Finite Fractal Dimension Of Pullback Attractors And Application To Non-Autonomous Reaction Diffusion Equations*

Yongjun Li^{\dagger}, Suyun Wang ${ }^{\ddagger}$, Jinying Wei ${ }^{\S}$

Received 27 February 2009

Abstract

In this paper, we study the asymptotic behavior of dissipative non-autonomous PDEs in the framework of a process. In particular, we give sufficient conditions for the pullback attractor with finite fractal dimension. As an example, the result is applied to a non-autonomous reaction diffusion equation.

1 Introduction

In recent years, there is much literature on the study of the asymptotic behavior of nonautonomous PDEs (see $[1-3,8,10]$), and the theory of attractors for non-autonomous dynamical system is developed in the framework of evolutionary process $U(t, \tau)$. The solutions of non-autonomous dynamical systems depend on two time variables (the final time t and initial time τ). For stochastic PDEs, Crauel and Flandoli [9] developed the theory and introduced a more general concept of (random) pullback attractor. As a consequence, pullback attractors have been successfully used to study the asymptotic behavior of general non-autonomous and stochastic PDEs, and one of the main results refers to the finite dimensionality of pullback attractor. However, there are only a few results on their finite dimensionality. J. A. Langa in [1] studies the finite fractal dimension of a process, which needs the union of pullback attractors to be relatively compact $[4,6,11]$, i.e., if $\hat{A}=\{A(t): t \in R\}$ is a pullback attractor for a process $U(t, \tau)$, then $\bigcup_{\tau \leq T} A(\tau)$ needs to be relatively compact. In fact, for general process, $\bigcup_{\tau \leq T} A(\tau)$ is not necessary relatively compact, and even if $\bigcup_{\tau \leq T} A(\tau)$ is relatively compact, it is difficult to provide a proof. Motivated by these problems, we present a new method to prove the finite dimensionality of pullback attractors. The method has been successfully applied to autonomous dynamical systems [6], but to our knowledge, it has not been applied to non-autonomous dynamical systems. We develop this theory and apply it to non-autonomous systems.

[^0]
2 Preliminaries

Let X be a complete metric space, and $U(t, \tau)$ be a process in X, i.e.,
(1) $U(t, s) U(s, \tau)=U(t, \tau), \forall t \geq s \geq \tau$, and
(2) $U(\tau, \tau)=I d$, is the identity operator, $\tau \in R$.

In general, we interpret $U(t, \tau) x_{0}$ as the solution of a non-autonomous equation at time t which was at x_{0} in U at the initial date τ.

DEFINITION $1([7,8,10])$. A bounded subset B_{0} of X is called a uniformly pullback absorbing set for the process $\{U(t, \tau)\}_{t \geq \tau}$ if for every bounded set B of X, there exists a $\tau_{0}(B) \geq 0$ such that

$$
U(t, t-\tau) B \subset B_{0} \quad \text { for all } \tau \geq \tau_{0}
$$

here τ_{0} does not depend on the choice of t.
DEFINITION $2([1,2,7,8,10])$. The family $\hat{A}=\{A(t): t \in R\}$ is said to be a pullback attractor for $U(t, \tau)$ if
(1) $A(t)$ is compact for all $t \in R$,
(2) \hat{A} is invariant, i.e., $U(t, \tau) A(\tau)=A(t) \quad$ for all $t \geq \tau$,
(3) \hat{A} is pullback attracting, i.e., $\lim _{\tau \rightarrow-\infty} \operatorname{dist}((U(t, \tau) B, A(t))=0$, for any bounded $B \subset X$, and all $t \in R$, where $\operatorname{dist}(C, D)=\sup _{y \in C} \inf _{x \in D}\|y-x\|_{X}$ denotes the Hausdorff semidistance for arbitrary set $C, D \in X$,
(4) if $\{C(t)\}_{t \in R}$ is another family of closed attracting sets, then $A(t) \subset C(t)$ for all $t \in R$.

