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Abstract

The purpose of this paper is to investigate the asymptotic behavior of non-

negative solutions of a periodic reaction diffusion system. By De Giorgi iteration

technique, we obtain the a priori upper bound of nonnegative periodic solutions of

the considered periodic system. We then establish the existence of the maximum

periodic solution and asymptotic bounds of nonnegative solutions of the initial

boundary value problem.

1 Introduction

In this paper, we consider the following periodic reaction diffusion system

∂u

∂t
= div(|∇u|p1−2∇u) + b1u

α1vβ1 , (x, t) ∈ Ω × R
+, (1)

∂v

∂t
= div(|∇v|p2−2∇u) + b2u

α2vβ2 , (x, t) ∈ Ω × R
+, (2)

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω × R
+, (3)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (4)

where p1, p2 > 2, α1, α2, β1, β2 ≥ 1, α1 < p1 − 1, β2 < p2 − 1, β1 < p1 − α1 − 1,
α2 < p2 − β2 − 1, Ω ⊂ R

n is a bounded domain with smooth boundary, b1 = b1(x, t)
and b2 = b2(x, t) are nonnegative continuous functions and T -periodic (T > 0) with
respect to t, and u0, v0 are nonnegative bounded smooth functions.

In recent years, periodic reaction diffusion equations and systems are of particular
interests since they can take into account periodic fluctuations occurring in the phenom-
ena appearing in the models, and have been extensively studied by many researchers
(see e.g. [1]–[5]). The models for the evolution of the biological species living in the
periodic environment are often described by coupled systems of periodic nonlinear dif-
fusion equations, and therefore it is important to study the existence and asymptotic
behavior of solutions of these systems. To our knowledge, however, it seems that there
are few papers that deal with the asymptotic behavior of periodic-parabolic systems
with degeneracy.
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This work is an extension of [6]. We establish the existence of nontrivial nonneg-
ative periodic solutions of the problem (1)-(4) and their asymptotic behavior. Since
(1) and (2) have periodic sources, it is not appropriate to consider the steady state ap-
proach and we shall seek some new approaches. Our idea is to consider all nonnegative
periodic solutions, which will be showed to have a priori upper bound C0 according to
the maximum norm. Then by monotonicity method we show the existence of the max-
imum periodic solution and asymptotic bounds of nonnegative solutions of the initial
boundary value problem.

2 Preliminaries

Since (1) and (2) are degenerate whenever |∇u| = |∇v| = 0, we focus our main efforts
on the discussion of weak solutions.

DEFINITION 1. A vector-valued function (u, v) is said to be a weak upper-solution
to the problem (1)-(4) in Qτ = Ω × (0, τ ) with τ > 0, if

u ∈ Lp1 (0, τ ; W 1,p1(Ω)) ∩ L∞(Qτ ), v ∈ Lp2(0, τ ; W 1,p2(Ω)) ∩ L∞(Qτ),

and for any nonnegative function ϕ ∈ C1(Qτ ) with ϕ|∂Ω×[0,τ) = 0, we have

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

∫

Ω

u(x, τ)ϕ(x, τ)dx−

∫

Ω

u0(x)ϕ(x, 0)dx−

∫∫

Qτ

u
∂ϕ

∂t
dxdt

+

∫∫

Qτ

|∇u|p1−2∇u∇ϕdxdt ≥

∫∫

Qτ

b1u
α1vβ1ϕdxdt,

∫

Ω

v(x, τ)ϕ(x, τ)dx−

∫

Ω

v0(x)ϕ(x, 0)dx−

∫∫

Qτ

v
∂ϕ

∂t
dxdt

+

∫∫

Qτ

|∇v|p2−2∇v∇ϕdxdt ≥

∫∫

Qτ

b2u
α2vβ2ϕdxdt,

u(x, t) ≥ 0, v(x, t) ≥ 0, (x, t) ∈ ∂Ω × (0, τ ),

u(x, 0) ≥ u0(x), v(x, 0) ≥ v0(x), x ∈ Ω.

Replacing “≥” by “≤” in the above inequalities, it follows the definition of a weak
lower-solution. Furthermore, if (u, v) is a weak upper-solution as well as a weak lower-
solution, then we call it a weak solution of the problem (1)-(4).

DEFINITION 2. A vector-valued function (u, v) is said to be a T -periodic solution
of the problem (1)-(3), if it is a solution such that u(·, 0) = u(·, T ), v(·, 0) = v(·, T )
in Ω. A vector-valued function (u, v) is said to be a T -periodic upper-solution of the
problem (1)-(3), if it is an upper-solution such that u(·, 0) ≥ u(·, T ), v(·, 0) ≥ v(·, T )
in Ω. A vector-valued function (u, v) is said to be a T -periodic lower-solution of the
problem (1)-(3), if it is a lower-solution such that u(·, 0) ≤ u(·, T ), v(·, 0) ≤ v(·, T ) in
Ω. A pair of T -periodic upper-solution (u, v) and T -periodic lower-solution (u, v) are
said to be ordered if u ≥ u, v ≥ v in QT = Ω × (0, T ).

