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Abstract

In this paper, we give a necessary and sufficient condition for the existence
of W-bounded solutions for the nonhomogeneous linear difference equation
z(n+ 1) = A(n)x(n) + f(n) and a result in connection with the asymptotic
behavior of the solutions of this equation.

1 Introduction

The aim of this paper is to give a necessary and sufficient condition so that the non-
homogeneous linear difference equation

z(n+1) = A(n)z(n) + f(n) (1)

have at least one ¥-bounded solution for every W-bounded sequence f.

Here, ¥ is a matrix function. The introduction of the matrix function ¥ allows us
to obtain a mixed asymptotic behavior of the components of the solutions.

The problem of boundedness of the solutions for the system of ordinary differen-
tial equations z’ = A(t)x + f(t) was studied by Coppel in [2]. In [3], [4] and [5], the
author proposes a novel concept, ¥-boundedness of solutions (¥ being a matrix func-
tion), which is interesting and useful in some practical cases and presents the existence
condition for such solutions. Also, in [1], the author associates this problem with the
concept of U-dichotomy on R of the system =’ = A(t)z.

In [6], the authors extend the concept of U-boundedness to the solutions of difference
equation (via W-bounded sequence) and establish a necessary and sufficient condition
for existence of U-bounded solutions for the nonhomogeneous linear difference equation
(1) in case f is a U-summable sequence on N.
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2 Preliminaries

Let R? be the Euclidean space. For z = (z1, ..., z4)T € R4, let ||z|| = max{|x1], ..., |va|}
be the norm of z. For a d x d real matrix A = (a;;), the norm |A| is defined by
|A|l = sup| <1 [|Az][. Let N = {1,2,..} and ¥; : N — (0,00), i = 1,2,...,d, and let
the matrix function ¥ = diag[¥1, ¥o, ..., ¥g]. Then, ¥(n) is invertible for each n € N.

DEFINITION 2.1. A sequence ¢ : N — R% is said to be U-bounded if the sequence
P is bounded (i.e. there exists M > 0 such that || T(n)p(n)|| < M for all n € N).

Consider the nonautonomous difference linear equation

y(n+1) = A(n)y(n) (2)

where the d x d real matrix A(n) is invertible at n € N. Let Y be the fundamental
matrix of (2) with Y'(1) = I; (identity d x d matrix). It is well-known that Y'(n) =
An—1)A(n—2)---A(2)A(1) forn >2,Y(n+1) = A(n)Y (n) for all n € N and the
solution of (2) with the initial condition y(1) = yo is y(n) = Y(n)yo, n € N.

Let X; denote the subspace of R? consisting of all vectors which are values for
n = 1 of U-bounded solutions of (2) and let X5 be an arbitrary fixed subspace of R,
supplementary to X;. Let P;, P, denote the corresponding projections of R% onto X,
Xy respectively.

3 Main Result

The main result of this note is the following.

THEOREM 3.1. The equation (1) has at least one ¥-bounded solution on N for
every W-bounded sequence f on N if and only if there is a positive constant K such
that, for all n € N,

n—1 o]
S E@Y (n)PY Mk + DU R+ [ ()Y (n)PY Tk + DY (k)| < K, (3)
k=1 k=n

where we have adopted the convention that empty sums are 0.

PROOF. First, we prove the "only if” part. We define the sets:

B = {z:N — R%|zis U-bounded}
D = {z:N— R zeB,xz(l) € Xq,(x(n+1) — A(n)z(n)) € B}.

Obviously, B and D are vector spaces over R and the functionals
. — |zlg = sup [[¥(n)x(n)],
neN
z — |zllp = [zl + [[z(n+ 1) — A(n)z(n)]

are norms on B and D respectively.

