

k=0

(−1)kk!(k + α)

Γ(k + 2α)
=

1

2

2α− 1

Γ(2α)
+

1

2
(−1)n (n + 1)!

Γ(n + 2α)
, n ≥ 0,

which gives (compare with [31])

P (1)
n (0) = 2n (2α− 1)Γ(n + 2α) + (−1)n(n + 1)!Γ(2α)

Γ(2n + 2α + 1)
, n ≥ 0. (89)

Thus, for (62) and (64) we get for n ≥ 0

an = −2
Γ(2n + 2α− 1)

Γ(2n + 2α + 1)
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× 2Γ(n + 2α) + λ
{
(2α− 1)Γ(n + 2α) + (−1)n(n + 1)!Γ(2α)

}

2Γ(n + 2α− 1) + λ
{
(2α− 1)Γ(n + 2α− 1) + (−1)n−1n!Γ(2α)

} , (90)

and

λn = −2
Γ(n + 2α− 1)

(2α− 1)Γ(n + 2α− 1) + (−1)n−1n!Γ(2α)
, n ≥ 1. (91)

Consequently, in accordance with theorem 3.1. and (69)-(72) the form ũ = δ0 +
λx−1B(α) is D-semiclassical of class s̃ = 1 for any λ 6= λn, n ≥ −1 with λ−1 = 2

1−2α

and fulfils the functional equation (69) with

Φ̃(x) = x3, Ψ̃(x) = −2x(αx + 1). (92)

Also, the recurrence coefficients of {P̃n}n≥0 are given by (66) with the above results
(88) and (83).

From (75) and (87), the moments of ũ are

(ũ)n = λ(−1)n−12n−1 Γ(2α)

Γ(n + 2α− 1)
, n ≥ 1 , (ũ)0 = 1. (93)

When α ≥ 6( 2
π
)4 and on account of (73)-(74), (84)-(86) let us consider the function

Ũ(x) =
1

x3

∫ +∞

x

(x

ξ

)2α

exp
(2

ξ
− 2

x

)
s(ξ)dξ , x > 0. (94)

We have for n ≥ 0,

∣∣xnŨ(x)
∣∣ ≤ xn+2α−3 exp

(
−2

x

) ∫ +∞

x

ξ−2α exp

(
2

ξ

)
exp

(
−ξ

1
4

)
dξ

≤ xn+2α−3 exp(−2

x
) exp(−1

2
x

1
4 )

∫ +∞

x

ξ−2α exp

(
2

ξ

)
exp

(
−1

2
ξ

1
4

)
dξ

= o

(
xn+2α−3 exp

(
− 1

2
x

1
4

))
.

For 0 < x ≤ 1 and n ≥ 0

xnŨ(x) = Θn(x) + O

(
xn+2α−3 exp

(
−2

x

))

with

Θn(x) = xn+2α−3 exp

(
−2

x

)∫ 1

x

ξ−2α exp

(
2

ξ

)
s(ξ)dξ.

Hence,

∫ 1

0

|Θn(x)|dx ≤
∫ 1

0

ξ−2α exp
(2

ξ

)
|s(ξ)|

(∫ ξ

0

xn+2α−3 exp
(
− 2

x

)
dx

)
dξ.
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Moreover, upon integration by parts we have

∫ ξ

0

xn+2α−3 exp
(
−2

x

)
dx

=
1

2
ξn+2α−1 exp

(
−2

ξ

)
− 1

2
(n + 2α− 1)

∫ ξ

0

xn+2α−2 exp
(
−2

x

)
dx

≤ 1

2
ξn+2α−1 exp

(
−2

ξ

)
+

1

2
(n + 2α− 1)ξ

∫ ξ

0

xn+2α−3 exp
(
−2

x

)
dx,

and hence ∫ ξ

0

xn+2α−3 exp
(
−2

x

)
dx ≤ 1

2

ξn+2α−1 exp
(
−2

ξ

)

1− 1
2 (n + 2α− 1)ξ

for all 0 ≤ ξ ≤ 2
n+2α−1 , n ≥ 0.

It results in ∫ 1

0

|Θn(x)|dx < +∞.