LEMMA 1 ([6]). Let (u, v) be a lower-solution of the problem (1)-(4) with the initial
value (u0, v0), and (u, v) an upper-solution of the problem (1)-(4) with the initial value
(u0, v0). Then u ≤ u, v ≤ v a.e. in QT if u0 ≤ u0, v0 ≤ v0 a.e. in Ω .
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LEMMA 2. (see [6]) For any nonnegative bounded initial value, the problem (1)-
(4) admits a global nonnegative solution, and the problem (1)-(3) admits a nontrivial
nonnegative periodic solution.

The main results of this paper is the following theorem.

THEOREM 1. The problem (1)-(3) admits a maximal periodic solution (U, V ).
Moreover, if (u, v) is the solution of the initial boundary value problem (1)-(4) with
nonnegative initial value (u0, v0), then for any ε > 0, there exists t1 depending on u0

and ε, t2 depending on v0 and ε, such that

0 ≤ u ≤ U + ε, for x ∈ Ω, t ≥ t1,

0 ≤ v ≤ V + ε, for x ∈ Ω, t ≥ t2.

3 Proofs

In this section, we prove the main results of this paper. Firstly, we establish some
important estimates on nonnegative periodic solutions of the problem (1)-(3).

LEMMA 3. Let (u, v) be a nonnegative periodic solution of the problem (1)-(3).
Then there exists positive constants r and s such that

α2

p2 − β2 − 1
<

p1 + r − 1

p2 + s − 1
<

p1 − α1 − 1

β1

and
‖u‖Lr(QT ) ≤ C, ‖v‖Ls(QT ) ≤ C. (5)

In addition, we have

∫∫

QT

|∇u|p1dxdt ≤ C,

∫∫

QT

|∇v|p2dxdt ≤ C, (6)

where C is a positive constant depending on p1, p2, α1, β2, r, s and |Ω|.

PROOF. For r > 1, multiplying (1) by ur−1 and integrating over QT , we deduce

∫∫

QT

∂u

∂t
ur−1dxdt +

∫∫

QT

|∇u|p1−2∇u∇ur−1dxdt =

∫∫

QT

b1u
α1+r−1vβ1dxdt.

By the periodic boundary value condition, we see that the first term of the left hand
side of the above equality vanishes. That is

(r − 1)

(

p1

p1 + r − 2

)p1
∫∫

QT

|∇u
p1+r−2

p1 |p1dxdt =

∫∫

QT

b1u
α1+r−1vβ1dxdt.

Then we have

∫∫

QT

|∇u
p1+r−2

p1 |p1 ≤
B1

r − 1

(

p1 + r − 2

p1

)p1
∫∫

QT

uα1+r−1vβ1dxdt,
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where B1 denotes the maximum of b1(x, t) in QT . By using Poincaré’s inequality, we
obtain

∫∫

QT

up1+r−2dxdt ≤Cp1

∫∫

QT

|∇u
p1+r−2

p1 |p1dxdt

≤
Cp1B1

r − 1

(

p1 + r − 2

p1

)p1
∫∫

QT

uα1+r−1vβ1dxdt,

(7)

where Cp1 is a constant depending only on |Ω| and N , and it becomes very large when
the measure of the domain Ω becomes small. Notice that β1 < p1 − α1 − 1 implies
α1 < p1 − 1, then α1 + r − 1 < p1 + r − 2. According to Young’s inequality, we have

uα1+r−1vβ1 ≤ ε1u
p1+r−2 + C(ε1)v

β1(p1+r−2)
p1−α1−1 ,

where ε1 > 0 and C(ε1) are constants of Young’s inequality. Take

ε1 =
1

2

r − 1

Cp1B1

(

p1

p1 + r − 2

)p1

,

from (7) we have

∫∫

QT

up1+r−2dxdt ≤
1

2

∫∫

QT

up1+r−2dxdt + C1

∫∫

QT

v
β1(p1+r−2)

p1−α1−1 dxdt.

That is
∫∫

QT

up1+r−2dxdt ≤ C

∫∫

QT

v
β1(p1+r−2)

p1−α1−1 dxdt. (8)

Also, we can get an similar estimate on vs for s > 1, and hence

∫∫

QT

up1+r−2dxdt +

∫∫

QT

vp2+s−2dxdt

≤C

∫∫

QT

v
β1(p1+r−2)

p1−α1−1 dxdt + C

∫∫

QT

u
α2(p2+s−2)

p2−β2−1 dxdt.

