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Abstract

For the Γp-function, defined by Euler, are given some properties related to
convexity and log-convexity. Also, some properties of p analogue of the ψ function
have been established. The p-analogue of some inequalities from [6] and [7] have
been proved. As an application, when p→ ∞, we obtain all results of [6].

1 Introduction

In this section we will present definitions used in this paper. The Euler gamma function
Γ(x) is defined for x > 0 by

Γ(x) =

∫ ∞

0

tx−1e−tdt.

The digamma (or psi) function is defined for positive real numbers x as the logarithmic

derivative of Euler’s gamma function, that is ψ(x) = d
dx

ln Γ(x) = Γ′(x)
Γ(x)

. The following

integral and series representations are valid (see [1]):

ψ(x) = −γ +

∫ ∞

0

e−t − e−xt

1 − e−t
dt = −γ − 1

x
+

∑

n≥1

x

n(n + x)
, (1)

where γ = 0.57721... denotes Euler’s constant.
Euler, gave another equivalent definition for the Γ(x) (see [2],[5])

Γp(x) =
p!px

x(x+ 1) · · · (x+ p)
=

px

x(1 + x
1
) · · · (1 + x

p
)
, x > 0 (2)

where p is positive integer, and

Γ(x) = lim
p→∞

Γp(x). (3)
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28 Properties for a Generalized Gamma Function

We define the p-analogue of the psi function as the logarithmic derivative of the Γp
function, that is

ψp(x) =
d

dx
lnΓp(x) =

Γ′
p(x)

Γp(x)
. (4)

DEFINITION 1.1. The function f is called log-convex if for all α, β > 0 such that
α+ β = 1 and for all x, y > 0 the following inequality holds

log f(αx+ βy) ≤ α log f(x) + β log f(y)

or equivalently

f(αx+ βy) ≤ (f(x))α · (f(y))β .

DEFINITION 1.2. Let f : I ⊆ (0,∞) −→ (0,∞) be a continuous function. Then f
is called geometrically convex on I if there exists n ≥ 2 such that one of the following
two inequalities holds:

f(
√

(x1x2)) ≤
√

f(x1)f(x2) (5)

f
(

n
∏

i=1

xλi

i

)

≤
n

∏

i=1

(f(xi))
λi (6)

where x1, . . . , xn ∈ I; λ1, . . . , λn > 0 with
∑n

i=1 λi = 1. If inequalities (5) and (6) are
reversed, then f is called geometrically concave function on I.

In the next section, we derive several convexity and log-convexity properties related
the Γp.

2 Some Properties of Γp

We begin with recurrent relations for Γp and ψp.

LEMMA 2.1. Let Γp be defined as in (2). Then

Γp(x+ n) = pn ·
∏n−1
i=0 (x+ i)

∏n
i=1(x+ p+ i)

Γp(x), x+ n > 0. (7)

PROOF. Using (2) one finds that:

Γp(x+ n)

Γp(x+ n− 1)
=

x+ n− 1

p−1(x+ n+ p)
.

Hence

Γp(x+ n) =
p(x+ n− 1)

(x+ n+ p)
· Γp(x+ n− 1).

In a similar way, we have:

Γp(x+ n− 1) =
p(x+ n− 2)

(x+ (n− 1) + p)
· Γp(x+ n− 2)
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It means

Γp(x+ n) =
p2(x+ n − 1)(x+ n− 2)

(x+ n+ p)(x+ (n− 1) + p)
· Γp(x + n− 2).

Continuing in this way we obtain:

Γp(x+ n) =
pn(x+ n− 1)(x+ n− 2) · . . . · x

(x+ n+ p)(x+ p+ n − 1) · . . . · (x+ p+ 1)
· Γp(x),

completing the proof.

REMARK 2.2. When p→ ∞, we obtain the well known relation

Γ(x) =
Γ(x+ n)

x(x+ 1) · . . . · (x+ n− 1)
, x+ n > 0.

LEMMA 2.3. a) The function ψp defined by (4) has the following series represen-
tation

ψp(x) = ln p−
p

∑

k=0

1

x+ k
. (8)

b) The function ψp is increasing on (0,∞).
c) The function ψ′

p is strictly completely monotonic on (0,∞).