Consequently, we get the natural integral representation of ũ: for α ≥ 6( 2
π
)4 and f ∈ P

〈ũ, f〉 = (1− λT−1
α T̃α)f(0)

+λT−1
α

∫ +∞

0

1

x3

∫ +∞

x

(x

t

)2α

exp
(2

t
− 2

x

)
s(t)dtf(x)dx, (95)

with

T̃α =

∫ +∞

0

1

x3

∫ +∞

x

(x

t

)2α

exp
(2

t
− 2

x

)
s(t)dtdx. (96)

4 The Symmetrization Process Revisited

4.1 On the symmetrization process

Let û be a symmetric regular form and {P̂n}n≥0 be its (MOPS). They satisfy a three
term recurrence relation






P̂0 (x) = 1, P̂1 (x) = x ,

P̂n+2 (x) = xP̂n+1 (x)− γ̂n+1P̂n (x) , n ≥ 0.

(97)

It is very well known (see T.S. Chihara [6] and P. Maroni [33]) that

P̂2n(x) = P̃n(x2), P̂2n+1(x) = xPn(x2) , n ≥ 0, (98)

where {P̃n}n≥0 and {Pn}n≥0 are the two (MOPS) related to regular forms ũ and xũ,
respectively, with

ũ = σû. (99)
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The form û is said to be the symmetrized of the form ũ.
In fact [6,33]

û is regular ⇐⇒ ũ and xũ are regular.

û is positive definite ⇐⇒ ũ and xũ are positive definite.

Furthermore, taking into account the three term recurrence relations for {P̃n}n≥0 and
{Pn}n≥0 which are (60) and (16) respectively, we get [6,33]






β̃0 = γ̂1,

β̃n+1 = γ̂2n+2 + γ̂2n+3 , n ≥ 0,

γ̃n+1 = γ̂2n+1γ̂2n+2, n ≥ 0.

(100)

and {
βn = γ̂2n+1 + γ̂2n+2 , n ≥ 0,

γn+1 = γ̂2n+2 γ̂2n+3 , n ≥ 0.
(101)

Consequently,





γ̂1 = β̃0 , γ̂2 = eγ1

eβ0
,

γ̂2n+1 = β̃0

Q
n

k=1 γkQ
n

k=1 eγk
, γ̂2n+2 = 1

eβ0

Q
n+1
k=1 eγkQ
n

k=1 γk
, n ≥ 1.

(102)

4.2 The D-semiclassical case

Regarding section two in [2], a study of the D-semiclassical character and the class of û

is done by J. Arvesú, M. J. Atia and F. Marcellán (in 2002) after determination of the
non homogeneous first order linear differential equation satisfied by the formal Stieltjes
function of û which derived from that of ũ. In the following theorem, we are going to
resume these results in terms of the polynomials coefficients in the Pearson equation
of ũ.

THEOREM 4.1. Let ũ be a regular form and {P̃n}n≥0 its (MOPS) such that

P̃n+1(0) 6= 0, n ≥ 0. Then its symmetrized form û is regular.

If ũ is D-semiclassical of class s̃ satisfying the functional equation

(Φ̃ũ)′ + Ψ̃ũ = 0 (103)

then û is D-semiclassical of class ŝ satisfying the functional equation

(Φ̂û)′ + Ψ̂û = 0 (104)

with
i)

Φ̂(x) = (θ0Φ̃)(x2) , Ψ̂(x) = x
{
(θ2

0Φ̃)(x2) + 2(θ0Ψ̃)(x2)
}

(105)

if
Φ̃(0) = 0 , Φ̃′(0) + 2Ψ̃(0) = 0, (106)
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and ŝ = 2s̃ for (105).
ii)

Φ̂(x) = x(θ0Φ̃)(x2) , Ψ̂(x) = 2Ψ̃(x2) (107)

if
Φ̃(0) = 0 , Φ̃′(0) + 2Ψ̃(0) 6= 0, (108)

and ŝ = 2s̃ + 1 for (107).
iii)

Φ̂(x) = xΦ̃(x2) , Ψ̂(x) = 2
{
− Φ̃(x2) + x2Ψ̃(x2)

}
(109)

if
Φ̃(0) 6= 0, (110)

and ŝ = 2s̃ + 3 for (109).

REMARK 4.1. Some calculation allows to give the structure relation of {P̂n}n≥0

by taking into account the results of the components {P̃n}n≥0, {Pn}n≥0 and Theorem
4.1.

