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Abstract

Null-controllability for the wave equation is studied in the context of dis-

tributed linear constraints on the control.

1 Introduction

Let Ω be a bounded open subset of R
d, d ∈ N

∗ with boundary Γ of class C2. For T > 0,
we set Q = (0, T ) × Ω, Σ = (0, T ) × Γ, and we consider the wave system











�a0
q = g in Q,

q = 0 on Σ,
(

q(T ), ∂q
∂t

(T )
)

= (q0, q1) in Ω,
(1)

where

�a0
=

∂2

∂t2
−

d
∑

j=1

∂2

∂x2
j

+ a0 I, (2)

is the d’Alembertian with potential a0. Here a0 lies in L∞(Q) and is real valued. It is
well known that given g ∈ L1([0, T ]; L2(Ω)) and (q0, q1) ∈ H1

0(Ω)×L2(Ω), the problem
(1) admits a unique solution q in the space C([0,T ]; H1

0(Ω))∩C1([0, T ]; L2(Ω)). Here, we
state the problem of exact controllability for solutions of system (1). Let ω be an open
subset of Ω; denote by Qω = (0, T ) × ω the interior cylinder and χω its characteristic
function. Given (q0, q1) ∈ H1

0 (Ω) × L2(Ω), the goal is to find a source v in L2(Qω)
such that the unique solution q of (1) with g = χωv satisfies

q(0) = 0 and
∂q

∂t
(0) = 0 in Ω. (3)
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This problem is by now well understood (see J. L. Lions [4], C. Bardos et al. [1]
and A. Ruiz [6]). Indeed, assuming the geometric control condition (GCC) introduced
by [1], on the couple (ω, T ), one can establish an observation estimate which yields
by the HUM method of Lions [4], to the existence of the control v. The (GCC) is a
microlocal condition (i.e. a property in the cotangent bundle T ∗Q) linking the couple
(ω, T ) and the bicharacteristic rays of the wave operator. Moreover, it is equivalent to
exact controllability of the linear wave equation (with stability with respect to small
perturbations of ω, T ).

Let K be a real vector subspace of L2(Qω) such that

K is of finite dimension. (4)

The main question we ask in the present work is the following : find a control function
v ∈ L2(Qω) satisfying

v ∈ K⊥ (5)

such that the unique solution q = q(t, x; v) of (1), satisfies (3). In addition, we impose
that v satisfies a finite number of linear equations. This is a null-controllability prob-
lem with linear constraints on the control v. Obviously, the classical control without
constraints corresponds to the case K = {0}. In this article, we treat the more general
case K 6= {0}. This case was treated in the parabolic case by O. Nakoulima [5].

2 Main Results

Along this section, we denote by π : L2(Qω) → K the orthogonal projection and let Φ
be the solution of







�a0
Φ = 0 in Q,

Φ = 0 on Σ,
(Φ(T ), ∂tΦ(T )) = (Φ0, Φ1) ∈ L2(Ω) × H−1(Ω)

(6)

(we recall that Φ ∈ C([0,T ], L2(Ω)) ∩ C1([0,T ], H−1(Ω))).
And now, we state the following hypothesis (we recall that K is the finite dimension

linear subspace of L2(Qω) defining the constraints):
A1. The couple (ω, T ) satisfies the geometric control condition (GCC).
A2. The only element k ∈ K satisfying �a0

k = 0 in Q is the trivial element k ≡ 0.

REMARK 1. We have already discussed the key role of the (GCC) condition in
observation/control problems; it is almost necessary and sufficient. We first give an
example of a non trivial subspace K of L2(Qω), satisfying this condition A2: take
ω1, ω2,..., ωN , N open sets contained in ω, such that ωi ∩ ωj = ∅ for i 6= j; moreover
let f1, · · · , fN , N smooth functions, with support(fj )⊂ ωj and such that �a0

fj 6= 0. It
is easy to check that the space K = 〈f1, ..., fN〉 satisfies to condition A2.

PROPOSITION 1. There exists a positive constant C > 0, such that any solution
of (6) satisfies :

‖(Φ0, Φ1)‖
2
L2×H−1 ≤ C

∫ T

0

∫

ω

|(I − π)Φ|
2
dxdt. (7)
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PROOF. We argue by contradiction and we suppose that there exists a sequence
of data (Φn

0 , Φn
1 )n, such that

‖(Φn
0 , Φn

1 )‖L2×H−1 = 1, for all n ∈ N∗ (8)

and the associated solutions Φn satisfy

∫ T

0

∫

ω

|(I − π)Φn|
2
dxdt < 1/n. (9)

The sequence (Φn)n is bounded in L2(Q), so it admits a subsequence still denoted by
Φn satisfying Φn ⇀ Φ weakly in L2(Q); therefore, (I − π)Φn ⇀ (I − π)Φ weakly in
L2(Qω). Moreover, from (9), we deduce that (I −π)Φn → 0 strongly in L2(Qω). Thus
(I −π)Φ = 0 in L2(Qω), i.e. Φ ∈ K. And thanks to assumption A2, this implies Φ = 0.
So, Φn ⇀ 0 weakly, and then πΦn → 0 strongly, since the projection operator π is
compact (the finite dimension of K). This yields

Φn → 0 strongly in L2(Qω). (10)

Now let µ be a microlocal defect measure attached to the sequence (Φn) in L2(Q)
(see Gérard [3] for details on these measures, in particular the propagation of their
support, see also B. Dehman et al. [2]). By the strong convergence (10), we know that
µ = 0 on the interior cylinder Qω. Therefore, by propagation along the bicharacteristic
flow of the wave operator and using the geometric control condition (assumption A1 ),
we deduce that µ = 0 on the whole cylinder Q, which means that Φn → 0, strongly in
L2(Q). But this is in contradiction with our assumption ‖(Φn

0 , Φn
1 )‖ = 1.

COROLLARY 1. Under assumptions A1 and A2 and for every (q0, q1) ∈ H1
0 (Ω)×

L2(Ω), there exists a control function v ∈ L2(Qω) satisfying to constraints (5) such
that the state solution q to problem







�a0
q = χωv in Q,

q = 0 on Σ,
(q(T ), ∂tq(T )) = (q0, q1) in Ω,

(11)

satisfies (q(0), ∂tq(0)) = (0, 0). Moreover, v is optimal in the following sense:

min{‖g‖L2(Qω) , gis a control vector in K⊥} is achieved at g = v. (12)

PROOF. We will run a suitable version of the HUM method. Consider the system






�a0
q = χω(I − π)Φ in Q,

q = 0 on Σ,
(q(0), ∂tq(0)) = (0, 0) in Ω.

(13)

The function (I − π)Φ will play the role of the control vector v; it obviously satis-
fies to constraints (5). Multiplying by Φ and integrating by parts we easily get the
fundamental identity

〈(Φ0, Φ1), Λ(Φ0, Φ1)〉 =

∫ T

0

∫

ω

|(I − π)Φ|
2
dxdt (14)
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where the operator Λ is defined by

Λ : L2 × H−1 → L2 × H1
0

(Φ0, Φ1) 7→ (∂tq(T ),−q(T )).

Now, from the above proposition, there exists a positive constant C > 0, such that (7)
holds true, the operator Λ is an isomorphism and thus v = (I − π)Φ, with (Φ0, Φ1) =
Λ−1(q1,−q0). This finally gives the right control vector satisfying to constraints (5).

REMARK 2. Notice here that the hypothesis A2 is in fact necessary and sufficient.
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