Existence Of Ψ-Bounded Solutions For Nonhomogeneous Linear Difference Equations*

Aurel Diamandescu ${ }^{\dagger}$

Received 18 May 2009

Abstract

In this paper, we give a necessary and sufficient condition for the existence of Ψ-bounded solutions for the nonhomogeneous linear difference equation $x(n+1)=A(n) x(n)+f(n)$ and a result in connection with the asymptotic behavior of the solutions of this equation.

1 Introduction

The aim of this paper is to give a necessary and sufficient condition so that the nonhomogeneous linear difference equation

$$
\begin{equation*}
x(n+1)=A(n) x(n)+f(n) \tag{1}
\end{equation*}
$$

have at least one Ψ-bounded solution for every Ψ-bounded sequence f.
Here, Ψ is a matrix function. The introduction of the matrix function Ψ allows us to obtain a mixed asymptotic behavior of the components of the solutions.

The problem of boundedness of the solutions for the system of ordinary differential equations $x^{\prime}=A(t) x+f(t)$ was studied by Coppel in [2]. In [3], [4] and [5], the author proposes a novel concept, Ψ-boundedness of solutions (Ψ being a matrix function), which is interesting and useful in some practical cases and presents the existence condition for such solutions. Also, in [1], the author associates this problem with the concept of Ψ-dichotomy on R of the system $x^{\prime}=A(t) x$.

In [6], the authors extend the concept of Ψ-boundedness to the solutions of difference equation (via Ψ-bounded sequence) and establish a necessary and sufficient condition for existence of Ψ-bounded solutions for the nonhomogeneous linear difference equation (1) in case f is a Ψ-summable sequence on N.

[^0]
2 Preliminaries

Let R^{d} be the Euclidean space. For $x=\left(x_{1}, \ldots, x_{d}\right)^{T} \in R^{d}$, let $\|x\|=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{d}\right|\right\}$ be the norm of x. For a $d \times d$ real matrix $A=\left(a_{i j}\right)$, the norm $|A|$ is defined by $|A|=\sup _{\|x\| \leq 1}\|A x\|$. Let $N=\{1,2, \ldots\}$ and $\Psi_{i}: N \rightarrow(0, \infty), i=1,2, \ldots, d$, and let the matrix function $\Psi=\operatorname{diag}\left[\Psi_{1}, \Psi_{2}, \ldots, \Psi_{d}\right]$. Then, $\Psi(n)$ is invertible for each $n \in N$.

DEFINITION 2.1. A sequence $\varphi: N \rightarrow R^{d}$ is said to be Ψ-bounded if the sequence $\Psi \varphi$ is bounded (i.e. there exists $M>0$ such that $\|\Psi(n) \varphi(n)\| \leq M$ for all $n \in N)$.

Consider the nonautonomous difference linear equation

$$
\begin{equation*}
y(n+1)=A(n) y(n) \tag{2}
\end{equation*}
$$

where the $d \times d$ real matrix $A(n)$ is invertible at $n \in N$. Let Y be the fundamental matrix of (2) with $Y(1)=I_{d}$ (identity $d \times d$ matrix). It is well-known that $Y(n)=$ $A(n-1) A(n-2) \cdots A(2) A(1)$ for $n \geq 2, Y(n+1)=A(n) Y(n)$ for all $n \in N$ and the solution of (2) with the initial condition $y(1)=y_{0}$ is $y(n)=Y(n) y_{0}, n \in N$.

Let X_{1} denote the subspace of R^{d} consisting of all vectors which are values for $n=1$ of Ψ-bounded solutions of (2) and let X_{2} be an arbitrary fixed subspace of R^{d}, supplementary to X_{1}. Let P_{1}, P_{2} denote the corresponding projections of R^{d} onto X_{1}, X_{2} respectively.

