Convexity Properties And Inequalities For A Generalized Gamma Function*

Valmir Krasniqi ${ }^{\dagger}$, Armend Sh. Shabani ${ }^{\ddagger}$

Received 17 March 2009

Abstract

For the Γ_{p}-function, defined by Euler, are given some properties related to convexity and log-convexity. Also, some properties of p analogue of the ψ function have been established. The p-analogue of some inequalities from [6] and [7] have been proved. As an application, when $p \rightarrow \infty$, we obtain all results of [6].

1 Introduction

In this section we will present definitions used in this paper. The Euler gamma function $\Gamma(x)$ is defined for $x>0$ by

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

The digamma (or psi) function is defined for positive real numbers x as the logarithmic derivative of Euler's gamma function, that is $\psi(x)=\frac{d}{d x} \ln \Gamma(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}$. The following integral and series representations are valid (see [1]):

$$
\begin{equation*}
\psi(x)=-\gamma+\int_{0}^{\infty} \frac{e^{-t}-e^{-x t}}{1-e^{-t}} d t=-\gamma-\frac{1}{x}+\sum_{n \geq 1} \frac{x}{n(n+x)} \tag{1}
\end{equation*}
$$

where $\gamma=0.57721 \ldots$ denotes Euler's constant.
Euler, gave another equivalent definition for the $\Gamma(x)$ (see [2],[5])

$$
\begin{equation*}
\Gamma_{p}(x)=\frac{p!p^{x}}{x(x+1) \cdots(x+p)}=\frac{p^{x}}{x\left(1+\frac{x}{1}\right) \cdots\left(1+\frac{x}{p}\right)}, x>0 \tag{2}
\end{equation*}
$$

where p is positive integer, and

$$
\begin{equation*}
\Gamma(x)=\lim _{p \rightarrow \infty} \Gamma_{p}(x) \tag{3}
\end{equation*}
$$

[^0]We define the p-analogue of the psi function as the logarithmic derivative of the Γ_{p} function, that is

$$
\begin{equation*}
\psi_{p}(x)=\frac{d}{d x} \ln \Gamma_{p}(x)=\frac{\Gamma_{p}^{\prime}(x)}{\Gamma_{p}(x)} \tag{4}
\end{equation*}
$$

DEFINITION 1.1. The function f is called log-convex if for all $\alpha, \beta>0$ such that $\alpha+\beta=1$ and for all $x, y>0$ the following inequality holds

$$
\log f(\alpha x+\beta y) \leq \alpha \log f(x)+\beta \log f(y)
$$

or equivalently

$$
f(\alpha x+\beta y) \leq(f(x))^{\alpha} \cdot(f(y))^{\beta}
$$

DEFINITION 1.2. Let $f: I \subseteq(0, \infty) \longrightarrow(0, \infty)$ be a continuous function. Then f is called geometrically convex on I if there exists $n \geq 2$ such that one of the following two inequalities holds:

$$
\begin{align*}
f\left(\sqrt{\left(x_{1} x_{2}\right)}\right) & \leq \sqrt{f\left(x_{1}\right) f\left(x_{2}\right)} \tag{5}\\
f\left(\prod_{i=1}^{n} x_{i}^{\lambda_{i}}\right) & \leq \prod_{i=1}^{n}\left(f\left(x_{i}\right)\right)^{\lambda_{i}} \tag{6}
\end{align*}
$$

where $x_{1}, \ldots, x_{n} \in I ; \lambda_{1}, \ldots, \lambda_{n}>0$ with $\sum_{i=1}^{n} \lambda_{i}=1$. If inequalities (5) and (6) are reversed, then f is called geometrically concave function on I.

In the next section, we derive several convexity and log-convexity properties related the Γ_{p}.