Step 1. It is a simple exercise that (B, ||| 3) is a Banach space.
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Step 2. (D, ||-||p) is a Banach space. Indeed, let (xp)p,en be a fundamental se-
quence in D. Then, (xp)pen is a fundamental sequence in B. Therefore, there ex-
ists a W-bounded sequence x in B such that ||z, —z[; — 0 as p — oo. From
(1) — 2D < [ D)] 191 (@p(1) — (D) < [872(1)] 12y — o], it follows that
lim, o (1) = x(1). Thus, z(1) € X5. On the other hand, the sequence ((xp(n+1)—
A(n)zp(n)))pen is a fundamental sequence in B. Thus, there exists a function f € B
such that

sup [| ¥ (n) (zp(n +1) = An)ap(n)) = U(n) f(n)]| — 0 as p — oo.
It follows that lim, o (zp(n + 1) — A(n)zp(n)) = f(n), for n € N. Because lim,

zp(n) = z(n) for all n € N, we have that z(n+ 1) — A(n)xz(n) = f(n), for all n € N.
Thus,

sup [[W(n)(zp(n +1) = A(n)zp(n)) — ¥(n)(z(n + 1) — A(n)z(n))| — 0

n>1
and then
lzp —zllp = llzp — 2l g + [[(zp — 2)(n + 1) — A(n)(xp — z)(n)|| g — 0.

Thus, (D, ||-||p) is a Banach space.

Step 3. There exists a positive constant Ky such that, for every f € B and for
corresponding solution z € D of (1), we have

sup [¥(n)z(n)| < Ko sup W (n)f ()]l (4)

Indeed, we define the operator T': D — B by
(Tz)(n) =x(n+1) — A(n)x(n), n € N.

Clearly, T is linear and bounded, with ||T|| < 1. Let Tz = 0. Then, z(n + 1) =
A(n)xz(n), and x € D. This shows that z is a U-bounded solution of (2) with z(1) € X5.
From the definition of X3, we have (1) € X;. Thus, z(1) € X1 N Xz = {0}. It follows
that £ = 0. This means that the operator T is one-to-one. Now, for f € B, let « be the
P-bounded solution of the equation (1). Let z be the solution of the Cauchy problem
z(n+ 1) = A(n)z(n) + f(n),z2(1) = Pex(l). Then, the sequence (x(n) — z(n)) is a
solution of the equation (2) with Py(z(1) — 2(1)) =0, i.e. (1) — 2(1) € X;. It follows
that (z(n)—z(n)) is ¥-bounded on N. Thus, (2(n)) is ¥-bounded on N. It follows that
(2(n)) € D and Tz = f. Consequently, the operator T is onto. From a fundamental
result of Banach (If T is a bounded one-to-one linear operator from a Banach space
onto another, then the inverse operator 7! is also bounded), we conclude that our
claim is true (Ko being |77 —1).

Step 4. Let ng € N, ng > 1, a fixed but arbitrary number. Let f be a function
which vanishes for n > ng. Then, the sequence (z(n))pen with

( ){ - Zozlp2yil(k+1)f(k)a n=1
TZ SV ) PY "k + D) (k) — S5, Y () PY "L (k+ 1) f(k), n>1
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is the solution in D of the equation (1). In fact, since
#(2) = YQ)PY™ Z Y (2)PY "tk + 1) f(k)

= Y©2)PY~ Z A1 PY Nk +1)f(k) + Y(2)PY 1(2)f(1)

AW + YR 4 POY @)1 = AQ)a(D) + 1)

and, for n > 1,

zn+1) = > Y+ )PY k+1)f(k)— > Y+ )PY '(k+1)f(k)
k=1 k=n-+1
= A _Ym)PY '(k+1)f(k) = Y Y(n)PY " (k+1)f(k)]
k=1 k=n+1
n—1
= AN Yn)PY Y k+1)f ZY Yk 4 1)f(k)]
k=1
+AM)Y (n)(P1 + P)Y ' (n + 1)f(n)
= A(m)e(n) + f0),
we deduce that z is a solution of the equation (1). From f € B, it follows that the
sequence (z(n+1) — A(n)z(n)) € B. In addition, z(1) = = >_°, Y " Hk+1)f(k) €
X. Finally, we have z(n) = 71— V(n)P,Y ' (k + 1)f(k) = Y (n)Pyu for n > no,
where u = Y12, Y1 (k+1)f(k). By the definition of X1, the solution y(n) =Y (n)Piu

of (2) is U-bounded on N. Because x(n) = y(n) for n > ng, it follows that x is W-
bounded on N. Thus, x is the solution in D of the equation (1).
Putting
[ Y(n)PL Y Yk), for1<k<n
G(”’k)_{ ~Y(n)PY~(k), forl<n<k ’

it is easy to see that z(n) =Y ;"% G(n,k+ 1) f(k), for all n € N. Thus, the inequality
(4) becomes

no

Y Y()G(n k+ 1)U (k) (U (k) £ ()

k=1

< Ko max [[W(n)f(n)].