3 Main Result

The main result of this note is the following.
THEOREM 3.1. The equation (1) has at least one Ψ-bounded solution on N for every Ψ-bounded sequence f on N if and only if there is a positive constant K such that, for all $n \in N$,

$$
\begin{equation*}
\sum_{k=1}^{n-1}\left|\Psi(n) Y(n) P_{1} Y^{-1}(k+1) \Psi^{-1}(k)\right|+\sum_{k=n}^{\infty}\left|\Psi(n) Y(n) P_{2} Y^{-1}(k+1) \Psi^{-1}(k)\right| \leq K \tag{3}
\end{equation*}
$$

where we have adopted the convention that empty sums are 0 .
PROOF. First, we prove the "only if" part. We define the sets:

$$
\begin{aligned}
B & =\left\{x: N \longrightarrow R^{d} \mid x \text { is } \Psi \text {-bounded }\right\} \\
D & =\left\{x: N \longrightarrow R^{d} \mid x \in B, x(1) \in X_{2},(x(n+1)-A(n) x(n)) \in B\right\}
\end{aligned}
$$

Obviously, B and D are vector spaces over R and the functionals

$$
\begin{aligned}
x & \longmapsto\|x\|_{B}=\sup _{n \in N}\|\Psi(n) x(n)\|, \\
x & \longmapsto\|x\|_{D}=\|x\|_{B}+\|x(n+1)-A(n) x(n)\|_{B}
\end{aligned}
$$

are norms on B and D respectively.
Step 1. It is a simple exercise that $\left(B,\|\cdot\|_{B}\right)$ is a Banach space.

Step 2. ($D,\|\cdot\|_{D}$) is a Banach space. Indeed, let $\left(x_{p}\right)_{p \in N}$ be a fundamental sequence in D. Then, $\left(x_{p}\right)_{p \in N}$ is a fundamental sequence in B. Therefore, there exists a Ψ-bounded sequence x in B such that $\left\|x_{p}-x\right\|_{B} \longrightarrow 0$ as $p \longrightarrow \infty$. From $\left\|x_{p}(1)-x(1)\right\| \leq\left|\Psi^{-1}(1)\right|\left\|\Psi(1)\left(x_{p}(1)-x(1)\right)\right\| \leq\left|\Psi^{-1}(1)\right|\left\|x_{p}-x\right\|_{B}$, it follows that $\lim _{p \rightarrow \infty} x_{p}(1)=x(1)$. Thus, $x(1) \in X_{2}$. On the other hand, the sequence $\left(\left(x_{p}(n+1)-\right.\right.$ $\left.\left.A(n) x_{p}(n)\right)\right)_{p \in N}$ is a fundamental sequence in B. Thus, there exists a function $f \in B$ such that

$$
\sup _{n \geq 1}\left\|\Psi(n)\left(x_{p}(n+1)-A(n) x_{p}(n)\right)-\Psi(n) f(n)\right\| \longrightarrow 0 \text { as } p \longrightarrow \infty
$$

It follows that $\lim _{p \rightarrow \infty}\left(x_{p}(n+1)-A(n) x_{p}(n)\right)=f(n)$, for $n \in N$. Because $\lim _{p \rightarrow \infty}$ $x_{p}(n)=x(n)$ for all $n \in N$, we have that $x(n+1)-A(n) x(n)=f(n)$, for all $n \in N$. Thus,

$$
\sup _{n \geq 1}\left\|\Psi(n)\left(x_{p}(n+1)-A(n) x_{p}(n)\right)-\Psi(n)(x(n+1)-A(n) x(n))\right\| \longrightarrow 0
$$

and then

$$
\left\|x_{p}-x\right\|_{D}=\left\|x_{p}-x\right\|_{B}+\left\|\left(x_{p}-x\right)(n+1)-A(n)\left(x_{p}-x\right)(n)\right\|_{B} \longrightarrow 0 .
$$

Thus, $\left(D,\|\cdot\|_{D}\right)$ is a Banach space.
Step 3. There exists a positive constant K_{0} such that, for every $f \in B$ and for corresponding solution $x \in D$ of (1), we have

$$
\begin{equation*}
\sup _{n \geq 1}\|\Psi(n) x(n)\| \leq K_{0} \cdot \sup _{n \geq 1}\|\Psi(n) f(n)\| \tag{4}
\end{equation*}
$$

