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Abstract

For the I'p-function, defined by Euler, are given some properties related to
convexity and log-convexity. Also, some properties of p analogue of the 1 function
have been established. The p-analogue of some inequalities from [6] and [7] have
been proved. As an application, when p — oo, we obtain all results of [6].

1 Introduction

In this section we will present definitions used in this paper. The Euler gamma function
I'(x) is defined for = > 0 by

F(x):/ t*~Le~tdt.
0

The digamma (or psi) function is defined for positive real numbers z as the logarithmic
derivative of Euler’s gamma function, that is ¢(z) = L InT(z) = ?((;)). The following

integral and series representations are valid (see [1]):

0 g7t gt 1 T
1/)(95)——74'/0 ﬁdt:_7_5+ZM’ (1)

n>1

where v = 0.57721... denotes Euler’s constant.
Euler, gave another equivalent definition for the I'(z) (see [2],[5])

X X

_ plp _ p
Fp(x)_x(x+1)~~~(x+p)_x(1+%)--~(1+%)’x>0 @

where p is positive integer, and

I'(z) = lim T'y(x). (3)

p—00
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28 Properties for a Generalized Gamma Function

We define the p-analogue of the psi function as the logarithmic derivative of the I,

function, that is
d I, ()

Up(@) = - InTy(x) =

(4)

DEFINITION 1.1. The function f is called log-convex if for all a;, 3 > 0 such that
a+ 3 =1 and for all z,y > 0 the following inequality holds

log f(ax + By) < alog f(z) + Blog f(y)

or equivalently

flax+ By) < (f@)* - (F)".

DEFINITION 1.2. Let f: I C (0,00) — (0, 00) be a continuous function. Then f
is called geometrically convex on I if there exists n > 2 such that one of the following

two inequalities holds:
F(V (@1x2)) <V f(@1) f(2) (5)

n

1 ff)sfhﬂm»M (6)

1= 1=1

where z1,..., 2, € I; A1,..., Ay, > 0 with > | A; = 1. If inequalities (5) and (6) are
reversed, then f is called geometrically concave function on I.

In the next section, we derive several convexity and log-convexity properties related
the I',.

2 Some Properties of I',

We begin with recurrent relations for I', and .
LEMMA 2.1. Let I'y, be defined as in (2). Then

H?;ol (z+1)

T =—pt.,. =22= 7

Ip(z),z+n>0. (7)

PROOF. Using (2) one finds that:

Iy(x+n)  xz4+n-1
Tpx+n—1)  plz+n+p)
Hence ( )
plx+n-—1
I'z+n)=——=-T)(x+n—1).
pla ) = FET T )
In a similar way, we have:
px+n—2)

Ipz+n—1)= Tplx+n—2)

(x+(n—1)+p)
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It means )
-1 -2
px+n—1)(z+n—2) Tz +n—2).

Lot = o e =D+ )

Continuing in this way we obtain:

_ plz+n—1)(z+n—2)...-x T
F;D(x-i-n)_ (x+n+p)(x+p+n—1)(x+p+1) F;D( )a

completing the proof.
REMARK 2.2. When p — oo, we obtain the well known relation

T(z+n)

'O = e @raon 0

LEMMA 2.3. a) The function 1, defined by (4) has the following series represen-

tation

P
1
¢p($):1np—zx+k-

b) The function v, is increasing on (0, c0).
¢) The function 1y, is strictly completely monotonic on (0, 00).

PROOF. a) By (2) we have:

= %(mlnp— (hlx—l-ln(l—i-x)—i-ln(l—i-;—i—...—i—ln(l—i—%))))

. (1+1+11++11)
- Itz 1+% 2 71+ p
=
:1 —
np kzzox—i-k

b) Let 0 < x < y. Using (8) we obtain

& N T (r —y)
)~ W) = =3 gt T = g h <

k=0 k=

hence (—1)"(1/)]’0@))(") >0 for z > 0,n > 0.
REMARK 2.4. We note that lim,_. 5" (z) = 4™ (z).

(8)
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By (8) one has the following:
COROLLARY 2.5.

RCHI P —

: rrpr1

COROLLARY 2.6. The function logT',(x) is convex for = > 0.
PROOF. Taking n = 2 in (9) we have

%) =Y (10)

k=0

So, for z > 0, ¢;,(x) > 0 hence 1, is a monotonous function on the positive axis and
therefore the function logI',(z) is convex for > 0.