We recall that the attracting sets $\{C(t)\}_{t \in R}$ is that for any bounded $B \subset X$,

$$
\lim _{\tau \rightarrow-\infty} \operatorname{dist}((U(t, \tau) B, C(t))=0
$$

Given a compact $K \subset X$, and $\varepsilon>0$, we denote by $N(K, \varepsilon)$ the minimum number of open balls in X with radius ε which are necessary to cover K.

DEFINITION 3 ([4-6]). For any nonempty compact set $K \subset X$, the fractal dimension of K is the number

$$
\begin{equation*}
\operatorname{dim}_{f}(K)=\lim _{\varepsilon \rightarrow 0} \sup \frac{\log N(K, \varepsilon)}{\log (1 / \varepsilon)} \tag{1}
\end{equation*}
$$

3 Estimates of the Fractal Dimension

LEMMA 1 ([6]). Let B_{r} be a ball of the radius r in R^{d} equipped with Euclidean norm $|\cdot|$. Then for any $\varepsilon>0$ there exist a finite set $\left\{x_{k}: k=1,2, \ldots, n_{\varepsilon}\right\} \subset B_{r}$ such that $B_{r} \subset \bigcup_{k=1}^{n_{\varepsilon}}\left\{x \in R^{d}:\left|x-x_{k}\right|<\varepsilon\right\}$ and $n_{\varepsilon} \leq\left(1+\frac{2 r}{\varepsilon}\right)^{d}$.

THEOREM 1. Let $U(t, \tau)$ be a process in a separable Hilbert space H, B be a uniformly pullback absorbing set in $H, \hat{A}=\{A(t): t \in R\}$ be a pullback attractor for $U(t, \tau)$, if there exists a finite dimensional projection P in the space H such that

$$
\begin{equation*}
\left\|P\left(U\left(t, t-T_{0}\right) u_{1}-U\left(t, t-T_{0}\right) u_{2}\right)\right\| \leq l\left(T_{0}\right)\left\|u_{1}-u_{2}\right\| \tag{2}
\end{equation*}
$$

for all $u_{1}, u_{2} \in B$ and some $T_{0}, l\left(T_{0}\right)>0$, and

$$
\begin{equation*}
\left\|(I-P)\left(U\left(t, t-T_{0}\right) u_{1}-U\left(t, t-T_{0}\right) u_{2}\right)\right\| \leq \delta\left\|u_{1}-u_{2}\right\| \tag{3}
\end{equation*}
$$

for all $u_{1}, u_{2} \in B$, where $\delta<1$ and T_{0} and $l\left(T_{0}\right)$ are independent on the choice of t, and $\|\cdot\|$ is the norm in H. Then the family of pullback attractors $\hat{A}=\{A(t): t \in R\}$ possesses a finite fractal dimension, specifically

$$
\begin{equation*}
\operatorname{dim}_{f}(A(t)) \leq \operatorname{dim} P \log \left(1+\frac{8 l\left(T_{0}\right)}{1-\delta}\right)\left[\log \frac{2}{1+\delta}\right]^{-1}, \forall t \in R \tag{4}
\end{equation*}
$$

We need the following Lemma 2 to prove the theorem.
LEMMA 2. Let $A\left(t-T_{0}\right) \in \hat{A}$ such that equation (2) and (3) hold. Then for any $q>0$ and $\varepsilon>0$ the following estimate holds

$$
\begin{equation*}
N\left(U\left(t, t-T_{0}\right) A\left(t-T_{0}\right), \varepsilon\right) \leq\left(1+\frac{4 l}{q}\right)^{n} N\left(A\left(t-T_{0}\right), \frac{\varepsilon}{q+\delta}\right) \tag{5}
\end{equation*}
$$

