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Abstract

In this paper, we give a necessary and sufficient condition for the existence
of Ψ-bounded solutions for the nonhomogeneous linear difference equation
x(n + 1) = A(n)x(n) + f(n) and a result in connection with the asymptotic
behavior of the solutions of this equation.

1 Introduction

The aim of this paper is to give a necessary and sufficient condition so that the non-
homogeneous linear difference equation

x(n + 1) = A(n)x(n) + f(n) (1)

have at least one Ψ-bounded solution for every Ψ-bounded sequence f.

Here, Ψ is a matrix function. The introduction of the matrix function Ψ allows us
to obtain a mixed asymptotic behavior of the components of the solutions.

The problem of boundedness of the solutions for the system of ordinary differen-
tial equations x′ = A(t)x + f(t) was studied by Coppel in [2]. In [3], [4] and [5], the
author proposes a novel concept, Ψ-boundedness of solutions (Ψ being a matrix func-
tion), which is interesting and useful in some practical cases and presents the existence
condition for such solutions. Also, in [1], the author associates this problem with the
concept of Ψ-dichotomy on R of the system x′ = A(t)x.

In [6], the authors extend the concept of Ψ-boundedness to the solutions of difference
equation (via Ψ-bounded sequence) and establish a necessary and sufficient condition
for existence of Ψ-bounded solutions for the nonhomogeneous linear difference equation
(1) in case f is a Ψ-summable sequence on N .
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2 Preliminaries

Let Rd be the Euclidean space. For x = (x1, ..., xd)
T ∈ Rd, let ‖x‖ = max{|x1| , ..., |xd|}

be the norm of x. For a d × d real matrix A = (aij), the norm |A| is defined by
|A| = sup‖x‖≤1 ‖Ax‖ . Let N = {1, 2, ...} and Ψi : N → (0,∞), i = 1, 2, ..., d, and let
the matrix function Ψ = diag[Ψ1, Ψ2, ..., Ψd]. Then, Ψ(n) is invertible for each n ∈ N.

DEFINITION 2.1. A sequence ϕ : N → Rd is said to be Ψ-bounded if the sequence
Ψϕ is bounded (i.e. there exists M > 0 such that ‖Ψ(n)ϕ(n)‖ ≤ M for all n ∈ N).

Consider the nonautonomous difference linear equation

y(n + 1) = A(n)y(n) (2)

where the d × d real matrix A(n) is invertible at n ∈ N . Let Y be the fundamental
matrix of (2) with Y (1) = Id (identity d × d matrix). It is well-known that Y (n) =
A(n − 1)A(n − 2) · · ·A(2)A(1) for n ≥ 2, Y (n + 1) = A(n)Y (n) for all n ∈ N and the
solution of (2) with the initial condition y(1) = y0 is y(n) = Y (n)y0, n ∈ N .

Let X1 denote the subspace of Rd consisting of all vectors which are values for
n = 1 of Ψ-bounded solutions of (2) and let X2 be an arbitrary fixed subspace of Rd,

supplementary to X1. Let P1, P2 denote the corresponding projections of Rd onto X1,
X2 respectively.

3 Main Result

The main result of this note is the following.

THEOREM 3.1. The equation (1) has at least one Ψ-bounded solution on N for
every Ψ-bounded sequence f on N if and only if there is a positive constant K such
that, for all n ∈ N,

n−1
∑

k=1

∣

∣Ψ(n)Y (n)P1Y
−1(k + 1)Ψ−1(k)

∣

∣+

∞
∑

k=n

∣

∣Ψ(n)Y (n)P2Y
−1(k + 1)Ψ−1(k)

∣

∣ ≤ K, (3)

where we have adopted the convention that empty sums are 0.

PROOF. First, we prove the ”only if” part. We define the sets:

B = {x : N −→ Rd | x is Ψ-bounded}

D = {x : N −→ Rd | x ∈ B, x(1) ∈ X2, (x(n + 1) − A(n)x(n)) ∈ B}.

Obviously, B and D are vector spaces over R and the functionals

x 7−→ ‖x‖B = sup
n∈N

‖Ψ(n)x(n)‖ ,

x 7−→ ‖x‖D = ‖x‖B + ‖x(n + 1) − A(n)x(n)‖B

are norms on B and D respectively.