su
b 1<n<ng

n>1

Putting ¥(n)G(n,k+ 1)V~ (k) = (Gi;(n, k)), the above inequality becomes

ng d
DD Gig(n k) ¥y(k) f(k)| < Ko max max [W(n)fi(n)],

- 1<n<ng 1<i<d
k=1 j=1

fori =1,...d,n € N and for every f = (f1,...f1) : N — R which vanishes for n > ny.
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For a fixed 7 and n, we consider the functions f;, j = 1,2, ...d, such that

\IlflksnGi-n,k, for1 <k <n
fiey = o onGutn k) :
0, for k > ng

The above inequality becomes > Z?Zl |Gij(n, k)| < Ko, fori=1,2,...dandn € N.
Thus,

S |em)Gn k+ D)E (k)| =
k=1

1=1 k=1j=1
It follows that
n—1
ST )Y (n)PY "k +1)¥ HZ [T(n)Y (n)PY " (k+ )07 (k)| < K,
k=1

for all ng € N and n € N.
Thereafter, the inequality (3) holds for all n € N.

Now, we prove the ”if” part. For a U-bounded sequence f on N, we consider the
sequence (z(n))pen with

x(n)_{ Zk L P2Y 7(k+1)f(k)a forn=1
P Y()PY T e+ 1) f(k) = 0, Y () PY L (k+ 1) f(k), forn>1"

For m > n > 1, we have
Z 1Y () Py~ (k + 1) £ (k)|

= Z [0~ () (T ()Y (n)PoY ~ (k + 1)8 (k) (W (k) £(R))||
k=n

IN

M) Y )Y () PY T (ke D)W (k)W (k) f(R)]
k=n

IN

[ (n)] (sup [|¥ (k) £ ()I]) D Tm)Y (n)PY (ke + 1) (k)]
= k=n

It follows that >~ Y (n)PY ~'(k + 1) f(k) is an absolutely convergent series. Thus,
the sequence (z(n))nen is well-defined.

As in the Step 4, we can show that the sequence (z(n))nen is a solution of the
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equation (1). On the other hand,

1% (n)a(m)]
_ Ykt ) z U(m)Y ()P (k + 1) f ()
< (712 [U(n)Y (n)PLY ' (k +1)T 1 (k)| + Z [T (n)Y (n) Py~ (k + 1)\Ifl(k)]>
k=1
sup I‘I/(k)f(kﬂ)
E>1
<

Kigfl)H‘I’(k)f(k)H-

Thus, the sequence (z(n))nen is ¥-bounded on N.
Therefore, the sequence (z(n))nen is a Y-bounded solution on N of the equation
(1)

The proof is now complete.

Finally, we give a result in which we will see that the asymptotic behavior of solu-
tions of (1) is determined completely by the asymptotic behavior of f.

THEOREM 3.2. Suppose that

1°. The fundamental matrix Y of (2) satisfies the inequality (3) for all n > 1, where
K is a positive constant;

2°. The matrix ¥ satisfies the condition ’\IJ(n)‘Ilfl(n—l- 1)’ < T foralln € N,
where T is a positive constant;

3°. The (U-bounded) function f : N — R? is such that lim,, . || ¥(n)f(n)|| = 0.
Then, every ¥-bounded solution z of (1) is such that lim,, . ||¥(n)z(n)| = 0.