where $n=\operatorname{dim} P$ is the dimension of the projector P.
PROOF. Let $\varepsilon_{0}=\frac{\varepsilon}{q+\delta}$, since $A\left(t-T_{0}\right)$ is compact, there exist finite closed subset $F_{i} \subset B$ (since B is uniformly pullback absorbing set in H, we can find a suitable B satisfying the condition) and $A\left(t-T_{0}\right) \subset \bigcup_{i=1}^{N\left(t-T_{0}, \varepsilon_{0}\right)} F_{i}$, with the diameter F_{i} does not exceed $2 \varepsilon_{0}$. (2) implies that in $P H$ there exist ball B_{i} with radius $2 l \varepsilon_{0}$ such that $P\left(U\left(t, t-T_{0}\right) F_{i} \subset B_{i}\right.$, by Lemma 1 there exists a covering $\left\{B_{i j}\right\}_{j=1}^{N_{i}}$ of the set B_{i} with balls of diameter $2 q \varepsilon_{0}$, where $N_{i} \leq\left(1+\frac{4 l}{q}\right)^{n}$, therefore, the collection

$$
\left\{G_{i j}=B_{i j}+(I-P) U\left(t, t-T_{0}\right) F_{i}: i=1,2, \ldots, N\left(A\left(t-T_{0}\right), \varepsilon_{0}\right), j=1,2, \ldots, N_{i}\right\}
$$

is a covering of the set $U\left(t, t-T_{0}\right) A\left(t-T_{0}\right)$.
Obviously that

$$
\operatorname{diam} G_{i j} \leq \operatorname{diam} B_{i j}+\operatorname{diam}(I-P) U\left(t, t-T_{0}\right) F_{i}
$$

(3) implies that $\operatorname{diam}(I-P) U\left(t, t-T_{0}\right) F_{i} \leq 2 \delta \varepsilon_{0}$. Therefore,

$$
\operatorname{diam} G_{i j} \leq 2(q+\delta) \varepsilon_{0}
$$

Hence, $N(A(t), \varepsilon)=N\left(U\left(t, t-T_{0}\right) A\left(t-T_{0}\right), \varepsilon\right) \leq\left(1+\frac{4 l}{q}\right)^{n} N\left(A\left(t-T_{0}\right), \frac{\varepsilon}{q+\delta}\right)$.
Next, we use Lemma 2 to prove Theorem 1.
PROOF. The proof of (5) does not depend on t and by Definition 2, we get

$$
\begin{gathered}
A(t)=U\left(t, t-T_{0}\right) A\left(t-T_{0}\right) \\
A\left(t-T_{0}\right)=U\left(t-T_{0}, t-2 T_{0}\right) A\left(t-2 T_{0}\right)
\end{gathered}
$$

so we have

$$
\begin{aligned}
N\left(A\left(t-T_{0}\right), \frac{\varepsilon}{q+\delta}\right) & =N\left(U\left(t-T_{0}, t-2 T_{0}\right) A\left(t-2 T_{0}\right), \frac{\varepsilon}{(q+\delta)}\right) \\
& \leq\left(1+\frac{4 l}{q}\right)^{n} N\left(A\left(t-2 T_{0}\right), \frac{\varepsilon}{(q+\delta)^{2}}\right)
\end{aligned}
$$

It follows that

$$
N(A(t), \varepsilon) \leq\left(1+\frac{4 l}{q}\right)^{n m} N\left(A\left(t-m T_{0}\right), \frac{\varepsilon}{(q+\delta)^{m}}\right)
$$

We choose q and $m(\varepsilon)$, such that $q+\delta<1, \frac{\varepsilon}{(\delta+q)^{m}}>\operatorname{diamB} B$, since when $\frac{\varepsilon}{(\delta+q)^{m}}>$ $\operatorname{diam} B$, we only need one ball covering $A\left(t-m T_{0}\right)$, i.e.,

$$
N\left(A\left(t-m T_{0}\right), \frac{\varepsilon}{(q+\delta)^{m}}\right)=1
$$

Let $m(\varepsilon)=\left[\frac{\log \varepsilon-\log \operatorname{diam} B}{\log (q+\delta)}\right]+1$, where $[z]$ is an integer part of the number z. Consequently, we get

$$
\begin{aligned}
\operatorname{dim}_{f}(A(t)) & =\lim _{\varepsilon \rightarrow 0} \sup \frac{\log N(A(t), \varepsilon)}{\log (1 / \varepsilon)} \\
& \leq n \log \left(1+\frac{4 l}{q}\right) \lim _{\varepsilon \rightarrow 0} \sup \frac{m(\varepsilon)}{\log (1 / \varepsilon)} \\
& \leq n \log \left(1+\frac{4 l}{q}\right) \lim _{\varepsilon \rightarrow 0}\left(\frac{\log \varepsilon-\log \operatorname{diamB}}{\log (q+\delta)}+1\right) / \log \frac{1}{\varepsilon} \\
& =n \log \left(1+\frac{4 l}{q}\right)\left[\log \frac{1}{q+\delta}\right]^{-1}
\end{aligned}
$$