2 Some Properties of Γ_{p}

We begin with recurrent relations for Γ_{p} and ψ_{p}.
LEMMA 2.1. Let Γ_{p} be defined as in (2). Then

$$
\begin{equation*}
\Gamma_{p}(x+n)=p^{n} \cdot \frac{\prod_{i=0}^{n-1}(x+i)}{\prod_{i=1}^{n}(x+p+i)} \Gamma_{p}(x), x+n>0 \tag{7}
\end{equation*}
$$

PROOF. Using (2) one finds that:

$$
\frac{\Gamma_{p}(x+n)}{\Gamma_{p}(x+n-1)}=\frac{x+n-1}{p^{-1}(x+n+p)}
$$

Hence

$$
\Gamma_{p}(x+n)=\frac{p(x+n-1)}{(x+n+p)} \cdot \Gamma_{p}(x+n-1)
$$

In a similar way, we have:

$$
\Gamma_{p}(x+n-1)=\frac{p(x+n-2)}{(x+(n-1)+p)} \cdot \Gamma_{p}(x+n-2)
$$

It means

$$
\Gamma_{p}(x+n)=\frac{p^{2}(x+n-1)(x+n-2)}{(x+n+p)(x+(n-1)+p)} \cdot \Gamma_{p}(x+n-2)
$$

Continuing in this way we obtain:

$$
\Gamma_{p}(x+n)=\frac{p^{n}(x+n-1)(x+n-2) \cdot \ldots \cdot x}{(x+n+p)(x+p+n-1) \cdot \ldots \cdot(x+p+1)} \cdot \Gamma_{p}(x)
$$

completing the proof.
REMARK 2.2. When $p \rightarrow \infty$, we obtain the well known relation

$$
\Gamma(x)=\frac{\Gamma(x+n)}{x(x+1) \cdot \ldots \cdot(x+n-1)}, x+n>0 .
$$

LEMMA 2.3. a) The function ψ_{p} defined by (4) has the following series representation

$$
\begin{equation*}
\psi_{p}(x)=\ln p-\sum_{k=0}^{p} \frac{1}{x+k} \tag{8}
\end{equation*}
$$

b) The function ψ_{p} is increasing on $(0, \infty)$.
c) The function ψ_{p}^{\prime} is strictly completely monotonic on $(0, \infty)$.

PROOF. a) By (2) we have:

$$
\begin{aligned}
\psi_{p}(x) & =\frac{d}{d x}\left(\ln \Gamma_{p}(x)\right) \\
& =\frac{d}{d x}\left(x \ln p-\left(\ln x+\ln (1+x)+\ln \left(1+\frac{x}{2}+\ldots+\ln \left(1+\frac{x}{p}\right)\right)\right)\right) \\
& =\ln p-\left(\frac{1}{x}+\frac{1}{1+x}+\frac{1}{1+\frac{x}{2}} \cdot \frac{1}{2}+\ldots+\frac{1}{1+\frac{x}{p}} \cdot \frac{1}{p}\right) \\
& =\ln p-\sum_{k=0}^{p} \frac{1}{x+k}
\end{aligned}
$$

b) Let $0<x<y$. Using (8) we obtain

$$
\psi_{p}(x)-\psi_{p}(y)=-\sum_{k=0}^{p} \frac{1}{x+k}+\sum_{k=0}^{p} \frac{1}{y+k}=\sum_{k=0}^{p} \frac{(x-y)}{(x+k)(y+k)}<0 .
$$

c) Deriving n times the relation (8) one finds that:

$$
\begin{equation*}
\psi_{p}^{(n)}(x)=\sum_{k=0}^{p} \frac{(-1)^{n-1} \cdot n!}{(x+k)^{n+1}} \tag{9}
\end{equation*}
$$

hence $(-1)^{n}\left(\psi_{p}^{\prime}(x)\right)^{(n)}>0$ for $x>0, n \geq 0$.
REMARK 2.4. We note that $\lim _{p \rightarrow \infty} \psi_{p}^{(n)}(x)=\psi^{(n)}(x)$.

By (8) one has the following:
COROLLARY 2.5.

$$
\psi_{p}(x+1)=\frac{1}{x}-\frac{1}{x+p+1}+\psi_{p}(x)
$$

COROLLARY 2.6. The function $\log \Gamma_{p}(x)$ is convex for $x>0$.
PROOF. Taking $n=2$ in (9) we have

$$
\begin{equation*}
\psi_{p}^{\prime}(x)=\sum_{k=0}^{p} \frac{1}{(x+k)^{2}} \tag{10}
\end{equation*}
$$

So, for $x>0, \psi_{p}^{\prime}(x)>0$ hence ψ_{p} is a monotonous function on the positive axis and therefore the function $\log \Gamma_{p}(x)$ is convex for $x>0$.