PROOF. Let = be a U-bounded solution of (1). We consider the sequence (y(n))nen,
where y(n) is equal to

Pya(1 +ZP2 Yk +1)f(k),

for n =1, and to

n—1

z(n) =Y (n)Piz(1) = Y Y (n)PY ' (k+ 1) f(k) + ZY “HE41) f(K),

k=1

for n > 1. As in the proof of the above theorem, the sequence (y(n))n,en is well-defined
and is a solution of the equation (2).
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On the other hand,
[W(n)yn)l < [[¥(n)z@)]| +[¥(n)Y(n)Pr|[lz1)]
+D ¥ m)Y () PY T (k+ DU (R)] [ (R) f(R))|
k=1

+ D [T)Y () BY (k4 1)U (k)| 1 W (k) £ (R)]|
< igr;l\‘l’(n)x(n)l\ + [¥(n)Y (n) Py [lz(1)] +K~igril\‘1’(n)f(n)l\ :
From the hypotheses, we have that

ni: ()Y (n)PY Y+ 1)U (k)| <K, n>2.

Let a(n) = [¥(n)Y (n)Py|~" for n > 1. From the identity

n—1

U(n)Y (n)Py

(]

a(k+1)

1

[
=l

= (U(n)Y (n)PLY 1 (k+ 1)U ) (U(E)T (k+ 1))

(U(k+1)Y(k+1)P)a(k + 1),

it follows that, for n > 2,

ko
—

7
L

a(k+1)

B
Il
—

()Y (n)PLY "Mk + 1)U~ (k)| [O (k) (k +1)]

]
S

k=1
U (k+1)Y(k+1)Pi]a(k+1)
< TK.
Thus,
L* TK TK or a(n @
atw) ~ VOIS oy S ay T T

Therefore, Y~ | a(k) = +oo and then, lim, o [¥(n)Y (n)P1| = 0.
Thus, we come to the conclusion that the sequence (y(n))nen is a ¥-bounded

solution of (2).
Now, by the definition of Xi,y(1) € X;. Since y(1) = Pox(1) + > oo, P2Y 1k +
1)f(k) € X3, we have y(1) € X3 N Xz = {0}. Thus, y = 0. It follows that

n—1

z(n) = Y(n)Pm(l)—i—ZY(n) YE+1)f ZY “HE+1)f(k), n>2.

k=1
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Now, for a given € > 0, there exists n; € N such that ||¥(n)f(n)| < 5%, for n > n;.

Moreover, there exists no € N, no > nq, such that, for n > no,
ny— 1

@Y )P < 5 1+ 20 H+ZHY (k+1)f (k)|

Then, for n > ny, we have

[W(n)z(n)l < [[¥(n)Y(n)Prz(1)]

nlfl

+ 3 W)Y ()P ||y (k + 1) f(k)]|
k=1

+ i | U ()Y (n)PLY "k + 1)U (k)| || U (k)x

k:nl

+ Z ’\IJ(”)Y(”)szfl(k + 1)\1171(10’ 10 (k
k=n
< ORI |+ X [+ s
+:Z Y Pk )30 g
+ Z "Ij(n)y(n)ltbyfl(k + 1)‘11710{)’ %
k=
< % + % K =e.

This shows that lim,, . || ¥(n)z(n)| = 0.
The proof is now complete.

(Rl

) ()|l

VB

REMARK 3.1. If we do not have lim,, .o ||¥(n)f(n)|| = 0, then the solution z may
be such that ¥(n)xz(n) - 0 as n — oo. For example, consider the equation (1) with

A(n)_((l) 2>andf() (?2)

A fundamental matrix for the equation (2) is
10

Consider ¥(n) =
satisfied with

1

"
e
Il
7N
o
o

) and K = 17.

g" ) , n > 1. The first hypothesis of the Theorem 3.2 is
0
0
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The second hypothesis of the Theorem 3.2 is satisfied with T' = 2. In addition, ||¥(n) f(n)|| =
1, n € N (i.e. the function f is U-bounded on N).
In the end, it is easy to see that

on
x(n)_(42n_451n )a TLGN,

is a U-bounded solution of (1) with

1
U(n)x(n) = ( 16 (%)n_20 (%)n ) - 0 as n — oo.
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