Finally, let us suppose that the form ũ has the following integral representation:

〈ũ, f〉 =

∫ +∞

0

Ũ (x) f (x)dx , f ∈ P;

∫ +∞

0

Ũ (x)dx = 1 (111)

where Ũ is a locally integrable function with rapid decay. Consider now f ∈ P and let
us split it up into its even and odd parts

f(x) = fe(x2) + xfo(x2). (112)

From the symmetric character of the form û, (99) and (112) we get

〈û, f〉 = 〈û, σfe〉 = 〈σû, fe〉 = 〈ũ, fe〉. (113)

In view of (111) and (113), with the fact that

fe(x) =
f(
√

x) + f(−√x)

2
, x ≥ 0,

and after a change of variables, we obtain the following integral representation of û

〈û, f〉 =

∫ +∞

−∞
|x|Ũ(x2)f(x)dx , f ∈ P (114)

since ∣∣∣∣
∫ +∞

0

xn+1
2 Ũ(x)dx

∣∣∣∣ < +∞ , n ≥ 0. (115)

In particular, the moments of û are

(û)0 = 1 ; (û)2n+1 = 0 , (û)2n+2 = (ũ)n+1 , n ≥ 0. (116)
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4.3 The symmetrized of δ0 + λx
−1B(α)

Let ũ = δ0 + λx−1B(α) and its associated (MOPS) {P̃n}n≥0 the D-semiclassical of
class s̃ = 1 for any λ 6= λn, n ≥ −1 with λ−1 = 2

1−2α
and λn, n ≥ 0are given by (91),

taking x = 0 in the first equality of (67) we get

P̃n+1(0) = (an − βn)P̃n(0), n ≥ 0.

Consequently, P̃n+1(0) 6= 0, n ≥ 0, which implies that the form û, symmetrized of ũ,
is regular.

On the other hand, from (92) and (106) we have

Φ̃(0) = 0 , Φ̃′(0) + 2Ψ̃(0) = 0.

Then with (106) the form û is symmetric D-semiclassical of class 2 satisfying the
functional equation (104) with

Φ̂(x) = x4 , Ψ̂(x) = −x
{
(4α− 1)x2 + 4

}
. (117)

Taking into account (102) and (65)-(66), the recurrence coefficients of {P̂n}n≥0 are

γ̂1 = λ , γ̂2 = a0 , γ̂2n+1 =
a0

an−1
γn , γ̂2n+2 =

an

a0
, n ≥ 1, (118)

where γn, n ≥ 1 and an, n ≥ 0 are given by (83) and (90) respectively.
The moments of û are

(û)2n+1 = 0 , (û)2n+2 = λ(−1)n2n Γ(2α)

Γ(n + 2α)
, n ≥ 0 , (û)0 = 1. (119)

Regarding the natural integral representation (95) of ũ, for α ≥ 6

(
2
π

)4

− 1
4 the con-

dition (115) is fulfilled and from (114) we obtain the following representation of û, for
f ∈ P

〈û, f〉 = (1− λT−1
α T̃α)f(0)

+λT−1
α

∫ +∞

−∞
|x|4α−5 exp

(
− 2

x2

) ∫ +∞

x2

t−2α exp
(2

t

)
s(t)dtf(x)dx. (120)

REMARK 4.2. The representation (120) doesn’t exist in [8] which proves that the
list of integral representations given in [8] is not complete. Another integral represen-
tation analogous to (120) is given in [39].

4.4 Symmetrization after Perturbation when u is a Symmetric

D-Semiclassical Form

Let us suppose u to be a symmetric D-semiclassical form of class s satisfying the
Pearson equation (21) and ũ = δ0 +λx−1u or equivalently xũ = λu. It has been shown
in section 3 that ũ is D-semiclassical satisfying the equation (69) with (70) and ũ is of
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class s̃ = s + 1 when (71)-(72) are valid.
If û is the symmetrized of (ũ) then ũ = σû and from (58)-(59) we get

{
σû = δ0 + λx−1u

xσû = λu.
(121)

Thus, σû and xσû are well known.
Now, we are able to give γ̂n+1, n ≥ 0. From (102) and by virtue of (65)-(66) we

obtain

γ̂4n+1 = −a2n , γ̂4n+2 = a2n , γ̂4n+3 = −a2n+1 , γ̂4n+4 = a2n+1 , n ≥ 0. (122)

From (11), (121) and the fact that u is symmetric, the moments of û are

(û)0 = 1 ; (û)4n+1 = (û)4n+3 = (û)4n+4 = 0 , (û)4n+2 = λ(u)2n , n ≥ 0. (123)

On the other hand, in accordance with (70) we have

Φ̃(x) = xΦ(x) , Ψ̃(x) = xΨ(x).

Therefore,
Φ̃(0) = 0 , Φ̃′(0) + 2Ψ̃(0) = Φ(0).

