
Applied Mathematics E-Notes, 10(2010), 19-26 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

Finite Fractal Dimension Of Pullback Attractors And

Application To Non-Autonomous Reaction Diffusion

Equations∗

Yongjun Li†, Suyun Wang‡, Jinying Wei§

Received 27 February 2009

Abstract

In this paper, we study the asymptotic behavior of dissipative non-autonomous

PDEs in the framework of a process. In particular, we give sufficient conditions

for the pullback attractor with finite fractal dimension. As an example, the result

is applied to a non-autonomous reaction diffusion equation.

1 Introduction

In recent years, there is much literature on the study of the asymptotic behavior of non-
autonomous PDEs (see [1-3, 8, 10]), and the theory of attractors for non-autonomous
dynamical system is developed in the framework of evolutionary process U(t, τ ). The
solutions of non-autonomous dynamical systems depend on two time variables (the
final time t and initial time τ ). For stochastic PDEs, Crauel and Flandoli [9] developed
the theory and introduced a more general concept of (random) pullback attractor. As
a consequence, pullback attractors have been successfully used to study the asymptotic
behavior of general non-autonomous and stochastic PDEs, and one of the main results
refers to the finite dimensionality of pullback attractor. However, there are only a
few results on their finite dimensionality. J. A. Langa in [1] studies the finite fractal
dimension of a process, which needs the union of pullback attractors to be relatively
compact [4,6,11], i.e., if Â = {A(t) : t ∈ R} is a pullback attractor for a process U(t, τ ),
then

⋃

τ≤T

A(τ ) needs to be relatively compact. In fact, for general process,
⋃

τ≤T

A(τ )

is not necessary relatively compact, and even if
⋃

τ≤T

A(τ ) is relatively compact, it is

difficult to provide a proof. Motivated by these problems, we present a new method to
prove the finite dimensionality of pullback attractors. The method has been successfully
applied to autonomous dynamical systems [6], but to our knowledge, it has not been
applied to non-autonomous dynamical systems. We develop this theory and apply it
to non-autonomous systems.
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2 Preliminaries

Let X be a complete metric space, and U(t, τ ) be a process in X, i.e.,
(1) U(t, s)U(s, τ) = U(t, τ ), ∀t ≥ s ≥ τ, and
(2) U(τ, τ ) = Id, is the identity operator, τ ∈ R.

In general, we interpret U(t, τ )x0 as the solution of a non-autonomous equation at
time t which was at x0 in U at the initial date τ .

DEFINITION 1 ([7,8,10]). A bounded subset B0 of X is called a uniformly pullback
absorbing set for the process {U(t, τ )}t≥τ if for every bounded set B of X, there exists
a τ0(B) ≥ 0 such that

U(t, t− τ )B ⊂ B0 for all τ ≥ τ0,

here τ0 does not depend on the choice of t.

DEFINITION 2 ([1,2,7,8,10]). The family Â = {A(t) : t ∈ R} is said to be a
pullback attractor for U(t, τ ) if

(1) A(t) is compact for all t ∈ R,
(2) Â is invariant, i.e., U(t, τ )A(τ ) = A(t) for all t ≥ τ ,
(3) Â is pullback attracting, i.e., lim

τ→−∞
dist((U(t, τ )B, A(t)) = 0, for any bounded

B ⊂ X, and all t ∈ R, where dist(C, D) = sup
y∈C

inf
x∈D

‖y − x‖X denotes the Hausdorff

semidistance for arbitrary set C, D ∈ X,
(4) if {C(t)}t∈R is another family of closed attracting sets, then A(t) ⊂ C(t) for all

t ∈ R.

We recall that the attracting sets {C(t)}t∈R is that for any bounded B ⊂ X,

lim
τ→−∞

dist((U(t, τ )B, C(t)) = 0.

Given a compact K ⊂ X, and ε > 0, we denote by N(K, ε) the minimum number of
open balls in X with radius ε which are necessary to cover K.

DEFINITION 3 ([4-6]). For any nonempty compact set K ⊂ X, the fractal dimen-
sion of K is the number

dimf (K) = lim
ε→0

sup
log N(K, ε)

log(1/ε)
. (1)

3 Estimates of the Fractal Dimension

LEMMA 1 ([6]). Let Br be a ball of the radius r in Rd equipped with Euclidean
norm | · |. Then for any ε > 0 there exist a finite set {xk : k = 1, 2, . . . , nε} ⊂ Br such

that Br ⊂
nε
⋃

k=1

{x ∈ Rd : |x− xk| < ε} and nε ≤ (1 + 2r
ε )d.

