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Abstract

A SIS epidemic model proposed by Cooke et al. [2] is investigated. Using time
delay as the control parameter, we investigate the stability and Hopf bifurcation
of the model by analyzing the distribution of the roots of its associated charac-
teristic equation. Then an explicit formula for determining the stability and the
direction of bifurcating periodic solutions is derived by normal form theory and
center manifold argument. Finally, some numerical simulations are carried out as
supporting evidences of our analytic results.

1 Introduction

In the absence of disease, Cooke et al. [2] proposed the following single species popula-
tion growth model:

Ṅ(t) = B(N(t − T ))N(t− T )e−d1T − dN(t). (1)

Here, N(t) denotes the mature population of the species, and d1, d ≥ 0 are the death
rates of immature and mature population, respectively. Time delay T > 0 is the
maturation time. The birth rate function B(N) for N ∈ (0,∞) satisfies the following
basic assumptions:

(A1) B(N) > 0;
(A2) B(N) is continuously differentiable with B′(N) < 0;
(A3) B(0+) > ded1T > B(∞).

Using (1) as the basis population model, Cooke et al.[2] assumed further that disease
has entered the population and then constructed and studied the following SIS epidemic
model:

İ(t) = µ(N − I)
I

N
− (d+ ε+ γ)I,

Ṅ(t) = B(N(t − T ))N(t− T )e−d1T − dN − εI.
(2)
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Here the total population is divided into susceptible and infective classes, with the size
of each class given by S(t) and I(t) respectively. Therefore, N(t) = S(t) + I(t). The
parameter µ > 0 is the contact rate constant, γ ≥ 0 is the recovery rate constant and
ε ≥ 0 is the disease induced death rate constant. When B(N)N is an increasing func-
tion, Cooke et al.[2] determined the dynamics of (2) by applying monotone dynamics
system theory and the theory for asymptotically autonomous system. However, when
B(N)N does not possess the monotonicity property, e.g., when B(N) is the following
Rick function

B(N) = be−aN , (3)

the dynamical behavior of system (2) becomes a difficult problem. The authors in [2]
only considered the special case ε = 0 (when the two equations in (2) are decoupled
from each other) and established the stability of the endemic equilibrium. Later, using
a perturbation technique, their results were extended in Zhao and Zou [13] to the case
when ε is sufficiently small. Overall, the dynamics of this SIS model (2) remains largely
undetermined (see also [7, 9, 12, 15]).

We mention that, recently, Wei and Zou [12] also considered (2) under (3). They
focused on the existence and stability of Hopf bifurcation and their results are based
on the choice of b as the bifurcation parameter. Note that it is an important feature
of (2) that the delay T also appears in the coefficient (when d1 6= 0) in addition
to its appearance in the unknown function B(N). Therefore, when discussing the
stability, we will face a characteristic equation with coefficients dependent on the delay.
It is well known that the analysis of such a characteristic equation becomes more
complicated and the system will display richer dynamical behavior, when T is chosen
as the parameter. In this paper, using T as control variable and assuming ε > 0, we
analyze (2) with (3) to gain more knowledge about its dynamics.

The rest of this paper is organized as follows. At first, we analyze the equilibria and
stability of (2) through the study of its characteristic equation, which takes the form
of an exponential polynomial with delay-dependent coefficients. Using the approach of
Beretta and Kuang [1], we will show that under appropriate conditions, the unique pos-
itive equilibrium can be destabilized through a Hopf bifurcation and stability switches
of stability-instability-stability occur. Then we investigate the stability and direction
of bifurcating periodic solutions of (3) by using the normal form theory and center
manifold theorem due to Hassard et al. [4]. Finally, some numerical simulations will
be given to illustrate our results.

2 Stability and Hopf Bifurcation

In this section we consider the SIS model (2) with the birth function given by (3), that
is







İ(t) = µ(N − I)
I

N
− (d+ ε+ γ)I,

Ṅ(t) = be−d1T e−aN(t−T )N(t− T ) − dN − εI.

(4)

Here, we assume B(N) for N ∈ (0,∞) satisfies (A1), (A2) and

(A3′) B(0+) > (d+ ε)ed1T > ded1T > B(∞) with ε > 0.
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In [2], the basic reproduction number for (4) has been identified as

R0 =
µ

d+ ε+ γ
.