PROOF. a) By (2) we have:

ψp(x) =
d

dx
(ln Γp(x))

=
d

dx

(

x lnp−
(

lnx+ ln(1 + x) + ln
(

1 +
x

2
+ . . .+ ln

(

1 +
x

p

))))

= lnp−
(1

x
+

1

1 + x
+

1

1 + x
2

· 1

2
+ . . .+

1

1 + x
p

· 1

p

)

= lnp−
p

∑

k=0

1

x+ k
.

b) Let 0 < x < y. Using (8) we obtain

ψp(x) − ψp(y) = −
p

∑

k=0

1

x+ k
+

p
∑

k=0

1

y + k
=

p
∑

k=0

(x− y)

(x+ k)(y + k)
< 0.

c) Deriving n times the relation (8) one finds that:

ψ(n)
p (x) =

p
∑

k=0

(−1)n−1 · n!

(x+ k)n+1
, (9)

hence (−1)n(ψ′
p(x))

(n) > 0 for x > 0, n ≥ 0.

REMARK 2.4. We note that limp→∞ ψ
(n)
p (x) = ψ(n)(x).



30 Properties for a Generalized Gamma Function

By (8) one has the following:

COROLLARY 2.5.

ψp(x+ 1) =
1

x
− 1

x+ p+ 1
+ ψp(x).

COROLLARY 2.6. The function log Γp(x) is convex for x > 0.

PROOF. Taking n = 2 in (9) we have

ψ′
p(x) =

p
∑

k=0

1

(x+ k)2
. (10)

So, for x > 0, ψ′
p(x) > 0 hence ψp is a monotonous function on the positive axis and

therefore the function log Γp(x) is convex for x > 0.

LEMMA 2.7. Let ψp be as in (8). Then

lim
p→∞

ψp(x) = ψ(x). (11)

PROOF. By (8) we have:

lim
p→∞

ψp(x) = lim
p→∞

ln p− lim
p→∞

( 1

x
+

p
∑

k=1

1

x+ k

)

= lim
p→∞

(

lnp− 1 − 1

2
− . . .− 1

p

)

− 1

x
− lim
p→∞

(

p
∑

k=1

1

x+ k
−

p
∑

k=1

1

k

)

= −γ − 1

x
+

∞
∑

k=1

x

k(k + x)

= ψ(x).

THEOREM 2.8. The function

Γp(x) =
px

x(1 + x
1 ) . . . (1 + x

p
)
, x > 0

is log-convex.

PROOF. We have to prove that for all α, β > 0, α+ β = 1, x, y > 0

logΓp(αx+ βy) ≤ α log Γp(x) + β log Γp(y) (12)

which is equivalent to

Γp(αx+ βy) ≤ (Γp(x))
α · (Γp(y))β . (13)

By Young’s inequality (see [3]) we have:

xα · yβ ≤ αx+ βy. (14)
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From (14) we obtain:

(

1 +
x

k

)α

·
(

1 +
y

k

)β

≤ α
(

1 +
x

k

)

+ β
(

1 +
y

k

)

= 1 +
αx+ βy

k
(15)

for all k ≥ 1, k ∈ N.
Multiplying (15) for k = 1, 2, . . . , p one obtains

(

1 +
x

1

)α

. . .
(

1 +
x

p

)α

·
(

1 +
y

1

)β

. . .
(

1 +
y

p

)β

≤
(

1 +
αx+ βy

1

)

. . .
(

1 +
αx+ βy

p

)

.

Now, taking the reciprocal values and multiplying by pαx+βy one obtains (13) and thus
the proof is completed.

For the proof of the following result see [5].

PROPOSITION 2.9. Let f be a log-convex function on (0,∞). Then the function
Fa given by Fa(x) = axf(x) is convex for any a > 0.

From Proposition 2.9 and Theorem 2.8 immediately follows the following corollary.

COROLLARY 2.10. The functions Fa, Ga given by

Fa(x) = axΓp(x), x > 0;Ga(x) = xaΓp(x), x > 0,

respectively, are convex.

Another easily established property related to ψp is the following proposition.

PROPOSITION 2.11. The function x 7−→ xψp(x), x > 0 is strictly convex.