THEOREM 1. Let U(t, τ ) be a process in a separable Hilbert space H , B be a
uniformly pullback absorbing set in H , Â = {A(t) : t ∈ R} be a pullback attractor for
U(t, τ ), if there exists a finite dimensional projection P in the space H such that

‖P (U(t, t− T0)u1 − U(t, t − T0)u2)‖ ≤ l(T0)‖u1 − u2‖ (2)
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for all u1, u2 ∈ B and some T0, l(T0) > 0, and

‖(I − P )(U(t, t− T0)u1 − U(t, t− T0)u2)‖ ≤ δ‖u1 − u2‖ (3)

for all u1, u2 ∈ B, where δ < 1 and T0 and l(T0) are independent on the choice of t,
and ‖ · ‖ is the norm in H . Then the family of pullback attractors Â = {A(t) : t ∈ R}
possesses a finite fractal dimension, specifically

dimf(A(t)) ≤ dimP log

(

1 +
8l(T0)

1 − δ

) [

log
2

1 + δ

]−1

, ∀t ∈ R. (4)

We need the following Lemma 2 to prove the theorem.

LEMMA 2. Let A(t − T0) ∈ Â such that equation (2) and (3) hold. Then for any
q > 0 and ε > 0 the following estimate holds

N(U(t, t − T0)A(t − T0), ε) ≤

(

1 +
4l

q

)n

N

(

A(t − T0),
ε

q + δ

)

, (5)

where n = dimP is the dimension of the projector P .

PROOF. Let ε0 = ε
q+δ , since A(t − T0) is compact, there exist finite closed subset

Fi ⊂ B (since B is uniformly pullback absorbing set in H , we can find a suitable B

satisfying the condition) and A(t − T0) ⊂
N(t−T0, ε0)

⋃

i=1

Fi, with the diameter Fi does

not exceed 2ε0. (2) implies that in PH there exist ball Bi with radius 2lε0 such that
P (U(t, t−T0)Fi ⊂ Bi, by Lemma 1 there exists a covering {Bij}

Ni

j=1 of the set Bi with

balls of diameter 2qε0, where Ni ≤ (1 + 4l
q )n, therefore, the collection

{Gij = Bij + (I − P )U(t, t − T0)Fi : i = 1, 2, ...,N(A(t− T0), ε0), j = 1, 2, ..., Ni}

is a covering of the set U(t, t− T0)A(t − T0).
Obviously that

diam Gij ≤ diam Bij + diam (I − P )U(t, t− T0)Fi.

(3) implies that diam(I − P )U(t, t − T0)Fi ≤ 2δε0. Therefore,

diam Gij ≤ 2(q + δ)ε0.

Hence, N(A(t), ε) = N(U(t, t− T0)A(t − T0), ε) ≤ (1 + 4l
q
)nN(A(t − T0),

ε
q+δ

).

Next, we use Lemma 2 to prove Theorem 1.

PROOF. The proof of (5) does not depend on t and by Definition 2, we get

A(t) = U(t, t − T0)A(t − T0),

A(t − T0) = U(t − T0, t − 2T0)A(t − 2T0),

so we have

N(A(t − T0),
ε

q+δ ) = N(U(t − T0, t − 2T0)A(t − 2T0),
ε

(q+δ) )

≤
(

1 + 4l
q

)n

N
(

A(t − 2T0),
ε

(q+δ)2

)

.
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It follows that

N(A(t), ε) ≤

(

1 +
4l

q

)nm

N

(

A(t − mT0),
ε

(q + δ)m

)

.

We choose q and m(ε), such that q + δ < 1, ε
(δ+q)m > diamB, since when ε

(δ+q)m >

diamB, we only need one ball covering A(t − mT0), i.e.,

N

(

A(t − mT0),
ε

(q + δ)m

)

= 1.

Let m(ε) =
[

log ε−log diamB
log(q+δ)

]

+ 1, where [z] is an integer part of the number z.