Consequently, with Theorem 4.1., two cases arise
i)

Φ̂(x) = Φ(x2), Ψ̂(x) = x
{
(θ0Φ)(x2) + 2Ψ(x2)

}
(124)

if
Φ(0) = 0, (125)

and ŝ = 2s̃ = 2s + 2 for (124).
Or
ii)

Φ̂(x) = xΦ(x2), Ψ̂(x) = 2x2Ψ(x2) (126)

if
Φ(0) 6= 0, (127)

and ŝ = 2s̃ + 1 = 2s + 3 for (126).

EXAMPLE 4.1. Let u be the symmetric D-semiclassical form of class 1 of general-
ized Hermite H(µ) (µ 6= 0 , µ 6= −n− 1

2 , n ≥ 0), then the symmetrized û of δ0+λx−1u

is of class ŝ = 4 satisfying
(
x2û

)′
+ x

{
4x4 − (4µ + 1)

}
û = 0. (128)

In this case (122) becomes





γ̂4n+1 = λ
Γ(µ+ 1

2 )

Γ(n+µ+ 1
2 )

n!

γ̂4n+2 = −λ
Γ(µ+ 1

2 )

Γ(n+µ+ 1
2 )

n!

γ̂4n+3 = − 1
λ

Γ(n+µ+ 3
2 )

Γ(µ+ 1
2 )

1
n!

γ̂4n+4 = 1
λ

Γ(n+µ+ 3
2 )

Γ(µ+ 1
2 )

1
n!

, n ≥ 0. (129)
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The moments are





(û)0 = 1

(û)4n+1 = (û)4n+3 = (û)4n+4 = 0

(û)4n+2 = λ
22n

Γ(µ+1)Γ(2n+2µ+1)
Γ(2µ+1)Γ(n+µ+1)

, n ≥ 0. (130)

EXAMPLE 4.2. Let u be the symmetric D-semiclassical form of class 1 of general-
ized Gegenbauer G(α, β) (α 6= −n−1 , β 6= −n−1 , β 6= −1

2 , α+β 6= −n−1 , n ≥ 0),
then the symmetrized û of δ0 + λx−1u is of class ŝ = 4 satisfying

(
x2(x4 − 1)û

)′
+ x

{
−(4α + 4β + 7)x4 + 4β + 3

}
û = 0. (131)

In this case (122) becomes






γ̂4n+1 = λn!
2n+α+β+1

Γ(n+α+1)Γ(α+β+1)Γ(β+1)
Γ(α+1)Γ(n+α+β+1)Γ(n+β+1)

γ̂4n+2 = − λn!
2n+α+β+1

Γ(n+α+1)Γ(α+β+1)Γ(β+1)
Γ(α+1)Γ(n+α+β+1)Γ(n+β+1)

γ̂4n+3 = − 1
λn!(2n+α+β+2)

Γ(α+1)Γ(n+α+β+2)Γ(n+β+2)
Γ(n+α+1)Γ(α+β+2)Γ(β+1)

γ̂4n+4 = 1
λn!(2n+α+β+2)

Γ(α+1)Γ(n+α+β+2)Γ(n+β+2)
Γ(n+α+1)Γ(α+β+2)Γ(β+1)

, n ≥ 0. (132)

The moments are





(û)0 = 1

(û)4n+1 = (û)4n+3 = (û)4n+4 = 0

(û)4n+2 = λ
Γ(α+β+2)Γ(n+β+1)
Γ(β+1)Γ(n+α+β+2)

, n ≥ 0. (133)

EXAMPLE 4.3. Let u be the symmetric D-semiclassical form of class 1 of Bessel
kind B[ν ] (ν 6= −n− 1 , n ≥ 0), then the symmetrized û of δ0 +λx−1u is of class ŝ = 4
with (

x6û
)′ − x

{
(4ν + 3)x4 + 1

}
û = 0. (134)

In this case (122) becomes






γ̂4n+1 = λ
(−1)nn!
(2n+ν)

Γ(ν+1)
Γ(n+ν)

γ̂4n+2 = −λ
(−1)nn!
(2n+ν)

Γ(ν+1)
Γ(n+ν)

γ̂4n+3 = 1
4λ

(−1)n

(2n+ν+1)n!
Γ(n+ν+1)

Γ(ν+1)

γ̂4n+4 = − 1
4λ

(−1)n

(2n+ν+1)n!
Γ(n+ν+1)

Γ(ν+1)

, n ≥ 0. (135)

The moments are




(û)0 = 1

(û)4n+1 = (û)4n+3 = (û)4n+4 = 0

(û)4n+2 = λ
(−1)nΓ(ν+1)
22nΓ(n+ν+1)

, n ≥ 0. (136)
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