It has been shown that when R0 ≤ 1, (4) has the only disease free equilibrium (DFE),
which is globally asymptotically stable. When R0 > 1, the DFE becomes unstable and
a nontrivial equilibrium (I∗, N∗) is bifurcated from DFE, where

N∗ =
1

a
ln

b

[d+ ε(1 − 1/R0)]ed1T
and I∗ = (1 −

1

R0
)N∗,

whose stability remains largely unsolved in [2]. For the sake of convenience, let Q0 =
1

R0
. Then R0 > 1 is equivalent to 0 < Q0 < 1. Now, we investigate the stability and

Hopf bifurcation of (4) around (I∗, N∗).
Set

Tm =
1

d1
ln

b

d+ ε
.

It is clear that T ∈ [0, Tm) under the condition (A3′). This restriction on T ensures the
positivity of nontrivial (I∗, N∗) which will be denoted by EE (endemic equilibrium).
The linearization of (4) at EE is

{

İ(t) = −µ(1 −Q0)I(t) + µ(1 −Q0)
2N(t),

Ṅ(t) = −εI(t) − dN(t) + be−aN∗

e−d1T (1 − aN∗)N(t − T ).
(5)

Thus the characteristic equation associated with (5) is

λ2 + a1λ + a3a4 + (a2a3a4 + a2a3)e
−λT = 0, (6)

where

a1 = d+ µ(1 −Q0) > 0, a2 = a2(T ) = −
(

1 − ln b
[d+ε(1−Q0)]ed1T

)

,

a3 = d+ ε(1 −Q0) > 0, a4 = µ(1 −Q0) > 0.

Equation (6) takes the general form

P (λ) +Q(λ|T )e−λT = 0, (7)

with
P (λ) := λ2 + a1λ+ a3a4 and Q(λ|T ) := a2(T )a3a4 + a2(T )a3λ. (8)

When T = 0, equation (7) becomes

λ2 + [a1 + a2(0)a3]λ+ [a3a4 + a2(0)a3a4] = 0.

Note that for all T ∈ [0, Tm), ln b
[d+ε(1−Q0)]ed1T > 0 implies a2(T ) > −1. Therefore,

a1 + a2(T )a3 > 0. Meanwhile,

a3a4 + a2(T )a3a4 = a3a4(1 + a2(T )) > 0.



310 Bifurcation Analysis of an Epidemic Model

Therefore, all roots of (6) have negative real parts and we have the following result.

LEMMA 1. Assume (A1), (A2) and (A3′) hold. Then the equilibrium (I∗, N∗) of
(4) is asymptotically stable when T = 0.

Now we assume T > 0 and regard it as a parameter to obtain finer results on the
stability of EE. Note that equation (7) takes the form of a first-degree exponential
polynomial equation in λ with the coefficient Q depending on T . Thus, we use the
method introduced by Beretta and Kuang [1], which gives the existence of purely
imaginary roots of a characteristic equation with delay dependant coefficients (see also
[10]).

In order to apply the criterion in [1], we need to verify the following properties for
all T ∈ [0, Tm) and ω ∈ R

+:

(i) P (0) +Q(0|T ) 6= 0;
(ii) P (iω) +Q(iω|T ) 6= 0;

(iii) lim sup|λ|→∞,Reλ≥0

∣

∣

∣

Q(λ|T )
P(λ)

∣

∣

∣ < 1;

(iv) F (ω|T ) := |P (iω)|2 − |Q(iω|T )|2 has a finite number of zeros;
(v) each positive root ω(T ) of F (ω|T ) = 0 is continuous and differentiable in T

whenever it exists.

In fact, for T ∈ [0, Tm) and ω ∈ R
+, we have

P (0) +Q(0|T ) = a3a4 + a2(T )a3a4 > 0,

P (iω) +Q(iω|T ) = (−ω2 + a3a4 + a2a3a4) + iω(a1 + a2a3) 6= 0

and

lim
|λ|→∞

∣

∣

∣

∣

Q(λ|T )

P (λ)

∣

∣

∣

∣

= lim
|λ|→∞

∣

∣

∣

∣

a2a3λ+ a2a3a4

λ2 + a1λ+ a3a4

∣

∣

∣

∣

= 0.

Therefore, (i), (ii) and (iii) are fulfilled.
Let F (ω|T ) be defined as in (iv). From (7) and the definitions of P (λ) and Q(λ|T ),

we have
F (ω|T ) = ω4 + (a2

1 − 2a3a4 − a2
2(T )a2

3)ω
2 + a2

3a
2
4(1 − a2

2(T )).