Let $q=\frac{1-\delta}{2}$, we get $\operatorname{dim}_{f}(A(t)) \leq \operatorname{dim} P\left(\log \left(1+\frac{8 l}{1-\delta}\right)\right)\left[\log \frac{2}{1+\delta}\right]^{-1}$.

4 Finite Fractal Dimension of Non-Autonomous Reaction Diffusion Equations

The purpose of this section is to apply the theoretical results from Section 3 to a non-autonomous reaction diffusion equation.

We consider the following non-autonomous differential equation

$$
\left\{\begin{array}{l}
u_{t}-\Delta u+f(u)=g(t), \quad x \in \Omega \tag{6}\\
\left.u\right|_{\partial \Omega}=0 \\
u(\tau)=u_{\tau}
\end{array}\right.
$$

where $f \in C^{1}(R, R), g(\cdot) \in L_{l o c}^{2}\left(R, L^{2}(\Omega)\right), \Omega$ is a bounded open subset of R^{n} and there exist $p \geq 2, c_{i}>0, i=1, \ldots, 5, l \in R$ such that

$$
\begin{align*}
c_{1}|s|^{p}-c_{2} & \leq f(s) s \leq c_{3}|s|^{p}+c_{4} \tag{7}\\
f^{\prime}(s) \geq-l, f(0) & =0,\left|f^{\prime}(s)\right| \leq c_{5}\left(1+|s|^{p-2}\right) \tag{8}
\end{align*}
$$

for all $s \in R$.
Denote $H=L^{2}(\Omega)$ with norm $|\cdot|$ and scalar product $(\cdot), V=H_{0}^{1}(\Omega)$ with norm $\|\cdot\|,|\cdot|_{k}$ is the norm of $L^{k}(\Omega)$ and c is a constant which may change from line to line and even in the same line.

Suppose that the function $g(t)$ is translation bounded in $L_{l o c}^{2}(R ; H)$ that is,

$$
\begin{equation*}
|g|_{b}^{2}=\sup _{t \in R} \int_{h}^{h+1}|g(s)|^{2} d s<\infty \tag{9}
\end{equation*}
$$

THEOREM 2 ([7]). If $g(t)$ is translation bounded in $L_{l o c}^{2}(R ; H), f(s)$ satisfies conditions (7) and (8) where $2 \leq p<\infty$ for spatial dimensions $n \leq 2$ and $2 \leq$ $p \leq \frac{n}{n-2}+1$ for spatial dimensions $n \geq 3$, then the process $U(t, \tau)$ corresponding to problem (6) possesses a uniformly pullback absorbing set B and a pullback attractors $\hat{A}=\{A(t): t \in R\}$ in V.

We set $A=-\triangle$, since A^{-1} is a continuous compact operator in H, by the classical spectral theorem, there exist a sequence $\left\{\lambda_{j}\right\}_{j=1}^{\infty}$,

$$
0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{j} \leq \cdots, \quad \lambda_{j} \rightarrow+\infty, \text { as } j \rightarrow \infty
$$

and a family of elements $\left\{e_{j}\right\}_{j=1}^{\infty}$ of $H_{0}^{1}(\Omega)$ which are orthogonal in H such that

$$
A e_{j}=\lambda_{j} e_{j} \quad \forall j \in N
$$

Let $H_{m}=\operatorname{span}\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ in H and $P: H \rightarrow H_{m}$ be the orthogonal projection. For any $u \in H$ we write