Indeed, we define the operator $T: D \longrightarrow B$ by

$$
(T x)(n)=x(n+1)-A(n) x(n), n \in N
$$

Clearly, T is linear and bounded, with $\|T\| \leq 1$. Let $T x=0$. Then, $x(n+1)=$ $A(n) x(n)$, and $x \in D$. This shows that x is a Ψ-bounded solution of (2) with $x(1) \in X_{2}$. From the definition of X_{1}, we have $x(1) \in X_{1}$. Thus, $x(1) \in X_{1} \cap X_{2}=\{0\}$. It follows that $x=0$. This means that the operator T is one-to-one. Now, for $f \in B$, let x be the Ψ-bounded solution of the equation (1). Let z be the solution of the Cauchy problem $z(n+1)=A(n) z(n)+f(n), z(1)=P_{2} x(1)$. Then, the sequence $(x(n)-z(n))$ is a solution of the equation (2) with $P_{2}(x(1)-z(1))=0$, i.e. $x(1)-z(1) \in X_{1}$. It follows that $(x(n)-z(n))$ is Ψ-bounded on N. Thus, $(z(n))$ is Ψ-bounded on N. It follows that $(z(n)) \in D$ and $T z=f$. Consequently, the operator T is onto. From a fundamental result of Banach (If T is a bounded one-to-one linear operator from a Banach space onto another, then the inverse operator T^{-1} is also bounded), we conclude that our claim is true (K_{0} being $\left\|T^{-1}\right\|-1$).

Step 4. Let $n_{0} \in N, n_{0}>1$, a fixed but arbitrary number. Let f be a function which vanishes for $n>n_{0}$. Then, the sequence $(x(n))_{n \in N}$ with

$$
x(n)= \begin{cases}-\sum_{k=1}^{n_{0}} P_{2} Y^{-1}(k+1) f(k), & n=1 \\ \sum_{k=1}^{n-1} Y(n) P_{1} Y^{-1}(k+1) f(k)-\sum_{k=n}^{\infty} Y(n) P_{2} Y^{-1}(k+1) f(k), & n>1\end{cases}
$$

is the solution in D of the equation (1). In fact, since

$$
\begin{aligned}
x(2) & =Y(2) P_{1} Y^{-1}(2) f(1)-\sum_{k=2}^{n_{0}} Y(2) P_{2} Y^{-1}(k+1) f(k) \\
& =Y(2) P_{1} Y^{-1}(2) f(1)-\sum_{k=1}^{n_{0}} A(1) Y(1) P_{2} Y^{-1}(k+1) f(k)+Y(2) P_{2} Y^{-1}(2) f(1) \\
& =A(1) x(1)+Y(2)\left(P_{1}+P_{2}\right) Y^{-1}(2) f(1)=A(1) x(1)+f(1)
\end{aligned}
$$

and, for $n>1$,

$$
\begin{aligned}
x(n+1)= & \sum_{k=1}^{n} Y(n+1) P_{1} Y^{-1}(k+1) f(k)-\sum_{k=n+1}^{\infty} Y(n+1) P_{2} Y^{-1}(k+1) f(k) \\
= & A(n)\left[\sum_{k=1}^{n} Y(n) P_{1} Y^{-1}(k+1) f(k)-\sum_{k=n+1}^{\infty} Y(n) P_{2} Y^{-1}(k+1) f(k)\right] \\
= & A(n)\left[\sum_{k=1}^{n-1} Y(n) P_{1} Y^{-1}(k+1) f(k)-\sum_{k=n}^{\infty} Y(n) P_{2} Y^{-1}(k+1) f(k)\right] \\
& +A(n) Y(n)\left(P_{1}+P_{2}\right) Y^{-1}(n+1) f(n) \\
= & A(n) x(n)+f(n),
\end{aligned}
$$

we deduce that x is a solution of the equation (1). From $f \in B$, it follows that the sequence $(x(n+1)-A(n) x(n)) \in B$. In addition, $x(1)=-\sum_{k=1}^{n_{0}} P_{2} Y^{-1}(k+1) f(k) \in$ X_{2}. Finally, we have $x(n)=\sum_{k=1}^{n-1} Y(n) P_{1} Y^{-1}(k+1) f(k)=Y(n) P_{1} u$ for $n>n_{0}$, where $u=\sum_{k=1}^{n_{0}} Y^{-1}(k+1) f(k)$. By the definition of X_{1}, the solution $y(n)=Y(n) P_{1} u$ of (2) is Ψ-bounded on N. Because $x(n)=y(n)$ for $n>n_{0}$, it follows that x is Ψ bounded on N. Thus, x is the solution in D of the equation (1).