LEMMA 2.7. Let 9, be as in (8). Then

lim 4, (x) = (). (11)

p—00

PROOF. By (8) we have:

: : ol &1
Jim y(a) = Jim np— lim (243 =)

k=1
1 1 1 SIS | "1
= 1 (1 B ) S T ( - _)
g (mp—1=g =) — o= m (2 g - 2 g
1 > T
A Yy
= P(z).
THEOREM 2.8. The function
T,(z) P 2> 0

T2+ %) 1+ )

is log-convex.

PROOF. We have to prove that for all o, 8 > 0,a+ 8 =1,2,y >0
log['y(ax + fy) < alogIp(z) + BlogI'y(y) (12)
which is equivalent to
Tp(az + By) < (Tp())” - (Tp(y)”. (13)
By Young’s inequality (see [3]) we have:

z® -y’ <ax+ fy. (14)
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From (14) we obtain:

(15" (1) <ate ) 481+ L) =14 22y

forallk > 1,k € N.
Multiplying (15) for k = 1,2, ..., p one obtains

(D)7 e 2) () () < () (1 ),

Now, taking the reciprocal values and multiplying by p®**#¥ one obtains (13) and thus
the proof is completed.

For the proof of the following result see [5].

PROPOSITION 2.9. Let f be a log-convex function on (0,00). Then the function
F, given by Fi(x) = a” f(x) is convex for any a > 0.

From Proposition 2.9 and Theorem 2.8 immediately follows the following corollary.
COROLLARY 2.10. The functions F,, G, given by

Fo(z) = a"Tp(z),z > 0; Go(z) = 2°Tp(z),z > 0,

respectively, are convex.
Another easily established property related to v, is the following proposition.
PROPOSITION 2.11. The function & — xp,(x), z > 0 is strictly convex.
PROOF. We have
(@1p(2))" = Up() + z1f},(2)
(@p(@))" = 29y, () + a1y (2).
Using (9) we obtain

p p p

@yl 2; x—i—k 2Z(x+k 2; x—i—k

=0 k=0 =0

Next we will prove a result on geometric convexity related to I', that will be used
in the next section.

For the proof of the following Lemma see [4].

LEMMA 2.12. Let (a,b) C (0,00) and f : (a,b) — (0, 00) be a differentiable func-

tion. Then f is geometrically convex if and only if the function x}{(/g) is nondecreasing.

THEOREM 2.13. The function f(z) = e” - I'p(z) is geometrically convex.
PROOF. Let f(x) =e” -T'p(z). Then In f(z) =z +InT',(x). Hence

— 1+ 4,(a). (16)
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So, xj}/ ;)) =z + xp(x). Let O(x) = x + z¢p(z). Then we have

0 (z) =1+ p(z) + m/}fo(x)
Using (8) and (9) one obtains

P P
1 1
(x)=1+1Inp— Z +x272
etk kzo(x—l-k)
P
T 1
=lthp+ kz(:)((x—i-k)?_(x—i-k))
Pk

Let v(z) =1+Inp—>"%_, ﬁ One can easily show that for > 0 the function
v is nondecreasing. Hence, v(x) > v(0). On the other side

1= (X g-m) 20

Hence ¢ (z) > 0 so 6 is nondecreasing.
REMARK 2.14. Using similar approach, one can show that the function f(z) =

ez%g(x), a # 0, is geometrically convex.
REMARK 2.15. In [7], it is proved that the function f(z) = < F(I) is geometrically
convex.

In relation to the function f;(z) = 81575(9”) one can show that it is geometrically

convex in the neighborhood of zero, and it is not geometrically convex for z > p, while
for the rest the proof could not be established.

3 Inequalities and Applications

In this section we prove some inequalities related to I',, function. Some applications of
I', are presented at the end of the section.

LEMMA 3.1. Let z > 1. Then
Y4+Inp + ) —Pp(x) >0

PROOF. Using the series representations of the functions ¢ and 1, we obtain:

o) P
VI + (@) (o) = (2= 1) ) 1+k) x—l—k Z x—l—k) > 0.
k:O k=0

Using previous Lemma we have:
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LEMMA 3.2. Let a be a positive real number such that a + z > 1. Then
Y+ Inp+ (e + a) — y(z +a) > 0.

THEOREM 3.3. Let f be a function defined by

e’ T'(x + a)

m, z € (0,1) (17)

flz) =

where a, b are real numbers such that a+x > 1. If (z +a) > 0 or ¢¥p(z +a) > 0 then
the function f is increasing for x € (0,1) and the following double inequality holds

F(CL) F(x + CL) 1-x e’y(lfx) . F(l + CL)

pr - e'yxrp(a) Fp(x +a) =7 Fp(l +a) ' )

PROOF. Let g be a function defined by g(z) = In f(x) for z € (0,1). Then
g(z) =vr+Inl(z+a)+znp—InTy(z + a).