$$
u=P u+(I-P) u \triangleq u_{1}+u_{2}
$$

THEOREM 3. Assume that $g(t)$ and $f(s)$ satisfy conditions of Theorem 2 and B is the uniformly pullback absorbing set in V corresponding to problem (6). Then the pullback attractor $\hat{A}=\{A(t): t \in R\}$ corresponding to problem (6) possesses a finite fractal dimension in V and

$$
\operatorname{dim}_{f}(A(t)) \leq n \log \left(1+\frac{8 l_{0}}{1-\delta}\right)\left[\log \left(\frac{2}{1+\delta}\right)\right]^{-1}
$$

where $l_{0}=e^{2 l}, \delta=e^{-\lambda_{n}}+\frac{c}{\lambda_{n}}$, we choose n large enough so that $\delta<1$.
PROOF. Let $u(t)$ be the solution of equation (6) with initial data u_{τ}, taking inner product of (6) with $-\triangle u$ in H, we easily obtain

$$
\frac{1}{2} \frac{d}{d t}\|u(t)\|^{2}+|\triangle u|^{2}+(f(u),-\triangle u)=(g(t),-\triangle u)
$$

Since

$$
|(g(t),-\triangle u)| \leq|g(t)||\triangle u| \leq \frac{1}{2}|g(t)|^{2}+\frac{1}{2}|\triangle u|^{2}
$$

and using (8), we get

$$
\frac{d}{d t}\|u(t)\|^{2} \leq 2 l\|u(t)\|^{2}+|g(t)|^{2}
$$

and consequently, by Gronwall's lemma,

$$
\begin{equation*}
\|u(t, \tau)\|^{2} \leq e^{2 l(t-\tau)}\left\|u_{\tau}\right\|^{2}+e^{2 l t} \int_{\tau}^{t} e^{-2 l s}|g(s)|^{2} d s \tag{10}
\end{equation*}
$$

We set $u_{1}(t)=u(t, \tau) u_{1 \tau}$ and $u_{2}(t)=u(t, \tau) u_{2 \tau}$ to be solutions associated with equation (6) with initial data $u_{1 \tau}, u_{2 \tau} \in B$. Since B is the uniformly pullback absorbing set in V, there exists $M>0$, such that $\left\|u_{i \tau}\right\|^{2} \leq M$ for $i=1,2$.

Let $w=u_{1}(t)-u_{2}(t)$, by (6), we get

$$
\begin{equation*}
w_{t}-\triangle w+f\left(u_{1}(t)\right)-f\left(u_{2}(t)\right)=0 \tag{11}
\end{equation*}
$$

Taking inner product of (11) with $-\triangle w$ in H, we have

$$
\frac{1}{2} \frac{d}{d t}\|w\|^{2}+|\triangle w|^{2}+\left(f\left(u_{1}\right)-f\left(u_{2}\right),-\triangle w\right)=0
$$

from (8), we get

$$
\frac{d}{d t}\|w\|^{2} \leq 2 l\|w\|^{2}
$$

hence

$$
\begin{equation*}
\|w(t)\|^{2} \leq\|w(\tau)\|^{2} e^{2 l(t-\tau)} \tag{12}
\end{equation*}
$$

Let $w=w_{1}+w_{2}$, where w_{1} is the projection in $P H$, then

$$
\left\|w_{1}(t)\right\|^{2} \leq\|w(\tau)\|^{2} e^{2 l(t-\tau)}
$$

Taking inner product of (11) with $-\triangle w_{2}$ in H, we have

$$
\frac{1}{2} \frac{d}{d t}\left\|w_{2}\right\|^{2}+\left|\triangle w_{2}\right|^{2}+\left(f\left(u_{1}\right)-f\left(u_{2}\right),-\triangle w_{2}\right)=0
$$

and

$$
\begin{aligned}
\left|\left(f\left(u_{1}\right)-f\left(u_{2}\right),-\triangle w_{2}\right)\right| & \leq \int_{\Omega}\left|f\left(u_{1}\right)-f\left(u_{2}\right)\right|\left|\triangle w_{2}\right| d x \\
& \leq \frac{1}{2}\left|\triangle w_{2}\right|^{2}+\frac{1}{2} \int_{\Omega}\left|f\left(u_{1}\right)-f\left(u_{2}\right)\right|^{2} d x
\end{aligned}
$$