LEMMA 2.7. Let ψ_{p} be as in (8). Then

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \psi_{p}(x)=\psi(x) \tag{11}
\end{equation*}
$$

PROOF. By (8) we have:

$$
\begin{aligned}
\lim _{p \rightarrow \infty} \psi_{p}(x) & =\lim _{p \rightarrow \infty} \ln p-\lim _{p \rightarrow \infty}\left(\frac{1}{x}+\sum_{k=1}^{p} \frac{1}{x+k}\right) \\
& =\lim _{p \rightarrow \infty}\left(\ln p-1-\frac{1}{2}-\ldots-\frac{1}{p}\right)-\frac{1}{x}-\lim _{p \rightarrow \infty}\left(\sum_{k=1}^{p} \frac{1}{x+k}-\sum_{k=1}^{p} \frac{1}{k}\right) \\
& =-\gamma-\frac{1}{x}+\sum_{k=1}^{\infty} \frac{x}{k(k+x)} \\
& =\psi(x) .
\end{aligned}
$$

THEOREM 2.8. The function

$$
\Gamma_{p}(x)=\frac{p^{x}}{x\left(1+\frac{x}{1}\right) \ldots\left(1+\frac{x}{p}\right)}, x>0
$$

is log-convex.
PROOF. We have to prove that for all $\alpha, \beta>0, \alpha+\beta=1, x, y>0$

$$
\begin{equation*}
\log \Gamma_{p}(\alpha x+\beta y) \leq \alpha \log \Gamma_{p}(x)+\beta \log \Gamma_{p}(y) \tag{12}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\Gamma_{p}(\alpha x+\beta y) \leq\left(\Gamma_{p}(x)\right)^{\alpha} \cdot\left(\Gamma_{p}(y)\right)^{\beta} \tag{13}
\end{equation*}
$$

By Young's inequality (see [3]) we have:

$$
\begin{equation*}
x^{\alpha} \cdot y^{\beta} \leq \alpha x+\beta y \tag{14}
\end{equation*}
$$

From (14) we obtain:

$$
\begin{equation*}
\left(1+\frac{x}{k}\right)^{\alpha} \cdot\left(1+\frac{y}{k}\right)^{\beta} \leq \alpha\left(1+\frac{x}{k}\right)+\beta\left(1+\frac{y}{k}\right)=1+\frac{\alpha x+\beta y}{k} \tag{15}
\end{equation*}
$$

for all $k \geq 1, k \in \mathbf{N}$.
Multiplying (15) for $k=1,2, \ldots, p$ one obtains

$$
\left(1+\frac{x}{1}\right)^{\alpha} \ldots\left(1+\frac{x}{p}\right)^{\alpha} \cdot\left(1+\frac{y}{1}\right)^{\beta} \ldots\left(1+\frac{y}{p}\right)^{\beta} \leq\left(1+\frac{\alpha x+\beta y}{1}\right) \ldots\left(1+\frac{\alpha x+\beta y}{p}\right)
$$

Now, taking the reciprocal values and multiplying by $p^{\alpha x+\beta y}$ one obtains (13) and thus the proof is completed.

For the proof of the following result see [5].
PROPOSITION 2.9. Let f be a log-convex function on $(0, \infty)$. Then the function F_{a} given by $F_{a}(x)=a^{x} f(x)$ is convex for any $a>0$.