Step 1. It is a simple exercise that (B, ‖·‖B) is a Banach space.
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Step 2. (D, ‖·‖D) is a Banach space. Indeed, let (xp)p∈N be a fundamental se-
quence in D. Then, (xp)p∈N is a fundamental sequence in B. Therefore, there ex-
ists a Ψ-bounded sequence x in B such that ‖xp − x‖

B
−→ 0 as p −→ ∞. From

‖xp(1) − x(1)‖ ≤
∣

∣Ψ−1(1)
∣

∣ ‖Ψ(1)(xp(1) − x(1))‖ ≤
∣

∣Ψ−1(1)
∣

∣ ‖xp − x‖B , it follows that
limp→∞ xp(1) = x(1). Thus, x(1) ∈ X2. On the other hand, the sequence ((xp(n+1)−
A(n)xp(n)))p∈N is a fundamental sequence in B. Thus, there exists a function f ∈ B

such that

sup
n≥1

‖Ψ(n)(xp(n + 1) − A(n)xp(n)) − Ψ(n)f(n)‖ −→ 0 as p −→ ∞.

It follows that limp→∞(xp(n + 1) − A(n)xp(n)) = f(n), for n ∈ N . Because limp→∞

xp(n) = x(n) for all n ∈ N , we have that x(n + 1) − A(n)x(n) = f(n), for all n ∈ N.

Thus,

sup
n≥1

‖Ψ(n)(xp(n + 1) − A(n)xp(n)) − Ψ(n)(x(n + 1) − A(n)x(n))‖ −→ 0

and then

‖xp − x‖
D

= ‖xp − x‖
B

+ ‖(xp − x)(n + 1) − A(n)(xp − x)(n)‖
B
−→ 0.

Thus, (D, ‖·‖D) is a Banach space.

Step 3. There exists a positive constant K0 such that, for every f ∈ B and for
corresponding solution x ∈ D of (1), we have

sup
n≥1

‖Ψ(n)x(n)‖ ≤ K0 · sup
n≥1

‖Ψ(n)f(n)‖ . (4)

Indeed, we define the operator T : D −→ B by

(Tx)(n) = x(n + 1) − A(n)x(n), n ∈ N.

Clearly, T is linear and bounded, with ‖T‖ ≤ 1. Let Tx = 0. Then, x(n + 1) =
A(n)x(n), and x ∈ D. This shows that x is a Ψ-bounded solution of (2) with x(1) ∈ X2.
From the definition of X1, we have x(1) ∈ X1. Thus, x(1) ∈ X1 ∩X2 = {0}. It follows
that x = 0. This means that the operator T is one-to-one. Now, for f ∈ B, let x be the
Ψ-bounded solution of the equation (1). Let z be the solution of the Cauchy problem
z(n + 1) = A(n)z(n) + f(n), z(1) = P2x(1). Then, the sequence (x(n) − z(n)) is a
solution of the equation (2) with P2(x(1) − z(1)) = 0, i.e. x(1) − z(1) ∈ X1. It follows
that (x(n)−z(n)) is Ψ-bounded on N . Thus, (z(n)) is Ψ-bounded on N . It follows that
(z(n)) ∈ D and Tz = f. Consequently, the operator T is onto. From a fundamental
result of Banach (If T is a bounded one-to-one linear operator from a Banach space
onto another, then the inverse operator T−1 is also bounded), we conclude that our
claim is true (K0 being

∥

∥T−1
∥

∥− 1).

Step 4. Let n0 ∈ N, n0 > 1, a fixed but arbitrary number. Let f be a function
which vanishes for n > n0. Then, the sequence (x(n))n∈N with

x(n) =

{

−
∑n0

k=1
P2Y

−1(k + 1)f(k), n = 1
∑n−1

k=1
Y (n)P1Y

−1(k + 1)f(k) −
∑∞

k=n Y (n)P2Y
−1(k + 1)f(k), n > 1
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is the solution in D of the equation (1). In fact, since

x(2) = Y (2)P1Y
−1(2)f(1) −

n0
∑

k=2

Y (2)P2Y
−1(k + 1)f(k)

= Y (2)P1Y
−1(2)f(1) −

n0
∑

k=1

A(1)Y (1)P2Y
−1(k + 1)f(k) + Y (2)P2Y

−1(2)f(1)

= A(1)x(1) + Y (2)(P1 + P2)Y
−1(2)f(1) = A(1)x(1) + f(1)

and, for n > 1,

x(n + 1) =

n
∑

k=1

Y (n + 1)P1Y
−1(k + 1)f(k) −

∞
∑

k=n+1

Y (n + 1)P2Y
−1(k + 1)f(k)