Taking into account (8) and Hölder inequality, it is immediate to see that

$$
\begin{aligned}
\int_{\Omega}\left|f\left(u_{1}\right)-f\left(u_{2}\right)\right|^{2} d x & =\int_{\Omega}\left|f^{\prime}\left(u_{1}+\theta\left(u_{2}-u_{1}\right)\right)\right|^{2}\left|u_{1}-u_{2}\right|^{2} d x \\
& \leq c \int_{\Omega}\left(1+\left|u_{1}\right|^{p-2}+\left|u_{2}\right|^{p-2}\right)^{2}\left|u_{1}-u_{2}\right|^{2} d x \\
& \leq c\left(\int_{\Omega}\left(1+\left|u_{1}\right|^{2(p-1)}+\left|u_{2}\right|^{2(p-1)} d x\right)^{\frac{p-2}{p-1}}\left(\int_{\Omega}\left|u_{1}-u_{2}\right|^{2(p-1)}\right)^{\frac{1}{p-1}}\right. \\
& \leq c\left(1+\left|u_{1}\right|_{2(p-1)}^{2(p-2)}+\left|u_{2}\right|_{2(p-1)}^{2(p-2)}\right)|w|_{2(p-1)}^{2}
\end{aligned}
$$

Since $2 \leq p<\infty(n \leq 2), 2 \leq p \leq \frac{n}{n-2}+1(n \geq 3)$, using Sobolev embedding theorem, we get

$$
\int_{\Omega}\left|f\left(u_{1}\right)-f\left(u_{2}\right)\right|^{2} d x \leq c\left(1+\left\|u_{1}\right\|^{2(p-2)}+\left\|u_{2}\right\|^{2(p-2)}\right)\|w\|^{2}
$$

Since

$$
\lambda_{n}\left\|w_{2}\right\|^{2} \leq\left|\triangle w_{2}\right|^{2}
$$

it is immediate that

$$
\frac{d}{d t}\left\|w_{2}\right\|^{2}+\lambda_{n}\left\|w_{2}\right\| \leq c\left(1+\left\|u_{1}\right\|^{2(p-2)}+\left\|u_{2}\right\|^{2(p-2)}\right)\|w\|^{2}
$$

then, by Gronwall's lemma, we have
$\left\|w_{2}(t)\right\|^{2} \leq e^{-\lambda_{n}(t-\tau)}\|w(\tau)\|^{2}+c e^{-\lambda_{n} t} \int_{\tau}^{t} e^{\lambda_{n} s}\left(1+\left\|u_{1}(s)\right\|^{2(p-2)}+\left\|u_{2}(s)\right\|^{2(p-2)}\right)\|w(s)\|^{2}$.
Let $T_{0}=t-\tau=1$, from (12), we get

$$
\begin{aligned}
e^{-\lambda_{n} t} \int_{\tau}^{t} e^{\lambda_{n} s}\|w(s)\|^{2} d s & \leq e^{-\lambda_{n} t} \int_{\tau}^{t} e^{\lambda_{n} s} e^{2 l(s-\tau)}\|w(\tau)\|^{2} d s \\
& \leq e^{2 l} e^{-\lambda_{n} t} \int_{\tau}^{t} e^{\lambda_{n} s} d s\|w(\tau)\|^{2} \\
& \leq \frac{c}{\lambda_{n}}\|w(\tau)\|^{2}
\end{aligned}
$$

$$
e^{-\lambda_{n} t} \int_{\tau}^{t} e^{\lambda_{n} s}\left\|u_{i}(s)\right\|^{2(p-2)}\|w(s)\|^{2} d s \leq e^{-\lambda_{n} t} \int_{\tau}^{t} e^{\lambda_{n} s}\left(e^{2 l(s-\tau)}\left\|u_{i \tau}\right\|^{2}\right.
$$

$$
\left.+e^{2 l s} \int_{\tau}^{s} e^{-2 l r}|g(r)|^{2} d r\right)^{(p-2)} e^{2 l(s-\tau)}\|w(\tau)\|^{2} d s
$$

for $i=1,2$, and

$$
e^{2 l s} \int_{\tau}^{s} e^{-2 l r}|g(r)|^{2} d r \leq e^{2 l s} \int_{s-1}^{s} e^{-2 l(s-1)}|g(r)|^{2} d r \leq c
$$