PROOF. We have

(xψp(x))
′ = ψp(x) + xψ′

p(x)

(xψp(x))
′′ = 2ψ′

p(x) + xψ′′
p (x).

Using (9) we obtain

(xψp(x))
′′ = 2

p
∑

k=0

1

(x+ k)2
− 2

p
∑

k=0

x

(x+ k)3
= 2

p
∑

k=0

k

(x+ k)3
> 0.

Next we will prove a result on geometric convexity related to Γp that will be used
in the next section.

For the proof of the following Lemma see [4].

LEMMA 2.12. Let (a, b) ⊂ (0,∞) and f : (a, b) −→ (0,∞) be a differentiable func-

tion. Then f is geometrically convex if and only if the function xf ′(x)
f(x)

is nondecreasing.

THEOREM 2.13. The function f(x) = ex · Γp(x) is geometrically convex.

PROOF. Let f(x) = ex · Γp(x). Then ln f(x) = x+ ln Γp(x). Hence

f ′(x)

f(x)
= 1 + ψp(x). (16)
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So, x f
′(x)
f(x) = x+ xψp(x). Let θ(x) = x+ xψp(x). Then we have

θ′(x) = 1 + ψp(x) + xψ′
p(x).

Using (8) and (9) one obtains

θ′(x) = 1 + ln p−
p

∑

k=0

1

x+ k
+ x

p
∑

k=0

1

(x+ k)2

= 1 + ln p+

p
∑

k=0

( x

(x + k)2
− 1

(x+ k)

)

= 1 + ln p−
p

∑

k=1

k

(x+ k)2
.

Let v(x) = 1 + ln p−
∑p
k=1

k
(x+k)2

. One can easily show that for x > 0 the function

v is nondecreasing. Hence, v(x) > v(0). On the other side

v(0) = 1 −
(

p
∑

k=1

1

k
− lnp

)

≥ 0.

Hence θ′(x) > 0 so θ is nondecreasing.

REMARK 2.14. Using similar approach, one can show that the function f(x) =
ex·Γp(x)

xa , a 6= 0, is geometrically convex.

REMARK 2.15. In [7], it is proved that the function f(x) = exΓ(x)
xx is geometrically

convex.

In relation to the function f1(x) =
ex·Γp(x)

xx one can show that it is geometrically
convex in the neighborhood of zero, and it is not geometrically convex for x > p, while
for the rest the proof could not be established.

3 Inequalities and Applications

In this section we prove some inequalities related to Γp function. Some applications of
Γp are presented at the end of the section.

LEMMA 3.1. Let x > 1. Then

γ + ln p+ ψ(x) − ψp(x) > 0.

PROOF. Using the series representations of the functions ψ and ψp we obtain:

γ + lnp+ ψ(x) − ψp(x) = (x− 1)

∞
∑

k=0

1

(1 + k)(x+ k)
+

p
∑

k=0

1

(x+ k)
> 0.

Using previous Lemma we have:
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LEMMA 3.2. Let a be a positive real number such that a+ x > 1. Then

γ + ln p+ ψ(x+ a) − ψp(x+ a) > 0.

THEOREM 3.3. Let f be a function defined by

f(x) =
eγxΓ(x+ a)

p−xΓp(x+ a)
, x ∈ (0, 1) (17)

where a, b are real numbers such that a+ x > 1. If ψ(x+ a) > 0 or ψp(x+ a) > 0 then
the function f is increasing for x ∈ (0, 1) and the following double inequality holds

Γ(a)

px · eγxΓp(a)
<

Γ(x+ a)

Γp(x+ a)
< p1−x · eγ(1−x) · Γ(1 + a)

Γp(1 + a)
. (18)

PROOF. Let g be a function defined by g(x) = ln f(x) for x ∈ (0, 1). Then

g(x) = γx + lnΓ(x+ a) + x lnp− ln Γp(x+ a).

Then
g′(x) = γ + lnp+ ψ(x+ a) − ψp(x+ a).

By Lemma 18 we have g′(x) > 0. It means that g is increasing on (0, 1). This implies
that f is increasing on (0, 1) so we have f(0) < f(x) < f(1) and the result follows.

For the proof of the following Lemma see [4].