= A(n)[

n
∑

k=1

Y (n)P1Y
−1(k + 1)f(k) −

∞
∑

k=n+1

Y (n)P2Y
−1(k + 1)f(k)]

= A(n)[

n−1
∑

k=1

Y (n)P1Y
−1(k + 1)f(k) −

∞
∑

k=n

Y (n)P2Y
−1(k + 1)f(k)]

+A(n)Y (n)(P1 + P2)Y
−1(n + 1)f(n)

= A(n)x(n) + f(n),

we deduce that x is a solution of the equation (1). From f ∈ B, it follows that the
sequence (x(n + 1) −A(n)x(n)) ∈ B. In addition, x(1) = −

∑n0

k=1
P2Y

−1(k + 1)f(k) ∈

X2. Finally, we have x(n) =
∑n−1

k=1
Y (n)P1Y

−1(k + 1)f(k) = Y (n)P1u for n > n0,

where u =
∑n0

k=1
Y −1(k+1)f(k). By the definition of X1, the solution y(n) = Y (n)P1u

of (2) is Ψ-bounded on N . Because x(n) = y(n) for n > n0, it follows that x is Ψ-
bounded on N . Thus, x is the solution in D of the equation (1).

Putting

G(n, k) =

{

Y (n)P1Y
−1(k), for 1 ≤ k ≤ n

−Y (n)P2Y
−1(k), for 1 ≤ n < k

,

it is easy to see that x(n) =
∑n0

k=1
G(n, k + 1)f(k), for all n ∈ N. Thus, the inequality

(4) becomes

sup
n≥1

∥

∥

∥

∥

∥

n0
∑

k=1

Ψ(n)G(n, k + 1)Ψ−1(k)(Ψ(k)f(k))

∥

∥

∥

∥

∥

≤ K0 max
1≤n≤n0

‖Ψ(n)f(n)‖ .

Putting Ψ(n)G(n, k + 1)Ψ−1(k) = (Gij(n, k)), the above inequality becomes

∣

∣

∣

∣

∣

∣

n0
∑

k=1

d
∑

j=1

Gij(n, k)Ψj(k)fj(k)

∣

∣

∣

∣

∣

∣

≤ K0 max
1≤n≤n0

max
1≤i≤d

|Ψi(n)fi(n)| ,

for i = 1, ...d, n ∈ N and for every f = (f1, ...fd) : N −→ Rd which vanishes for n > n0.
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For a fixed i and n, we consider the functions fj , j = 1, 2, ...d, such that

fj(k) =

{

Ψ−1

j (k)sgnGij(n, k), for 1 ≤ k ≤ n0

0, for k > n0

.

The above inequality becomes
∑n0

k=1

∑d

j=1
|Gij(n, k)| ≤ K0, for i = 1, 2, ...d and n ∈ N.

Thus,

n0
∑

k=1

∣

∣Ψ(n)G(n, k + 1)Ψ−1(k)
∣

∣ =

n0
∑

k=1

max
1≤i≤d

d
∑

j=1

|Gij(n, k)| ≤

n0
∑

k=1

d
∑

i=1

d
∑

j=1

|Gij(n, k)|

=

d
∑

i=1

n0
∑

k=1

d
∑

j=1

|Gij(n, k)| ≤ K0d = K.

It follows that

n−1
∑

k=1

∣

∣Ψ(n)Y (n)P1Y
−1(k + 1)Ψ−1(k)

∣

∣+

n0
∑

k=n

∣

∣Ψ(n)Y (n)P2Y
−1(k + 1)Ψ−1(k)

∣

∣ ≤ K,

for all n0 ∈ N and n ∈ N.

Thereafter, the inequality (3) holds for all n ∈ N .

Now, we prove the ”if” part. For a Ψ-bounded sequence f on N , we consider the
sequence (x(n))n∈N with

x(n) =

{

−
∑∞

k=1
P2Y

−1(k + 1)f(k), for n = 1
∑n−1

k=1
Y (n)P1Y

−1(k + 1)f(k) −
∑∞

k=n Y (n)P2Y
−1(k + 1)f(k), for n > 1

.