Putting

$$
G(n, k)= \begin{cases}Y(n) P_{1} Y^{-1}(k), & \text { for } 1 \leq k \leq n \\ -Y(n) P_{2} Y^{-1}(k), & \text { for } 1 \leq n<k\end{cases}
$$

it is easy to see that $x(n)=\sum_{k=1}^{n_{0}} G(n, k+1) f(k)$, for all $n \in N$. Thus, the inequality (4) becomes

$$
\sup _{n \geq 1}\left\|\sum_{k=1}^{n_{0}} \Psi(n) G(n, k+1) \Psi^{-1}(k)(\Psi(k) f(k))\right\| \leq K_{0} \max _{1 \leq n \leq n_{0}}\|\Psi(n) f(n)\| .
$$

Putting $\Psi(n) G(n, k+1) \Psi^{-1}(k)=\left(G_{i j}(n, k)\right)$, the above inequality becomes

$$
\left|\sum_{k=1}^{n_{0}} \sum_{j=1}^{d} G_{i j}(n, k) \Psi_{j}(k) f_{j}(k)\right| \leq K_{0} \max _{1 \leq n \leq n_{0}} \max _{1 \leq i \leq d}\left|\Psi_{i}(n) f_{i}(n)\right|
$$

for $i=1, \ldots d, n \in N$ and for every $f=\left(f_{1}, \ldots f_{d}\right): N \longrightarrow R^{d}$ which vanishes for $n>n_{0}$.

For a fixed i and n, we consider the functions $f_{j}, j=1,2, \ldots d$, such that

$$
f_{j}(k)=\left\{\begin{array}{ll}
\Psi_{j}^{-1}(k) \operatorname{sgn} G_{i j}(n, k), & \text { for } 1 \leq k \leq n_{0} \\
0, & \text { for } k>n_{0}
\end{array} .\right.
$$

The above inequality becomes $\sum_{k=1}^{n_{0}} \sum_{j=1}^{d}\left|G_{i j}(n, k)\right| \leq K_{0}$, for $i=1,2, \ldots d$ and $n \in N$. Thus,

$$
\begin{aligned}
\sum_{k=1}^{n_{0}}\left|\Psi(n) G(n, k+1) \Psi^{-1}(k)\right| & =\sum_{k=1}^{n_{0}} \max _{1 \leq i \leq d} \sum_{j=1}^{d}\left|G_{i j}(n, k)\right| \leq \sum_{k=1}^{n_{0}} \sum_{i=1}^{d} \sum_{j=1}^{d}\left|G_{i j}(n, k)\right| \\
& =\sum_{i=1}^{d} \sum_{k=1}^{n_{0}} \sum_{j=1}^{d}\left|G_{i j}(n, k)\right| \leq K_{0} d=K
\end{aligned}
$$

It follows that

$$
\sum_{k=1}^{n-1}\left|\Psi(n) Y(n) P_{1} Y^{-1}(k+1) \Psi^{-1}(k)\right|+\sum_{k=n}^{n_{0}}\left|\Psi(n) Y(n) P_{2} Y^{-1}(k+1) \Psi^{-1}(k)\right| \leq K
$$

for all $n_{0} \in N$ and $n \in N$.
Thereafter, the inequality (3) holds for all $n \in N$.
Now, we prove the "if" part. For a Ψ-bounded sequence f on N, we consider the sequence $(x(n))_{n \in N}$ with
$x(n)=\left\{\begin{array}{ll}-\sum_{k=1}^{\infty} P_{2} Y^{-1}(k+1) f(k), & \text { for } n=1 \\ \sum_{k=1}^{n-1} Y(n) P_{1} Y^{-1}(k+1) f(k)-\sum_{k=n}^{\infty} Y(n) P_{2} Y^{-1}(k+1) f(k), & \text { for } n>1\end{array}\right.$.
For $m \geq n \geq 1$, we have