It is obvious that property (iv) is satisfied. Finally, (v) is satisfied since F (ω|T ) is
a quadratic polynomial in ω2 and the fact that ai(τ ), i = 1, 2, 3, 4 are all continuous
functions of τ .

Now let λ = iω(ω > 0) be a root of equation (6). Substituting it into (6) and
separating the real and imaginary parts, we obtain

ω2 − a3a4 = a2a3ω sinωT + a2a3a4 cosωT ,

a1ω = a2a3a4 sinωT − a2a3ω cosωT .

It follows that

sinωT =
ω(ω2 − a3a4 + a1a4)

a2a3(ω2 + a2
4)

,

cosωT = −
ω2(a1 − a4) + a3a

2
4

a2a3(ω2 + a2
4)

,

(9)
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which yields

F (ω|T ) = 0.

On the other hand, the polynomial function F can be written as

F (ω|T ) = h(ω2|T ),

where h is a second-degree polynomial defined by

h(Z|T ) = Z2 + b1(T )Z + b2(T ).

Here,

b1(T ) = a2
1 − 2a3a4 − a2

2(T )a2
3,

b2(T ) = a2
3a

2
4 − a2

2(T )a2
3a

2
4.

Moreover, set

∆(T ) = b21(T ) − 4b2(T ).

Then, when ∆(T ) ≥ 0, h(Z|T ) = 0 has a pair of real roots given by

Z+(T ) =
−b1(T ) +

√

∆(T )

2
,

Z−(T ) =
−b1(T ) −

√

∆(T )

2
.

Assume

(A4) (1 −Q0)(µ
2 − 2εµ− a2

2(T )ε2) − 2dεa2
2(T ) ≥ 0.

Then b1(T ) ≥ 0. Therefore, h(Z|T ) = 0 has a positive root if and only if b2(T ) < 0.
Note that

b2(T ) = a2
3a

2
4(1 + a2(T ))(1 − a2(T ))

and

1 − a2(T ) = 2 − ln
b

[d+ ε(1 −Q0)]ed1T
.

These imply b2(T ) < 0 if, and only if, the following condition holds:

(A5) 2 − ln b
[d+ε(1−Q0)]ed1T < 0,

where 1 + a2(T ) > 0 is used. Therefore, we have

LEMMA 2. If (A4) and (A5) are satisfied, then h(Z|T ) = 0 has only one positive
root denoted by Z+. Accordingly, F (ω|T ) = 0 has a unique positive root given by
ω =

√

Z+.

Assume further that

(A6) b > [d+ ε(1 −Q0)]e
2

to make sure that (A5) is nonvacuous. Under (A6), denote

T 0 = max
{

{τ ≥ 0 : (A4) and (A5) hold} ∩ [0, Tm)
}

.
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Therefore, there exists an ω = ω(T ) > 0 such that F (ω|T ) = 0 for T ∈ (0, T 0). Let
θ(T ) ∈ [0, 2π] be defined for T ∈ (0, T 0) by

sin θ(T ) =
ω(ω2 − a3a4 + a1a4)

a2(T )a3ω2 + a2(T )a3a2
4

,

cos θ(T ) = −
ω2(a1 − a4) + a3a

2
4

a2(T )a3ω2 + a2(T )a3a2
4

,

(10)

where ω = ω(T ) for T ∈ (0, T 0). θ(T ) is well and uniquely defined for all T ∈ (0, T 0)
(see [1]). Noticing that a1 − a4 = d > 0 and

−a3a4 + a1a4 = a4(1 −Q0)(µ− ε) > 0,

we have θ(T ) ∈ (π
2 , π).

From the definition of θ(T ), it is known that ω(T )T = θ(T ) + 2nπ. We may check
that iω∗(ω∗ > 0) is a purely imaginary root of (6) if, and only if, T ∗ is a zero of the
function Sn defined by

Sn(T ) = T −
θ(T ) + 2nπ

ω(T )
, T ∈ (0, T0), n ∈ N. (11)

The following theorem is due to Beretta and Kuang [1].