For m ≥ n ≥ 1, we have

m
∑

k=n

∥

∥Y (n)P2Y
−1(k + 1)f(k)

∥

∥

=

m
∑

k=n

∥

∥Ψ−1(n)(Ψ(n)Y (n)P2Y
−1(k + 1)Ψ−1(k))(Ψ(k)f(k))

∥

∥

≤
∣

∣Ψ−1(n)
∣

∣

m
∑

k=n

∣

∣Ψ(n)Y (n)P2Y
−1(k + 1)Ψ−1(k)

∣

∣ ‖Ψ(k)f(k)‖

≤
∣

∣Ψ−1(n)
∣

∣ (sup
k≥1

‖Ψ(k)f(k)‖)

m
∑

k=n

∣

∣Ψ(n)Y (n)P2Y
−1(k + 1)Ψ−1(k)

∣

∣ .

It follows that
∑∞

k=n Y (n)P2Y
−1(k + 1)f(k) is an absolutely convergent series. Thus,

the sequence (x(n))n∈N is well-defined.

As in the Step 4, we can show that the sequence (x(n))n∈N is a solution of the
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equation (1). On the other hand,

‖Ψ(n)x(n)‖

=

∥

∥

∥

∥

∥

n−1
∑

k=1

Ψ(n)Y (n)P1Y
−1(k + 1)f(k) −

∞
∑

k=n

Ψ(n)Y (n)P2Y
−1(k + 1)f(k)

∥

∥

∥

∥

∥

≤

(

n−1
∑

k=1

∣

∣Ψ(n)Y (n)P1Y
−1(k + 1)Ψ−1(k)

∣

∣+

∞
∑

k=n

∣

∣Ψ(n)Y (n)P2Y
−1(k + 1)Ψ−1(k)

∣

∣

)

·

(

sup
k≥1

‖Ψ(k)f(k)‖

)

≤ K · sup
k≥1

‖Ψ(k)f(k)‖ .

Thus, the sequence (x(n))n∈N is Ψ-bounded on N .

Therefore, the sequence (x(n))n∈N is a Ψ-bounded solution on N of the equation
(1).

The proof is now complete.

Finally, we give a result in which we will see that the asymptotic behavior of solu-
tions of (1) is determined completely by the asymptotic behavior of f.

THEOREM 3.2. Suppose that

1◦. The fundamental matrix Y of (2) satisfies the inequality (3) for all n ≥ 1, where
K is a positive constant;

2◦. The matrix Ψ satisfies the condition
∣

∣Ψ(n)Ψ−1(n + 1)
∣

∣ ≤ T for all n ∈ N ,
where T is a positive constant;

3◦. The (Ψ-bounded) function f : N −→ Rd is such that limn→∞ ‖Ψ(n)f(n)‖ = 0.

Then, every Ψ-bounded solution x of (1) is such that limn→∞ ‖Ψ(n)x(n)‖ = 0.

PROOF. Let x be a Ψ-bounded solution of (1). We consider the sequence (y(n))n∈N ,
where y(n) is equal to

P2x(1) +

∞
∑

k=1

P2Y
−1(k + 1)f(k),

for n = 1, and to

x(n) − Y (n)P1x(1) −
n−1
∑

k=1

Y (n)P1Y
−1(k + 1)f(k) +

∞
∑

k=n

Y (n)P2Y
−1(k + 1)f(k),

for n > 1. As in the proof of the above theorem, the sequence (y(n))n∈N is well-defined
and is a solution of the equation (2).
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On the other hand,

‖Ψ(n)y(n)‖ ≤ ‖Ψ(n)x(n)‖ + |Ψ(n)Y (n)P1| ‖x(1)‖

+

n−1
∑

k=1

∣

∣Ψ(n)Y (n)P1Y
−1(k + 1)Ψ−1(k)

∣

∣ ‖Ψ(k)f(k)‖

+

∞
∑

k=n

∣

∣Ψ(n)Y (n)P2Y
−1(k + 1)Ψ−1(k)

∣

∣ ‖Ψ(k)f(k)‖

≤ sup
n≥1

‖Ψ(n)x(n)‖ + |Ψ(n)Y (n)P1| ‖x(1)‖ + K · sup
n≥1

‖Ψ(n)f(n)‖ .

From the hypotheses, we have that

n−1
∑

k=1

∣

∣Ψ(n)Y (n)P1Y
−1(k + 1)Ψ−1(k)

∣

∣ ≤ K, n ≥ 2.