$$
\begin{aligned}
& \sum_{k=n}^{m}\left\|Y(n) P_{2} Y^{-1}(k+1) f(k)\right\| \\
= & \sum_{k=n}^{m}\left\|\Psi^{-1}(n)\left(\Psi(n) Y(n) P_{2} Y^{-1}(k+1) \Psi^{-1}(k)\right)(\Psi(k) f(k))\right\| \\
\leq & \left|\Psi^{-1}(n)\right| \sum_{k=n}^{m}\left|\Psi(n) Y(n) P_{2} Y^{-1}(k+1) \Psi^{-1}(k)\right|\|\Psi(k) f(k)\| \\
\leq & \left|\Psi^{-1}(n)\right|\left(\sup _{k \geq 1}\|\Psi(k) f(k)\|\right) \sum_{k=n}^{m}\left|\Psi(n) Y(n) P_{2} Y^{-1}(k+1) \Psi^{-1}(k)\right| .
\end{aligned}
$$

It follows that $\sum_{k=n}^{\infty} Y(n) P_{2} Y^{-1}(k+1) f(k)$ is an absolutely convergent series. Thus, the sequence $(x(n))_{n \in N}$ is well-defined.

As in the Step 4, we can show that the sequence $(x(n))_{n \in N}$ is a solution of the
equation (1). On the other hand,

$$
\begin{aligned}
& \|\Psi(n) x(n)\| \\
= & \left\|\sum_{k=1}^{n-1} \Psi(n) Y(n) P_{1} Y^{-1}(k+1) f(k)-\sum_{k=n}^{\infty} \Psi(n) Y(n) P_{2} Y^{-1}(k+1) f(k)\right\| \\
\leq & \left(\sum_{k=1}^{n-1}\left|\Psi(n) Y(n) P_{1} Y^{-1}(k+1) \Psi^{-1}(k)\right|+\sum_{k=n}^{\infty}\left|\Psi(n) Y(n) P_{2} Y^{-1}(k+1) \Psi^{-1}(k)\right|\right) \\
& \cdot\left(\sup _{k \geq 1}\|\Psi(k) f(k)\|\right) \\
\leq & K \cdot \sup _{k \geq 1}\|\Psi(k) f(k)\| .
\end{aligned}
$$

Thus, the sequence $(x(n))_{n \in N}$ is Ψ-bounded on N.
Therefore, the sequence $(x(n))_{n \in N}$ is a Ψ-bounded solution on N of the equation (1).

The proof is now complete.
Finally, we give a result in which we will see that the asymptotic behavior of solutions of (1) is determined completely by the asymptotic behavior of f.

THEOREM 3.2. Suppose that
1°. The fundamental matrix Y of (2) satisfies the inequality (3) for all $n \geq 1$, where K is a positive constant;
2°. The matrix Ψ satisfies the condition $\left|\Psi(n) \Psi^{-1}(n+1)\right| \leq T$ for all $n \in N$, where T is a positive constant;
3°. The (Ψ-bounded) function $f: N \longrightarrow R^{d}$ is such that $\lim _{n \rightarrow \infty}\|\Psi(n) f(n)\|=0$. Then, every Ψ-bounded solution x of (1) is such that $\lim _{n \rightarrow \infty}\|\Psi(n) x(n)\|=0$.

PROOF. Let x be a Ψ-bounded solution of (1). We consider the sequence $(y(n))_{n \in N}$, where $y(n)$ is equal to

$$
P_{2} x(1)+\sum_{k=1}^{\infty} P_{2} Y^{-1}(k+1) f(k)
$$

for $n=1$, and to

$$
x(n)-Y(n) P_{1} x(1)-\sum_{k=1}^{n-1} Y(n) P_{1} Y^{-1}(k+1) f(k)+\sum_{k=n}^{\infty} Y(n) P_{2} Y^{-1}(k+1) f(k)
$$

for $n>1$. As in the proof of the above theorem, the sequence $(y(n))_{n \in N}$ is well-defined and is a solution of the equation (2).