From Proposition 2.9 and Theorem 2.8 immediately follows the following corollary.
COROLLARY 2.10. The functions F_{a}, G_{a} given by

$$
F_{a}(x)=a^{x} \Gamma_{p}(x), x>0 ; G_{a}(x)=x^{a} \Gamma_{p}(x), x>0
$$

respectively, are convex.
Another easily established property related to ψ_{p} is the following proposition.
PROPOSITION 2.11. The function $x \longmapsto x \psi_{p}(x), x>0$ is strictly convex.
PROOF. We have

$$
\begin{aligned}
\left(x \psi_{p}(x)\right)^{\prime} & =\psi_{p}(x)+x \psi_{p}^{\prime}(x) \\
\left(x \psi_{p}(x)\right)^{\prime \prime} & =2 \psi_{p}^{\prime}(x)+x \psi_{p}^{\prime \prime}(x)
\end{aligned}
$$

Using (9) we obtain

$$
\left(x \psi_{p}(x)\right)^{\prime \prime}=2 \sum_{k=0}^{p} \frac{1}{(x+k)^{2}}-2 \sum_{k=0}^{p} \frac{x}{(x+k)^{3}}=2 \sum_{k=0}^{p} \frac{k}{(x+k)^{3}}>0 .
$$

Next we will prove a result on geometric convexity related to Γ_{p} that will be used in the next section.

For the proof of the following Lemma see [4].
LEMMA 2.12. Let $(a, b) \subset(0, \infty)$ and $f:(a, b) \longrightarrow(0, \infty)$ be a differentiable function. Then f is geometrically convex if and only if the function $\frac{x f^{\prime}(x)}{f(x)}$ is nondecreasing.

THEOREM 2.13. The function $f(x)=e^{x} \cdot \Gamma_{p}(x)$ is geometrically convex.
PROOF. Let $f(x)=e^{x} \cdot \Gamma_{p}(x)$. Then $\ln f(x)=x+\ln \Gamma_{p}(x)$. Hence

$$
\begin{equation*}
\frac{f^{\prime}(x)}{f(x)}=1+\psi_{p}(x) \tag{16}
\end{equation*}
$$

So, $x \frac{f^{\prime}(x)}{f(x)}=x+x \psi_{p}(x)$. Let $\theta(x)=x+x \psi_{p}(x)$. Then we have

$$
\theta^{\prime}(x)=1+\psi_{p}(x)+x \psi_{p}^{\prime}(x)
$$

Using (8) and (9) one obtains

$$
\begin{aligned}
\theta^{\prime}(x) & =1+\ln p-\sum_{k=0}^{p} \frac{1}{x+k}+x \sum_{k=0}^{p} \frac{1}{(x+k)^{2}} \\
& =1+\ln p+\sum_{k=0}^{p}\left(\frac{x}{(x+k)^{2}}-\frac{1}{(x+k)}\right) \\
& =1+\ln p-\sum_{k=1}^{p} \frac{k}{(x+k)^{2}} .
\end{aligned}
$$

Let $v(x)=1+\ln p-\sum_{k=1}^{p} \frac{k}{(x+k)^{2}}$. One can easily show that for $x>0$ the function v is nondecreasing. Hence, $v(x)>v(0)$. On the other side

$$
v(0)=1-\left(\sum_{k=1}^{p} \frac{1}{k}-\ln p\right) \geq 0
$$

Hence $\theta^{\prime}(x)>0$ so θ is nondecreasing.
REMARK 2.14. Using similar approach, one can show that the function $f(x)=$ $\frac{e^{x} \cdot \Gamma_{p}(x)}{x^{a}}, a \neq 0$, is geometrically convex.

REMARK 2.15. In [7], it is proved that the function $f(x)=\frac{e^{x} \Gamma(x)}{x^{x}}$ is geometrically convex.

In relation to the function $f_{1}(x)=\frac{e^{x} \cdot \Gamma_{p}(x)}{x^{x}}$ one can show that it is geometrically convex in the neighborhood of zero, and it is not geometrically convex for $x>p$, while for the rest the proof could not be established.

3 Inequalities and Applications

In this section we prove some inequalities related to Γ_{p} function. Some applications of Γ_{p} are presented at the end of the section.