So

$$
\begin{aligned}
e^{-\lambda_{n} t} \int_{\tau}^{t} e^{\lambda_{n} s}\left\|u_{i}\right\|^{2(p-2)}\|w\|^{2} d s & \leq e^{-\lambda_{n} t} \int_{\tau}^{t} e^{\lambda_{n} s}\left(e^{2 l}\left\|u_{i \tau}\right\|^{2}+c\right)^{p-2} e^{2 l}\|w(\tau)\|^{2} d s \\
& \leq \frac{c}{\lambda_{n}}\|w(\tau)\|^{2}
\end{aligned}
$$

for $i=1,2$. We easily obtain

$$
\left\|w_{2}(t)\right\|^{2} \leq\left(e^{-\lambda_{n}}+\frac{c}{\lambda_{n}}\right)\|w(\tau)\|^{2}
$$

Since $\lambda_{n} \rightarrow+\infty, e^{-\lambda_{n}}+\frac{c}{\lambda_{n}}<1$ when n is sufficiently large.
Obviously

$$
\left\|w_{1}(t)\right\|^{2} \leq l_{0}\left\|w_{\tau}\right\|^{2} ; \quad\left\|w_{2}(t)\right\|^{2} \leq \delta\left\|w_{\tau}\right\|^{2}
$$

Here $l_{0}=e^{2 l}, \delta=e^{-\lambda_{n}}+\frac{c}{\lambda_{n}}, T_{0}=1$. We get that the process generated by (6) satisfies all conditions of Theorem 1 .

Acknowledgments. The authors thank the reviewer very much for his useful suggestions and comments. This work is supported by the National Natural Science Foundation of China (10771159).

References

[1] J. A. Langa, G. Lukaszewicz and J. Real, Finite fractal dimension of pullback attractors for non-autonomous 2D Navier-Stokes equation in some unbounded domains, Nonlinear Analysis, 66(2007), 735-749.
[2] T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact Nonautonomous dynamical systems, Nonlinear Analysis, 64(2006), 484498.
[3] T. Caraballo, P. E. Kloeden and P. Marin-Rubio, Global and pullback attractor of set-valued skew product flows, Annali di Matematica, 185(2006), suppl. S23-S45.
[4] R. Teman, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1997.
[5] G. R. Sell and Y. C. You, Dynamics of Evolutionary Equations, Springer, New York, 2002.
[6] I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative System, ACTA Scientific Publishing House, 1999.
[7] H. T. Song and H. Q. Wu, Pullback attractors of nonautonomous reaction-diffusion equations, J. Math. Anal. Appl., 325(2007), 1200-1215.
[8] P. E. Kloeden, Pullback attractors in nonautonomous difference equation, J. Differ. Equations Appl., 6(1)(2000), 33-52.
[9] H. Crauel and F. Flandoli, Additive noise destroys a pitchfork bifurcation, J. Dynam. Differential Equations, 10(1998), 259-274.
[10] H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9(2)(1995), 307-341.
[11] Y. Li and Y. Zhang, The existence of global attractor for partly dissipative reaction diffusion equation in R^{N}, Journal of Shaanxi Normal University (Natural Science Edition), 37(2009), 13-16.

[^0]: *Mathematics Subject Classifications: 35K57, 35B40, 35B41.
 ${ }^{\dagger}$ School of Mathematics, Lanzhou City University, Lanzhou, Gansu 730070, P. R. China
 ${ }^{\ddagger}$ School of Mathematics, Lanzhou City University, Lanzhou, Gansu 730070, P. R. China
 ${ }^{\text {§ School of Mathematics, Lanzhou City University, Lanzhou, Gansu 730070, P. R. China }}$