Consequently, we get

dimf(A(t)) = lim
ε→0

sup
log N(A(t), ε)

log(1/ε)

≤ n log(1 + 4l
q
) lim

ε→0
sup m(ε)

log(1/ε)

≤ n log(1 + 4l
q ) lim

ε→0

(

log ε−log diamB
log(q+δ) + 1

)

/ log 1
ε

= n log(1 + 4l
q )[log 1

q+δ ]−1.

Let q = 1−δ
2 , we get dimf (A(t)) ≤ dimP

(

log(1 + 8l
1−δ )

)

[log 2
1+δ ]−1.

4 Finite Fractal Dimension of Non-Autonomous Re-

action Diffusion Equations

The purpose of this section is to apply the theoretical results from Section 3 to a
non-autonomous reaction diffusion equation.

We consider the following non-autonomous differential equation







ut −4u + f(u) = g(t), x ∈ Ω,
u|∂Ω = 0,
u(τ ) = uτ ,

(6)

where f ∈ C1(R, R), g(·) ∈ L2
loc(R, L2(Ω)), Ω is a bounded open subset of Rn and

there exist p ≥ 2, ci > 0, i = 1, ..., 5, l ∈ R such that

c1|s|
p − c2 ≤ f(s)s ≤ c3|s|

p + c4, (7)

f ′(s) ≥ −l, f(0) = 0, |f ′(s)| ≤ c5(1 + |s|p−2) (8)

for all s ∈ R.
Denote H = L2(Ω) with norm | · | and scalar product (·), V = H1

0(Ω) with norm
‖ · ‖, | · |k is the norm of Lk(Ω) and c is a constant which may change from line to line
and even in the same line.
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Suppose that the function g(t) is translation bounded in L2
loc(R; H) that is ,

|g|2b = sup
t∈R

∫ h+1

h

|g(s)|2ds < ∞. (9)

THEOREM 2 ([7]). If g(t) is translation bounded in L2
loc(R; H), f(s) satisfies

conditions (7) and (8) where 2 ≤ p < ∞ for spatial dimensions n ≤ 2 and 2 ≤
p ≤ n

n−2 + 1 for spatial dimensions n ≥ 3, then the process U(t, τ ) corresponding to
problem (6) possesses a uniformly pullback absorbing set B and a pullback attractors
Â = {A(t) : t ∈ R} in V .

We set A = −4, since A−1 is a continuous compact operator in H , by the classical
spectral theorem, there exist a sequence {λj}

∞
j=1,

0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · ·, λj → +∞, as j → ∞,

and a family of elements {ej}
∞
j=1 of H1

0 (Ω) which are orthogonal in H such that

Aej = λjej ∀j ∈ N.

Let Hm = span{e1, e2, ..., em} in H and P : H → Hm be the orthogonal projection.
For any u ∈ H we write

u = Pu + (I − P )u , u1 + u2.

THEOREM 3. Assume that g(t) and f(s) satisfy conditions of Theorem 2 and B
is the uniformly pullback absorbing set in V corresponding to problem (6). Then the
pullback attractor Â = {A(t) : t ∈ R} corresponding to problem (6) possesses a finite
fractal dimension in V and

dimf (A(t)) ≤ n log

(

1 +
8l0

1 − δ

) [

log(
2

1 + δ
)

]−1

,

where l0 = e2l, δ = e−λn + c
λn

, we choose n large enough so that δ < 1.

PROOF. Let u(t) be the solution of equation (6) with initial data uτ , taking inner
product of (6) with −4u in H , we easily obtain

1

2

d

dt
‖u(t)‖2 + |4u|2 + (f(u),−4u) = (g(t),−4u).

Since

|(g(t),−4u)| ≤ |g(t)||4u| ≤
1

2
|g(t)|2 +

1

2
|4u|2,

and using (8), we get
d

dt
‖u(t)‖2 ≤ 2l‖u(t)‖2 + |g(t)|2,

and consequently, by Gronwall’s lemma,

‖u(t, τ )‖2 ≤ e2l(t−τ)‖uτ‖
2 + e2lt

∫ t

τ

e−2ls|g(s)|2ds. (10)
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We set u1(t) = u(t, τ )u1τ and u2(t) = u(t, τ )u2τ to be solutions associated with
equation (6) with initial data u1τ , u2τ ∈ B. Since B is the uniformly pullback absorbing
set in V , there exists M > 0, such that ‖uiτ‖

2 ≤ M for i = 1, 2.
Let w = u1(t) − u2(t), by (6), we get

wt −4w + f(u1(t)) − f(u2(t)) = 0. (11)

Taking inner product of (11) with −4w in H , we have

1

2

d

dt
‖w‖2 + |4w|2 + (f(u1) − f(u2),−4w) = 0,

from (8), we get
d

dt
‖w‖2 ≤ 2l‖w‖2,

hence

‖w(t)‖2 ≤ ‖w(τ )‖2e2l(t−τ). (12)

Let w = w1 + w2, where w1 is the projection in PH , then

‖w1(t)‖
2 ≤ ‖w(τ )‖2e2l(t−τ).