LEMMA 3.1. Let $x>1$. Then

$$
\left.\gamma+\ln p+\psi_{(} x\right)-\psi_{p}(x)>0
$$

PROOF. Using the series representations of the functions ψ and ψ_{p} we obtain:

$$
\gamma+\ln p+\psi(x)-\psi_{p}(x)=(x-1) \sum_{k=0}^{\infty} \frac{1}{(1+k)(x+k)}+\sum_{k=0}^{p} \frac{1}{(x+k)}>0
$$

Using previous Lemma we have:

LEMMA 3.2. Let a be a positive real number such that $a+x>1$. Then

$$
\gamma+\ln p+\psi(x+a)-\psi_{p}(x+a)>0
$$

THEOREM 3.3. Let f be a function defined by

$$
\begin{equation*}
f(x)=\frac{e^{\gamma x} \Gamma(x+a)}{p^{-x} \Gamma_{p}(x+a)}, x \in(0,1) \tag{17}
\end{equation*}
$$

where a, b are real numbers such that $a+x>1$. If $\psi(x+a)>0$ or $\psi_{p}(x+a)>0$ then the function f is increasing for $x \in(0,1)$ and the following double inequality holds

$$
\begin{equation*}
\frac{\Gamma(a)}{p^{x} \cdot e^{\gamma x} \Gamma_{p}(a)}<\frac{\Gamma(x+a)}{\Gamma_{p}(x+a)}<p^{1-x} \cdot e^{\gamma(1-x)} \cdot \frac{\Gamma(1+a)}{\Gamma_{p}(1+a)} . \tag{18}
\end{equation*}
$$

PROOF. Let g be a function defined by $g(x)=\ln f(x)$ for $x \in(0,1)$. Then

$$
g(x)=\gamma x+\ln \Gamma(x+a)+x \ln p-\ln \Gamma_{p}(x+a)
$$

Then

$$
g^{\prime}(x)=\gamma+\ln p+\psi(x+a)-\psi_{p}(x+a)
$$

By Lemma 18 we have $g^{\prime}(x)>0$. It means that g is increasing on $(0,1)$. This implies that f is increasing on $(0,1)$ so we have $f(0)<f(x)<f(1)$ and the result follows.

For the proof of the following Lemma see [4].
LEMMA 3.4. Let $(a, b) \subset(0, \infty)$ and $f:(a, b) \longrightarrow(0, \infty)$ be a differentiable function. Then f is geometrically convex if and only if the inequality

$$
\begin{equation*}
\frac{f(x)}{f(y)} \geq\left(\frac{x}{y}\right)^{\frac{y f^{\prime}(y)}{f(y)}} \tag{19}
\end{equation*}
$$

holds for any $x, y \in(a, b)$.
The following result is the analogue of the Theorem 1.2 from [7].
THEOREM 3.5. For $x>0, y>0$ the double inequality holds

$$
\begin{equation*}
\left(\frac{x}{y}\right)^{y\left(1+\psi_{p}(y)\right)} \cdot e^{y-x} \leq \frac{\Gamma_{p}(x)}{\Gamma_{p}(y)} \leq\left(\frac{x}{y}\right)^{x\left(1+\psi_{p}(x)\right)} \cdot e^{y-x} \tag{20}
\end{equation*}
$$

PROOF. Combination of Theorem 2.13, Lemma 3.4 and relation (16) leads to:

$$
\frac{e^{x} \Gamma_{p}(x)}{e^{y} \Gamma_{p}(y)} \geq\left(\frac{x}{y}\right)^{y\left(1+\psi_{p}(y)\right)}
$$

and

$$
\frac{e^{y} \Gamma_{p}(y)}{e^{x} \Gamma_{p}(x)} \geq\left(\frac{y}{x}\right)^{x\left(1+\psi_{p}(x)\right)}
$$

Hence the inequality (20) is established.

In the following, we give the Γ_{p} analogue of results from [6]. Since the proofs are almost similar, we omit them.