(9)

Since β1 < p1 − α1 − 1, α2 < p2 − β2 − 1, there must exist r ≥ max{2(α1 + 1), 2α2}
and s ≥ max{2(β2 + 2), 2β1} such that

β1

p1 − α1 − 1
<

p2 + s − 2

p1 + r − 2
<

p2 − β2 − 1

α2
.

By Young’s inequality, we have

∫∫

QT

u
α2(p2+s−2)

p2−β2−1 dxdt ≤ ε2

∫∫

QT

up1+r−2dxdt + C(ε2)|QT |,

∫∫

QT

v
β1(p1+r−2)

p1−α1−1 dxdt ≤ ε3

∫∫

QT

vp2+s−2dxdt + C(ε3)|QT |.
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Take ε2 = 1
2C2

, ε3 = 1
2C1

, it follows from (9) that

∫∫

QT

up1+r−2dxdt +

∫∫

QT

vp2+s−2dxdt ≤ C.

Thus we complete the proof of inequality (5).
Now we show the proof of (6). Multiplying (1) by u and integrating over QT , by

the periodic boundary value condition and Hölder’s inequality, we have
∫∫

QT

|∇u|p1dxdt ≤C

∫∫

QT

uα1+1vβ1dxdt

≤C

(
∫∫

QT

u2(α1+1)dxdt

)1/2 (
∫∫

QT

v2β1dxdt

)1/2

.

Due to r ≥ max{2(α1 + 1), 2β2}, s ≥ max{2(β2 + 1), 2α1}, the first inequality in (6)
follows from (5) immediately. The same is true for the second inequality. The proof is
completed.

In the following we show the uniform upper bound of the maximum norm of non-
negative periodic solutions.

LEMMA 4. Let (u, v) be a nonnegative periodic solution of (1)-(3). Then there is
a positive constant C0 such that

‖u‖L∞(QT ) ≤ C0, ‖v‖L∞(QT ) ≤ C0. (10)

PROOF. Denote s+ = max{s, 0} and take k be a determined positive constant.
Multiplying (1) by (u − k)+ and integrating over QT , we have

1

2

∫∫

QT

∂

∂t
(u − k)2+dxdt +

∫∫

QT

|∇(u− k)+|
p1dxdt

≤C

∫∫

QT

uα1vβ1 (u − k)+dxdt.

(11)

Denote µ(k) = mes{(x, t) ∈ QT : u(x, t) > k}. Combine Lemma 3 (with r and s large
enough) with Young’s and Hölder’s inequalities, we have

1

2

∫∫

QT

∂

∂t
(u − k)2+dxdt +

∫∫

QT

|∇(u− k)+|
p1dxdt

≤C

(
∫∫

QT

(uα1vβ1 )ξ′

dxdt

)ξ′
(

∫∫

QT

(u − k)ξ
+dxdt

)1/ξ

≤C

(
∫∫

QT

(u − k)ξη
+ dxdt

)1/ξη

µ(k)(1−
1
η
) 1

ξ ,

(12)

where constants ξ, η > 1 are to be determined. By Nirenberg-Gagliardo’s inequality
and Lemma 3, we have

(
∫∫

QT

(u − k)ξη
+ dxdt

)1/ξη

≤ C

(
∫∫

QT

|∇(u − k)+|
p1dxdt

)θ/p1

, (13)
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where

θ =

(

1 −
1

ξη

)(

1

N
−

1

p1
+ 1

)−1

.

Combining (11) with (12) and (13), we have

∫∫

QT

|∇(u− k)+|
p1dxdt ≤ C

(
∫∫

QT

|∇(u − k)+|
p1dxdt

)
θ

p1

µ(k)(1−
1
η
) 1

ξ . (14)

Set

w(k) =

∫∫

QT

|∇(u− k)+|
p1dxdt,

from (14) we obtain

w(k) ≤ Cµ(k)
p1

p1−θ
(1− 1

η
) 1

ξ . (15)

Take kh = M(2 − 2−h), h = 0, 1, . . . , and M > 0 to be determined. It follows from
(13) that

(kh+1 − kh)ξηµ(kh+1) ≤

∫∫

QT

(u − kh)ξη
+ dxdt ≤ Cw(kh)

ξηθ
p1 .

Combining the above inequality with (15) we obtain

µ(kh+1) ≤ C4hξηµ(kh)
θ(η−1)
p1−θ = Cbhµ(kh)γ ,

where b = 4ξη and γ = (η−1)(ξη−1)N
ξηN(p1−2)+ξηp1+N

. For any ξ > 1, take η be a positive constant

satisfying

η > max{p1,
ξp1 + N

ξN
+ p1 − 1},

then we have γ > 1. By Lemma 3, we can select M large enough such that

µ(k0) = µ(M) ≤ C−
1

γ−1 b
−

1
(γ−1)2 .