On the other hand,

$$
\begin{aligned}
\|\Psi(n) y(n)\| \leq & \|\Psi(n) x(n)\|+\left|\Psi(n) Y(n) P_{1}\right|\|x(1)\| \\
& +\sum_{k=1}^{n-1}\left|\Psi(n) Y(n) P_{1} Y^{-1}(k+1) \Psi^{-1}(k)\right|\|\Psi(k) f(k)\| \\
& +\sum_{k=n}^{\infty}\left|\Psi(n) Y(n) P_{2} Y^{-1}(k+1) \Psi^{-1}(k)\right|\|\Psi(k) f(k)\| \\
\leq & \sup _{n \geq 1}\|\Psi(n) x(n)\|+\left|\Psi(n) Y(n) P_{1}\right|\|x(1)\|+K \cdot \sup _{n \geq 1}\|\Psi(n) f(n)\| .
\end{aligned}
$$

From the hypotheses, we have that

$$
\sum_{k=1}^{n-1}\left|\Psi(n) Y(n) P_{1} Y^{-1}(k+1) \Psi^{-1}(k)\right| \leq K, n \geq 2
$$

Let $a(n)=\left|\Psi(n) Y(n) P_{1}\right|^{-1}$ for $n \geq 1$. From the identity

$$
\begin{aligned}
& {\left[\sum_{k=1}^{n-1} a(k+1)\right] \Psi(n) Y(n) P_{1} } \\
= & \sum_{k=1}^{n-1}\left(\Psi(n) Y(n) P_{1} Y^{-1}(k+1) \Psi^{-1}(k)\right)\left(\Psi(k) \Psi^{-1}(k+1)\right) \\
& \cdot\left(\Psi(k+1) Y(k+1) P_{1}\right) a(k+1)
\end{aligned}
$$

it follows that, for $n \geq 2$,

$$
\begin{aligned}
& \left|\Psi(n) Y(n) P_{1}\right|\left[\sum_{k=1}^{n-1} a(k+1)\right] \\
\leq & \sum_{k=1}^{n-1}\left|\Psi(n) Y(n) P_{1} Y^{-1}(k+1) \Psi^{-1}(k)\right|\left|\Psi(k) \Psi^{-1}(k+1)\right| \\
\leq & \left|\Psi(k+1) Y(k+1) P_{1}\right| a(k+1) \\
\leq & T K
\end{aligned}
$$

Thus,

$$
\frac{1}{a(n)}=\left|\Psi(n) Y(n) P_{1}\right| \leq \frac{T K}{\sum_{k=1}^{n-1} a(k+1)} \leq \frac{T K}{a(2)}, \text { or } a(n) \geq \frac{a(2)}{T K}
$$

Therefore, $\sum_{k=1}^{\infty} a(k)=+\infty$ and then, $\lim _{n \rightarrow \infty}\left|\Psi(n) Y(n) P_{1}\right|=0$.
Thus, we come to the conclusion that the sequence $(y(n))_{n \in N}$ is a Ψ-bounded solution of (2).

Now, by the definition of $X_{1}, y(1) \in X_{1}$. Since $y(1)=P_{2} x(1)+\sum_{k=1}^{\infty} P_{2} Y^{-1}(k+$ 1) $f(k) \in X_{2}$, we have $y(1) \in X_{1} \cap X_{2}=\{0\}$. Thus, $y=0$. It follows that
$x(n)=Y(n) P_{1} x(1)+\sum_{k=1}^{n-1} Y(n) P_{1} Y^{-1}(k+1) f(k)-\sum_{k=n}^{\infty} Y(n) P_{2} Y^{-1}(k+1) f(k), n \geq 2$.

Now, for a given $\varepsilon>0$, there exists $n_{1} \in N$ such that $\|\Psi(n) f(n)\|<\frac{\varepsilon}{2 K}$, for $n \geq n_{1}$. Moreover, there exists $n_{2} \in N, n_{2}>n_{1}$, such that, for $n>n_{2}$,

$$
\left|\Psi(n) Y(n) P_{1}\right|<\frac{\varepsilon}{2}\left[1+\|x(1)\|+\sum_{k=1}^{n_{1}-1}\left\|Y^{-1}(k+1) f(k)\right\|\right]^{-1}
$$