Then
g(@)=7+Inp+ ¢ +a) - y(x+a).
By Lemma 18 we have ¢'(x) > 0. It means that g is increasing on (0,1). This implies
that f is increasing on (0, 1) so we have f(0) < f(z) < f(1) and the result follows.
For the proof of the following Lemma see [4].
LEMMA 3.4. Let (a,b) C (0,00) and f : (a,b) — (0,00) be a differentiable
function. Then f is geometrically convex if and only if the inequality

uf' (W)
% > (5) ) (19)

holds for any z,y € (a,b).
The following result is the analogue of the Theorem 1.2 from [7].
THEOREM 3.5. For # > 0,y > 0 the double inequality holds

y(1+¢p(y))
) )

: Ly(e) _ (x)x(lﬂlp(x)). .

eV < eV, (20)

~ Ty

PROOF. Combination of Theorem 2.13, Lemma 3.4 and relation (16) leads to:

e’T'p(x) > (x)y(pr(y))

evI'p(y) ;

and

e’T'p(y) S (g)x(lﬂbp(x))
erp(x) — \z '

Hence the inequality (20) is established.
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In the following, we give the I',, analogue of results from [6]. Since the proofs are
almost similar, we omit them.
LEMMA 3.6. Let a,b, ¢, d, e be real numbers such that a +bx > 0, d+ex > 0 and
a+bxr <d+ ex. Then
Vp(a+bx) —hp(d + ex) < 0. (21)

LEMMA 3.7. Let a,b,c,d,e, f be real numbers such that a + bx > 0,d + ex >
0,a+bxr <d+ex and ef > be > 0. If (i) ¥p(a +bx) > 0, or (ii) ¥p(d + ex) > 0, then

bep(a + bx) — efih,(d + ex) < 0. (22)

LEMMA 3.8. Let a,b,c,d,e, f be real numbers such that a + bx > 0,d + ex >
0,a+br <d+ex and be > ef > 0. If (i) ¥,(d + ex) <0, or (ii) ¥p(a + bz) < 0, then

bep(a + bx) — efip,(d+ ex) < 0. (23)

THEOREM 3.9. Let f; be a function defined by

Tp(a+ bx)°
=P T > 24
fl('r> Fp(d—l-ex)f’ x>0 ( )
where a,b,c,d,e, f are real numbers such that: a +bx > 0,d +ex > 0,a + bx <
d+ex,ef > bc>0. If Y,(a+ bx) > 0 or ¥,(d + ex) > 0 then the function f; is
decreasing for > 0 and for € [0, 1] the following double inequality holds:

Ty(a+b) _ Tylatbe)® _ Tyla)*

. . . 25
Iy(d+e)f = Tp(d+ex)f = Tp(d)f (25)
In a similar way, using Lemma 3.8, it is easy to prove the following Theorem.
THEOREM 3.10. Let f; be a function defined by
Tp(a+bx)°
=2 7 >0 26
fl('r) Fp(d—i-ex)f’ =Y, ( )

where a,b,c,d,e, f are real numbers such that: a +bx > 0,d +ex > 0,a + bx <
d+ex,bc > ef > 0. If Y,(d+ex) < 0 or ¢p(a+ bxr) < 0 then the function f; is
decreasing for « > 0 and for = € [0, 1] the inequality (25) holds.

At the end we provide some applications related to the I', function.

REMARK 3.11. Using (2) and (3) and the fact that r(%) = /7 we obtain the

following representation for m

m = lim VP .
v PL“%(1+%)(1+§)-~(1+$)

REMARK 3.12. Using (3) in equations (25) and (26) we obtain all the results of
[6].



V. Krasniqi and A. Sh. Shabani 35

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with For-
mulas and Mathematical Tables, Dover, New York, 1965.

[2] T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976.

[3] G. H. Hardy, J. E. Littlewood, G. Pélya, Inequalities, Cambridge University Press,
1988.

[4] C.P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl.,
3(2)(2000), 155-167.

[5] J. Sandor, Selected Chapters of Geometry, Analysis and Number Theory, RGMIA
Monographs, Victoria University, 2005.

[6] A.Sh. Shabani, Generalization of some inequalities for the Gamma function, Math-
ematical Communications, 13(2008), 271-275.

[7] X. M. Zhang, T. Q. Xu, L. B. Situ, Geometric convexity of a function involv-
ing Gamma function and applications to inequality theory, J. Inequal, Pure Appl.
Math., 8(1)(2007), Art. 17.