LEMMA 3.4. Let (a, b) ⊂ (0,∞) and f : (a, b) −→ (0,∞) be a differentiable
function. Then f is geometrically convex if and only if the inequality

f(x)

f(y)
≥

(x

y

)

yf′(y)
f(y)

(19)

holds for any x, y ∈ (a, b).

The following result is the analogue of the Theorem 1.2 from [7].

THEOREM 3.5. For x > 0, y > 0 the double inequality holds

(x

y

)y(1+ψp(y))

· ey−x ≤ Γp(x)

Γp(y)
≤

(x

y

)x(1+ψp(x))

· ey−x. (20)

PROOF. Combination of Theorem 2.13, Lemma 3.4 and relation (16) leads to:

exΓp(x)

eyΓp(y)
≥

(x

y

)y(1+ψp(y))

and
eyΓp(y)

exΓp(x)
≥

( y

x

)x(1+ψp(x))

.

Hence the inequality (20) is established.
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In the following, we give the Γp analogue of results from [6]. Since the proofs are
almost similar, we omit them.

LEMMA 3.6. Let a, b, c, d, e be real numbers such that a+ bx > 0, d+ ex > 0 and
a+ bx ≤ d+ ex. Then

ψp(a+ bx)− ψp(d+ ex) ≤ 0. (21)

LEMMA 3.7. Let a, b, c, d, e, f be real numbers such that a + bx > 0, d + ex >

0, a+ bx ≤ d+ ex and ef ≥ bc > 0. If (i) ψp(a + bx) > 0, or (ii) ψp(d+ ex) > 0, then

bcψp(a+ bx) − efψp(d+ ex) ≤ 0. (22)

LEMMA 3.8. Let a, b, c, d, e, f be real numbers such that a + bx > 0, d + ex >

0, a+ bx ≤ d+ ex and bc ≥ ef > 0. If (i) ψp(d+ ex) < 0, or (ii) ψp(a+ bx) < 0, then

bcψp(a+ bx) − efψp(d+ ex) ≤ 0. (23)

THEOREM 3.9. Let f1 be a function defined by

f1(x) =
Γp(a+ bx)c

Γp(d+ ex)f
, x ≥ 0 (24)

where a, b, c, d, e, f are real numbers such that: a + bx > 0, d + ex > 0, a + bx ≤
d + ex, ef ≥ bc > 0. If ψp(a + bx) > 0 or ψp(d + ex) > 0 then the function f1 is
decreasing for x ≥ 0 and for x ∈ [0, 1] the following double inequality holds:

Γp(a + b)c

Γp(d+ e)f
≤ Γp(a+ bx)c

Γp(d+ ex)f
≤ Γp(a)

c

Γp(d)f
. (25)

In a similar way, using Lemma 3.8, it is easy to prove the following Theorem.

THEOREM 3.10. Let f1 be a function defined by

f1(x) =
Γp(a + bx)c

Γp(d+ ex)f
, x ≥ 0, (26)

where a, b, c, d, e, f are real numbers such that: a + bx > 0, d + ex > 0, a + bx ≤
d + ex, bc ≥ ef > 0. If ψp(d + ex) < 0 or ψp(a + bx) < 0 then the function f1 is
decreasing for x ≥ 0 and for x ∈ [0, 1] the inequality (25) holds.

At the end we provide some applications related to the Γp function.

REMARK 3.11. Using (2) and (3) and the fact that Γ
(

1
2

)

=
√
π we obtain the

following representation for π

√
π = lim

p→∞

√
p

1
2

(

1 + 1
2

)(

1 + 1
4

)

· · ·
(

1 + 1
2p

) .

REMARK 3.12. Using (3) in equations (25) and (26) we obtain all the results of
[6].
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[3] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge University Press,
1988.

[4] C. P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl.,
3(2)(2000), 155–167.

[5] J. Sandor, Selected Chapters of Geometry, Analysis and Number Theory, RGMIA
Monographs, Victoria University, 2005.

[6] A. Sh. Shabani, Generalization of some inequalities for the Gamma function, Math-
ematical Communications, 13(2008), 271–275.

[7] X. M. Zhang, T. Q. Xu, L. B. Situ, Geometric convexity of a function involv-
ing Gamma function and applications to inequality theory, J. Inequal, Pure Appl.
Math., 8(1)(2007), Art. 17.