LEMMA 3.6. Let a, b, c, d, e be real numbers such that $a+b x>0, d+e x>0$ and $a+b x \leq d+e x$. Then

$$
\begin{equation*}
\psi_{p}(a+b x)-\psi_{p}(d+e x) \leq 0 \tag{21}
\end{equation*}
$$

LEMMA 3.7. Let a, b, c, d, e, f be real numbers such that $a+b x>0, d+e x>$ $0, a+b x \leq d+e x$ and $e f \geq b c>0$. If (i) $\psi_{p}(a+b x)>0$, or (ii) $\psi_{p}(d+e x)>0$, then

$$
\begin{equation*}
b c \psi_{p}(a+b x)-e f \psi_{p}(d+e x) \leq 0 \tag{22}
\end{equation*}
$$

LEMMA 3.8. Let a, b, c, d, e, f be real numbers such that $a+b x>0, d+e x>$ $0, a+b x \leq d+e x$ and $b c \geq e f>0$. If (i) $\psi_{p}(d+e x)<0$, or (ii) $\psi_{p}(a+b x)<0$, then

$$
\begin{equation*}
b c \psi_{p}(a+b x)-e f \psi_{p}(d+e x) \leq 0 . \tag{23}
\end{equation*}
$$

THEOREM 3.9. Let f_{1} be a function defined by

$$
\begin{equation*}
f_{1}(x)=\frac{\Gamma_{p}(a+b x)^{c}}{\Gamma_{p}(d+e x)^{f}}, \quad x \geq 0 \tag{24}
\end{equation*}
$$

where a, b, c, d, e, f are real numbers such that: $a+b x>0, d+e x>0, a+b x \leq$ $d+e x, e f \geq b c>0$. If $\psi_{p}(a+b x)>0$ or $\psi_{p}(d+e x)>0$ then the function f_{1} is decreasing for $x \geq 0$ and for $x \in[0,1]$ the following double inequality holds:

$$
\begin{equation*}
\frac{\Gamma_{p}(a+b)^{c}}{\Gamma_{p}(d+e)^{f}} \leq \frac{\Gamma_{p}(a+b x)^{c}}{\Gamma_{p}(d+e x)^{f}} \leq \frac{\Gamma_{p}(a)^{c}}{\Gamma_{p}(d)^{f}} \tag{25}
\end{equation*}
$$

In a similar way, using Lemma 3.8, it is easy to prove the following Theorem.
THEOREM 3.10. Let f_{1} be a function defined by

$$
\begin{equation*}
f_{1}(x)=\frac{\Gamma_{p}(a+b x)^{c}}{\Gamma_{p}(d+e x)^{f}}, \quad x \geq 0 \tag{26}
\end{equation*}
$$

where a, b, c, d, e, f are real numbers such that: $a+b x>0, d+e x>0, a+b x \leq$ $d+e x, b c \geq e f>0$. If $\psi_{p}(d+e x)<0$ or $\psi_{p}(a+b x)<0$ then the function f_{1} is decreasing for $x \geq 0$ and for $x \in[0,1]$ the inequality (25) holds.

At the end we provide some applications related to the Γ_{p} function.
REMARK 3.11. Using (2) and (3) and the fact that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$ we obtain the following representation for π

$$
\sqrt{\pi}=\lim _{p \rightarrow \infty} \frac{\sqrt{p}}{\frac{1}{2}\left(1+\frac{1}{2}\right)\left(1+\frac{1}{4}\right) \cdots\left(1+\frac{1}{2 p}\right)}
$$

REMARK 3.12. Using (3) in equations (25) and (26) we obtain all the results of [6].

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas and Mathematical Tables, Dover, New York, 1965.
[2] T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976.
[3] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, 1988.
[4] C. P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl., $3(2)(2000), 155-167$.
[5] J. Sandor, Selected Chapters of Geometry, Analysis and Number Theory, RGMIA Monographs, Victoria University, 2005.
[6] A. Sh. Shabani, Generalization of some inequalities for the Gamma function, Mathematical Communications, 13(2008), 271-275.
[7] X. M. Zhang, T. Q. Xu, L. B. Situ, Geometric convexity of a function involving Gamma function and applications to inequality theory, J. Inequal, Pure Appl. Math., 8(1)(2007), Art. 17.

[^0]: *Mathematics Subject Classifications: 33B15, 26A51.
 ${ }^{\dagger}$ Department of Mathematics, University of Prishtina, Prishtinë 10000, Republic of Kosova
 \ddagger Department of Mathematics, University of Prishtina, Prishtinë 10000, Republic of Kosova