THEOREM 1. Assume that Sn(T ) has a positive zero T ∗ ∈ (0, T0) for some n ∈ N.
Then a pair of simple purely imaginary roots ±iω(T ∗) of (6) exists at T = T ∗, and

Sign

{

d Re (λ)

dT

∣

∣

∣

λ=iω(T∗)

}

= Sign

{

∂F

∂ω
(ω(T ∗))

}

× Sign

{

dKn(T )

dT

∣

∣

∣

T=T∗

}

. (12)

Since ∂F
∂ω

(ω∗) = 2ω∗
√

∆(T ∗) > 0, condition (12) is equivalent to

δ(T ∗) = Sign
{dRe(λ)

dT

∣

∣

∣

λ=iω(T∗)

}

= Sign
{dSn(T )

dT

∣

∣

∣

T=T∗

}

.

Therefore, this pair of simple conjugate purely imaginary roots crosses the imaginary
axis from left to right if δ(T ∗) > 0, and crosses the imaginary axis from right to left if
δ(T ∗) < 0.

By the definition of ω(T ), we know limT→0+ ω(T ) is a positive number. Since

θ(T ) ∈ (π
2 , π), when T → 0+, Sn(T ) = T − θ(T )+2nπ

ω(T ) < 0. Moreover, for all T ∈ (0, T 0),

Sn(T ) > Sn+1(T ) with n ∈ N. Therefore, if S0(T ) has no zeros in (0, T 0), then Sn(T )
have no zeros in (0, T 0) for all n ∈ N, and if the function Sn(T ) has a positive zero
T ∈ (0, T 0) for some n∗ ∈ N, there exists at least one zero satisfying

Sn(T ∗) = 0 and
dSn(T ∗)

dT
> 0 with n ≤ n∗.

In addition, when T → T 0, ω(T ) → 0 and θ(T ) → π by the facts that sin θ(T ) → 0
and cos θ(T ) → −1. Therefore, we have by (11) that

lim
T→T 0

Sn(T ) = −∞.
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Let

Γ = {T ∈ [0, T 0)|Sn(T ) = 0, n ∈ N}

and let its minimum and maximum be Tmin and Tmax respectively. Now, we may
conclude the following existence of a Hopf bifurcation.

THEOREM 2. Assume (A1), (A2) and (A3′) hold.
(i) If (A6) does not hold, then the steady-state (I∗, N∗) of (4) is asymptotically

stable for all T ∈ [0, Tm).
(ii) Assume in addition that (A4)-(A6) hold. Then

(iia) if S0(T ) has no positive zeros in (0, T 0), then (I∗, N∗) is asymptotically
stable for all T ∈ [0, Tm);

(iib) if Γ 6= ∅ and S′
n(T ) 6= 0 for T ∈ Γ and n ∈ N, then (I∗, N∗) is asymp-

totically stable for T ∈ [0, Tmin) ∪ (Tmax, T
0) and unstable for T ∈ (Tmin, Tmax) with a

Hopf bifurcation occurring when T ∈ Γ.

REMARK 1. Theorem 2(iib) gives the sufficient condition for (2) to have phe-
nomenon of stability switches of stability-instability-stability.

3 The Properties of Hopf Bifurcation

Theorem 2(iib) gives sufficient conditions to ensure (4) undergoes a Hopf bifurcation
at (I∗, N∗). In this section, under the conditions of Theorem 2(iib), we shall use the
center manifold and normal form theory presented by Hassard et al. [4] to study the
direction of Hopf bifurcation and the stability of the bifurcating periodic solutions from
(I∗, N∗) (see also [5, 6, 8, 11, 14]). Without loss of generality, let T ∗ be any critical
value of Hopf bifurcation. Setting T = T ∗ +ν , then ν = 0 is a Hopf bifurcation critical
value of (4).

Let x = I−I∗ and y = N−N∗. Then we rescale the time by t→ (t/T ) to normalize
the delay so that system (4) can be written in the form:

ẋ(t) =
[

− µ(1 −Q0)x(t) + µ(1 −Q0)
2y(t) − µ

N∗
x2(t) − µ(1−Q0)

2

N∗
y2(t)

+2µ(1−Q0)
N∗

x(t)y(t)] + µ(1−Q0)
2

N∗
2 y3(t) + µ

N∗
2 x

2(t)y(t)

−2µ(1−Q0)

N∗
2 x(t)y2(t) + · · ·

]

(T ∗ + ν),

ẏ(t) =
[

− εx(t) − dy(t) + be−(d1T+aN∗)((1 − aN∗)y(t − 1) − a(2−aN∗)
2 y2(t− 1)

+a2(3−aN∗)
6

y3(t− 1) + · · ·
]

(T ∗ + ν).