Then, for $n>n_{2}$, we have

$$
\begin{aligned}
\|\Psi(n) x(n)\| \leq & \left\|\Psi(n) Y(n) P_{1} x(1)\right\| \\
& +\sum_{k=1}^{n_{1}-1}\left|\Psi(n) Y(n) P_{1}\right|\left\|Y^{-1}(k+1) f(k)\right\| \\
& +\sum_{k=n_{1}}^{n-1}\left|\Psi(n) Y(n) P_{1} Y^{-1}(k+1) \Psi^{-1}(k)\right|\|\Psi(k) x(k)\| \\
& +\sum_{k=n}^{\infty}\left|\Psi(n) Y(n) P_{2} Y^{-1}(k+1) \Psi^{-1}(k)\right|\|\Psi(k) x(k)\| \\
\leq & \left|\Psi(n) Y(n) P_{1}\right|\left[\|x(1)\|+\sum_{k=1}^{n_{1}-1}\left\|Y^{-1}(k+1) f(k)\right\|\right] \\
& +\sum_{k=n_{1}}^{n-1}\left|\Psi(n) Y(n) P_{1} Y^{-1}(k+1) \Psi^{-1}(k)\right| \frac{\varepsilon}{2 K} \\
& +\sum_{k=n}^{\infty}\left|\Psi(n) Y(n) P_{2} Y^{-1}(k+1) \Psi^{-1}(k)\right| \frac{\varepsilon}{2 K} \\
< & \frac{\varepsilon}{2}+\frac{\varepsilon}{2 K} \cdot K=\varepsilon
\end{aligned}
$$

This shows that $\lim _{n \rightarrow \infty}\|\Psi(n) x(n)\|=0$.
The proof is now complete.
REMARK 3.1. If we do not have $\lim _{n \rightarrow \infty}\|\Psi(n) f(n)\|=0$, then the solution x may be such that $\Psi(n) x(n) \nrightarrow 0$ as $n \rightarrow \infty$. For example, consider the equation (1) with

$$
A(n)=\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{4}
\end{array}\right) \text { and } f(n)=\binom{2^{n}}{5^{-n}}
$$

A fundamental matrix for the equation (2) is

$$
Y(n)=\left(\begin{array}{ll}
1 & 0 \\
0 & 4^{1-n}
\end{array}\right), n \in N
$$

Consider $\Psi(n)=\left(\begin{array}{ll}2^{-n} & 0 \\ 0 & 3^{n}\end{array}\right), n \geq 1$. The first hypothesis of the Theorem 3.2 is satisfied with

$$
P_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), P_{2}=\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right) \text { and } K=17
$$

The second hypothesis of the Theorem 3.2 is satisfied with $T=2$. In addition, $\|\Psi(n) f(n)\|=$ $1, n \in N$ (i.e. the function f is Ψ-bounded on N).

In the end, it is easy to see that

$$
x(n)=\binom{2^{n}}{4^{2-n}-4 \cdot 5^{1-n}}, n \in N
$$

is a Ψ-bounded solution of (1) with

$$
\Psi(n) x(n)=\binom{1}{16\left(\frac{3}{4}\right)^{n}-20\left(\frac{3}{5}\right)^{n}} \nrightarrow 0 \text { as } n \rightarrow \infty
$$

Acknowledgments. The author would like to thank the anonymous referee for his useful suggestions and comments.

References

[1] P. N. Boi, Existence of Ψ-bounded solutions on R for nonhomogeneous linear differential equations, Electronic Journal of Differential Equations, Vol. 2007(2007), No. 52, pp. 1-10.
[2] W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, 1965.
[3] A. Diamandescu, Existence of Ψ-bounded solutions for a system of differential equations, Electronic Journal of Differential Equations, Vol. 2004(2004), No. 63, 1-6.
[4] A. Diamandescu, Note on the Ψ-boundedness of the solutions of a system of differential equations, Acta. Math. Univ. Comenianae, 73(2)(2004), 223-233.
[5] A. Diamandescu, A note on the Ψ-boundedness for differential systems, Bull. Math. Soc. Sci. Math. Roumanie, Tome 48(96), No. 1, 2005, 33-43.
[6] Y. Han and J. Hong, Existence of Ψ-bounded solutions for linear difference equations, Applied Mathematics Letters, 20(2007), 301-305.

[^0]: ${ }^{*}$ Mathematics Subject Classifications: 39A11, 39A10.
 ${ }^{\dagger}$ Department of Applied Mathematics, University of Craiova, 200585 Craiova, Romania; E-mail address: adiamandescu@central.ucv.ro