According to Lemma 5.6 in [7, p. 95], we have µ(kh) → 0, as h → +∞, which implies
u(x, t) ≤ 2M in QT .

Similarly, we can get the uniform upper bound estimate for ‖v‖L∞(QT ). The proof
is completed.

PROOF OF THEOREM 1. Firstly, we establish the existence of the maximal
periodic solution of the periodic boundary value problem. Define a Poincaré map
P = (P1, P2) : C(Ω)×C(Ω) → C(Ω)×C(Ω) with P (u0(x), v0(x)) = (u(x, T ), v(x, T )),
where (u(x, t), v(x, t)) is the solution of the initial boundary value problem (1)-(4) with
initial value (u0(x), v0(x)). A similar argument as [6] shows that the map P is well
defined.

Let λi (i = 1, 2) be the first eigenvalue of the problem

{

−div(|∇ϕ|pi−2∇ϕ) = µ|ϕ|pi−2ϕ, x ∈ Ω′

ϕ = 0, x ∈ ∂Ω′,
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and ϕi be the corresponding positive eigenfunction, where Ω′ ⊃⊃ Ω. It is easy to see
if x ∈ Ω, then ϕ1(x) > 0 and ϕ2(x) > 0, that is min

Ω
ϕ1(x) > 0 and min

Ω
ϕ2(x) > 0. Let

(un(x, t), vn(x, t)) be the solution of the problem (1)-(4) with initial value

(u0(x), v0(x)) = (u(x), v(x)) = (K1ϕ1(x), K2ϕ2(x)),

where K1, K2 > 0 are taken as [6] such that (u(x), v(x)) be a T -periodic upper-solution.
Then we have (un(x, T ), vn(x, T )) = P n(u(x), v(x)) and

un+1(x, t) ≤ un(x, t) ≤ u(x), vn+1(x, t) ≤ vn(x, t) ≤ v(x),

by comparison principle. By a rather standard argument, we conclude that there exist
u∗(x), v∗(x) ∈ C(Ω) and a subsequence of {P n(u(x), v(x))}, denoted by itself for
simplicity, such that

(u∗(x), v∗(x)) = lim
n→∞

P n(u(x), v(x)).

Similar to the proof in [6], we can prove that (U(x, t), V (x, t)), which is the even
extension of the solution of the initial boundary value problem (1)-(4) with initial
value (u∗(x), v∗(x)), is a periodic solution of (1)-(3). Moreover, by Lemma 4, we see
that any nonnegative periodic solution (u(x, t), v(x, t)) of (1)-(3) must satisfy

‖u(x, t)‖L∞(QT ) ≤ C0, ‖v(x, t)‖L∞(QT ) ≤ C0.

Therefore, if we take K1, K2 also satisfy

K1 ≥
C0

min
x∈Ω

ϕ1(x)
, K2 ≥

C0

min
x∈Ω

ϕ2(x)
,

by the comparison principle and u∗(x) ≥ u(x, 0), v∗(x) ≥ v(x, 0), we obtain U(x, t) ≥
u(x, t), V (x, t) ≥ v(x, t), which means that (U(x, t), V (x, t)) is the maximal periodic
solution of (1)-(3).

Let (u(x, t), v(x, t)) be the solution of the initial boundary problem (1)-(4) with
given nonnegative initial value (u0(x), v0(x)), (ω1(x, t), ω2(x, t)) be the solution of (1)-
(4) with initial value (ω1(x, 0), ω2(x, 0)) = (R1ϕ1(x), R2ϕ2(x)), where R1, R2 are posi-
tive constants satisfying the same conditions as K1, K2 and also

R1 ≥
‖u0‖L∞

min
x∈Ω

ϕ1(x)
, R2 ≥

‖v0‖L∞

min
x∈Ω

ϕ2(x)
.

Then we have

u(x, t + kT ) ≤ w1(x, t + kT ), v(x, t + kT ) ≤ w2(x, t + kT )

for any (x, t) ∈ QT , k = 0, 1, 2, . . .. A similar argument as [1] shows that

(ω∗

1(x, t), ω∗

2(x, t)) = ( lim
k→∞

ω1(x, t + kT ), lim
k→∞

ω2(x, t + kT ))
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exists and (ω∗

1(x, t), ω∗

2(x, t)) is a nontrivial nonnegative periodic solution of (1)-(3).
Therefore, for any ε > 0, there exists k0 such that

u(x, t + kT ) ≤ ω∗

1(x, t) + ε ≤ U(x, t) + ε,

v(x, t + kT ) ≤ ω∗

2(x, t) + ε ≤ V (x, t) + ε

for k ≥ k0 and (x, t) ∈ QT . Provided that the periodicities of ω∗

1(x, t), ω∗

2(x, t), U(x, t)
and V (x, t) are taken into account, then the conclusion follows immediately.
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