(13)
For ϕ = col(ϕ1, ϕ2) ∈ C := C([−1, 0],R2), define

Lν(ϕ) =(T ∗ + ν)

[

−µ(1 −Q0) µ(1 −Q0)
2

−ε −d

] [

ϕ1(0)
ϕ2(0)

]

+ (T ∗ + ν)

[

0 0

0 b(1 − aN∗)e−(d1T∗+d1ν+aN∗)

] [

ϕ1(−1)
ϕ2(−1)

]

def
=(T ∗ + ν)Aφ(0) + (T ∗ + ν)Bφ(−1).
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By the Riesz representation theorem, there exists a 2 × 2 matrix, η(θ, ν)(θ ∈ [−1, 0]),
whose elements are functions of bounded variation such that

Lνϕ =

∫ 0

−1

dη(θ, µ)ϕ(θ), (14)

with any ϕ ∈ C. In fact, we can choose

η(θ, µ) =











(T ∗ + ν)A, θ = 0,

0, θ ∈ (−1, 0),

−(T ∗ + ν)B, θ = −1.

Define operators

A(ν)ϕ =

{

dϕ(θ)/dθ, θ ∈ [−1, 0),
∫ 0

−1 dη(t, ν)ϕ(t), θ = 0,
(15)

and

R(ν)ϕ =

{

0, θ ∈ [−1, 0),

F (ν, ϕ), θ = 0,

where

F (ν, ϕ) = (T ∗+ν)











− µ
N∗
ϕ2

1(0) − µ(1−Q0)
2

N∗
ϕ2

2(0) + 2µ(1−Q0)
N∗

ϕ1(0)ϕ2(0) + µ(1−Q0)
2

N∗
2 ϕ3

2(0)

+ µ
N∗
ϕ2

1(0)ϕ2(0) − 2µ(1−Q0)

N∗
2 ϕ1(0)ϕ2

2(0) + · · ·

be−(d1T∗+d1ν+aN∗)
(

− a(2−aN∗)
2 ϕ2

2(−1) + a2(3−aN∗)
6 ϕ3

2(−1) + · · ·
)











.

Then system (4) is equivalent to the following operator equation:

u̇t = A(ν)ut +R(ν)ut, (16)

where u = col(x, y) and ut = u(t+ θ) for θ ∈ [−1, 0].
For ψ ∈ C1([0, 1], (C2)∗), define

A∗ψ(s) =

{

−dψ(s)/ds, s ∈ (0, 1],
∫ 0

−1 dη(t, 0)ψ(−t), s = 0,

and a bilinear form

〈ψ, ϕ〉 = ψ̄(0)ϕ(0) −

∫ 0

−1

∫ θ

0

ψ̄(ξ − θ)dη(θ)ϕ(ξ)dξ

for any φ ∈ C([−1, 0],R2) and ψ ∈ C([0, 1], (R2)∗), where η(θ) = η(θ, 0). Then A∗ and
A(0) are adjoint operators.

It is not difficult to verify that vectors q(θ) = col(q1, q2) (θ ∈ [−1, 0]) and q∗(s) =
1
D

(q∗1 , q
∗
2) (s ∈ [0, 1]) are the eigenvectors of A∗ and A(0) corresponding to the eigen-

values iω∗T ∗ and −iω∗T ∗, respectively, where

col(q1, q2) = col
(

1, T∗µ(1−Q0)+iω∗

T∗µ(1−Q0)2

)

eiω
∗T∗θ,

(q∗1 , q
∗
2) =

(

1,−T∗µ(1−Q0)−iω∗

T∗ε

)

eiω
∗T∗s.
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Let

D = q̄∗1q1 + q̄∗2q2 + q̄∗2q2b(1 − aN∗)T ∗e−(d1T∗+aN∗+iω∗T∗).

Then 〈q∗(s), q(θ)〉 = 1 and 〈q∗(s), q̄(θ)〉 = 0.

Set

α =
T ∗µ(1 −Q0) + iω∗

T ∗µ(1 −Q0)2
and β =

T ∗µ(1 −Q0) − iω∗

T ∗µ(1 −Q0)2
.