Taking inner product of (11) with −4w2 in H , we have

1

2

d

dt
‖w2‖

2 + |4w2|
2 + (f(u1) − f(u2),−4w2) = 0,

and

|(f(u1) − f(u2),−4w2)| ≤

∫

Ω

|f(u1) − f(u2)||4w2|dx

≤
1

2
|4w2|

2 +
1

2

∫

Ω

|f(u1) − f(u2)|
2dx.

Taking into account (8) and Hölder inequality, it is immediate to see that

∫

Ω

|f(u1) − f(u2)|
2dx =

∫

Ω

|f ′(u1 + θ(u2 − u1))|
2|u1 − u2|

2dx

≤ c

∫

Ω

(1 + |u1|
p−2 + |u2|

p−2)2|u1 − u2|
2dx

≤ c(

∫

Ω

(1 + |u1|
2(p−1) + |u2|

2(p−1)dx)
p−2

p−1 (

∫

Ω

|u1 − u2|
2(p−1))

1

p−1

≤ c(1 + |u1|
2(p−2)
2(p−1) + |u2|

2(p−2)
2(p−1))|w|22(p−1).

Since 2 ≤ p < ∞ (n ≤ 2), 2 ≤ p ≤ n
n−2 +1 (n ≥ 3), using Sobolev embedding theorem,

we get
∫

Ω

|f(u1) − f(u2)|
2dx ≤ c(1 + ‖u1‖

2(p−2) + ‖u2‖
2(p−2))‖w‖2.
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Since
λn‖w2‖

2 ≤ |4w2|
2,

it is immediate that

d

dt
‖w2‖

2 + λn‖w2‖ ≤ c(1 + ‖u1‖
2(p−2) + ‖u2‖

2(p−2))‖w‖2,

then, by Gronwall’s lemma, we have

‖w2(t)‖
2 ≤ e−λn(t−τ)‖w(τ )‖2+ce−λnt

∫ t

τ

eλns(1+‖u1(s)‖
2(p−2)+‖u2(s)‖

2(p−2))‖w(s)‖2.

Let T0 = t − τ = 1, from (12), we get

e−λnt

∫ t

τ

eλns‖w(s)‖2ds ≤ e−λnt

∫ t

τ

eλnse2l(s−τ)‖w(τ )‖2ds

≤ e2le−λnt

∫ t

τ

eλnsds‖w(τ )‖2

≤
c

λn
‖w(τ )‖2,

e−λnt

∫ t

τ

eλns‖ui(s)‖
2(p−2)‖w(s)‖2ds ≤ e−λnt

∫ t

τ

eλns(e2l(s−τ)‖uiτ‖
2

+e2ls

∫ s

τ

e−2lr |g(r)|2dr)(p−2)e2l(s−τ)‖w(τ )‖2ds.

for i = 1, 2, and

e2ls

∫ s

τ

e−2lr |g(r)|2dr ≤ e2ls

∫ s

s−1

e−2l(s−1)|g(r)|2dr ≤ c.

So

e−λnt

∫ t

τ

eλns‖ui‖
2(p−2)‖w‖2ds ≤ e−λnt

∫ t

τ

eλns(e2l‖uiτ‖
2 + c)p−2e2l‖w(τ )‖2ds

≤
c

λn
‖w(τ )‖2

for i = 1, 2. We easily obtain

‖w2(t)‖
2 ≤ (e−λn +

c

λn
)‖w(τ )‖2.

Since λn → +∞, e−λn + c
λn

< 1 when n is sufficiently large.
Obviously

‖w1(t)‖
2 ≤ l0‖wτ‖

2; ‖w2(t)‖
2 ≤ δ‖wτ‖

2.

Here l0 = e2l, δ = e−λn + c
λn

, T0 = 1. We get that the process generated by (6) satisfies
all conditions of Theorem 1.
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