Let a(n) = |Ψ(n)Y (n)P1|
−1

for n ≥ 1. From the identity
[

n−1
∑

k=1

a(k + 1)

]

Ψ(n)Y (n)P1

=

n−1
∑

k=1

(Ψ(n)Y (n)P1Y
−1(k + 1)Ψ−1(k))(Ψ(k)Ψ−1(k + 1))

·(Ψ(k + 1)Y (k + 1)P1)a(k + 1),

it follows that, for n ≥ 2,

|Ψ(n)Y (n)P1|

[

n−1
∑

k=1

a(k + 1)

]

≤

n−1
∑

k=1

∣

∣Ψ(n)Y (n)P1Y
−1(k + 1)Ψ−1(k)

∣

∣

∣

∣Ψ(k)Ψ−1(k + 1)
∣

∣

· |Ψ(k + 1)Y (k + 1)P1|a(k + 1)

≤ TK.

Thus,
1

a(n)
= |Ψ(n)Y (n)P1| ≤

TK
∑n−1

k=1
a(k + 1)

≤
TK

a(2)
, or a(n) ≥

a(2)

TK
.

Therefore,
∑∞

k=1
a(k) = +∞ and then, limn→∞ |Ψ(n)Y (n)P1| = 0.

Thus, we come to the conclusion that the sequence (y(n))n∈N is a Ψ-bounded
solution of (2).

Now, by the definition of X1, y(1) ∈ X1. Since y(1) = P2x(1) +
∑∞

k=1
P2Y

−1(k +
1)f(k) ∈ X2, we have y(1) ∈ X1 ∩ X2 = {0}. Thus, y = 0. It follows that

x(n) = Y (n)P1x(1)+

n−1
∑

k=1

Y (n)P1Y
−1(k + 1)f(k)−

∞
∑

k=n

Y (n)P2Y
−1(k +1)f(k), n ≥ 2.
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Now, for a given ε > 0, there exists n1 ∈ N such that ‖Ψ(n)f(n)‖ < ε
2K

, for n ≥ n1.
Moreover, there exists n2 ∈ N , n2 > n1, such that, for n > n2,

|Ψ(n)Y (n)P1| <
ε

2

[

1 + ‖x(1)‖+

n1−1
∑

k=1

∥

∥Y −1(k + 1)f(k)
∥

∥

]−1

.

Then, for n > n2, we have

‖Ψ(n)x(n)‖ ≤ ‖Ψ(n)Y (n)P1x(1)‖

+

n1−1
∑

k=1

|Ψ(n)Y (n)P1|
∥

∥Y −1(k + 1)f(k)
∥

∥

+

n−1
∑

k=n1

∣

∣Ψ(n)Y (n)P1Y
−1(k + 1)Ψ−1(k)

∣

∣ ‖Ψ(k)x(k)‖

+

∞
∑

k=n

∣

∣Ψ(n)Y (n)P2Y
−1(k + 1)Ψ−1(k)

∣

∣ ‖Ψ(k)x(k)‖

≤ |Ψ(n)Y (n)P1|

[

‖x(1)‖ +

n1−1
∑

k=1

∥

∥Y −1(k + 1)f(k)
∥

∥

]

+

n−1
∑

k=n1

∣

∣Ψ(n)Y (n)P1Y
−1(k + 1)Ψ−1(k)

∣

∣

ε

2K

+

∞
∑

k=n

∣

∣Ψ(n)Y (n)P2Y
−1(k + 1)Ψ−1(k)

∣

∣

ε

2K

<
ε

2
+

ε

2K
· K = ε.

This shows that limn→∞ ‖Ψ(n)x(n)‖ = 0.

The proof is now complete.

REMARK 3.1. If we do not have limn→∞ ‖Ψ(n)f(n)‖ = 0, then the solution x may
be such that Ψ(n)x(n) 9 0 as n → ∞. For example, consider the equation (1) with

A(n) =

(

1 0
0 1

4

)

and f(n) =

(

2n

5−n

)

.

A fundamental matrix for the equation (2) is

Y (n) =

(

1 0
0 41−n

)

, n ∈ N.

Consider Ψ(n) =

(

2−n 0
0 3n

)

, n ≥ 1. The first hypothesis of the Theorem 3.2 is

satisfied with

P1 =

(

1 0
0 0

)

, P2 =

(

0 0
0 1

)

and K = 17.
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The second hypothesis of the Theorem 3.2 is satisfied with T = 2. In addition, ‖Ψ(n)f(n)‖ =
1, n ∈ N (i.e. the function f is Ψ-bounded on N).

In the end, it is easy to see that

x(n) =

(

2n

42−n − 4 · 51−n

)

, n ∈ N ,

is a Ψ-bounded solution of (1) with

Ψ(n)x(n) =

(

1

16
(

3

4

)n
− 20

(

3

5

)n

)

9 0 as n → ∞.
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