Following the algorithms given in [4] and using a computation process similar to [4],
we can obtain the coefficients:

g20 = 2T∗

D

[

− 2
(

µ
N∗

+ (T∗µ(1−Q0)+iω∗)2

T∗N∗µ(1−Q0)2
− 2T∗µ(1−Q0)+iω∗

T∗N∗(1−Q0)

)

+ be−(d1T∗+aN∗)a(2 − aN∗)

× (T∗µ(1−Q0)+iω∗)2

µ2T∗
2(1−Q0)4

e−2iω∗T∗

]

,

g11 = T∗

D

[

2µ
N∗

− 2µ2T∗
2
(1−Q0)

2+ω∗
2
)2

N∗T∗µ(1−Q0)2
− be−(d1T∗+aN∗)a(2 − aN∗)µ2T∗

2
(1−Q0)

2+ω∗
2

µ2T∗
2
(1−Q0)4

]

,

g02 = 2T∗

D

[

− 2
(

µ
N∗

+ (T∗µ(1−Q0)−iω∗)2

T∗N∗µ(1−Q0)2
− 2T∗µ(1−Q0)−iω∗

T∗N∗(1−Q0)

)

+ be−(d1T∗+aN∗)

× a(2 − aN∗) (T∗µ(1−Q0)−iω∗)2

µ2T∗
2
(1−Q0)4

e2iω∗T∗

]

,

g21 = −2T∗

D

[

−µ
N∗

(w
(1)
20 + 2w

(1)
11 + (1 −Q0)

2(2αw
(2)
11 + βw

(2)
20 ) − 2(1 −Q0)

× (w
(2)
11 +

w
(2)
20

2
+ αw

(1)
11 + β

2
w

(1)
20 ) − (1−Q0)

2

N∗
3α2β − 1

N∗
(2α+ β) + 2(1−Q0)

N∗
(α2 + β))

× be−(d1T∗+aN∗) T∗µ(1−Q0)+iω∗

2T∗ε
(a(aN∗ − 2)(2αw

(2)
11 (−1)e−iω∗T∗

+ βw
(2)
20 (−1)eiω

∗T∗

) + a2(3 − aN∗)α2βe−iω∗T∗

)
]

,

where

w20(θ) =
−ig20

ω∗T ∗
q(0)eiω

∗T∗θ +
iḡ20

3ω∗T ∗
q̄(0)e−iω∗T∗θ + E1e

2iω∗T∗θ,

w11(θ) =
−ig11

ω∗T ∗
q(0)eiω

∗T∗θ +
iḡ11

ω∗T ∗
q̄(0)e−iω∗T∗θ + E2,

and

E1 = 2

(

−µ(1 −Q0) − 2iω∗T ∗ µ(1 −Q0)
2

−ε −d+ b(1 − aN∗)e−(d1T∗+aN∗) − 2iω∗T ∗

)−1

×





µ
N∗

+ (T∗µ(1−Q0)+iω∗)2

T∗N∗µ(1−Q0)2
− 2T∗µ(1−Q0)+iω∗

T∗N∗(1−Q0)

be−(d1T∗+aN∗) a(2−aN∗)
2

(

T∗µ(1−Q0)+iω∗

T∗µ(1−Q0)2

)2

e−2iω∗T∗



 ,

E2 =

(

−µ(1 −Q0) µ(1 −Q0)
2

−ε −d+ b(1 − aN∗)e−(d1T∗+aN∗)

)−1

×





− 2µ
N∗

+ 2µ2T∗
2
(1−Q0)

2+ω∗
2
)2

N∗µ(1−Q0)2

−be−(d1T∗+aN∗)a(aN∗ − 2)µ2T∗
2
(1−Q0)

2+ω∗
2

µ2T∗
2(1−Q0)4



 .
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Consequently, we can compute the following quantities:

C1(0) =
i

2ω∗T ∗
(g20g11 − 2|g11|

2 −
1

3
|g02|

2) +
g21

2
,

µ2 = −
Re {C1(0)}

Reλ′(T ∗)
,

β2 = 2Re {C1(0)},

T2 = −
ImC1(0) + µ2Im (λ′(T ∗))

ω∗T ∗
,

which determine the properties of bifurcating periodic solutions. To be concrete, µ2

determines the direction of the Hopf bifurcation: if µ2 > 0 (resp. < 0), then Hopf
bifurcations are forward (resp. backward), that is, the bifurcating periodic solutions
exist for T > T ∗ (resp. < T ∗). β2 determines the stability of the bifurcating periodic
solution: if β2 < 0 (resp. > 0), then the bifurcating periodic solutions are stable (resp.
unstable). T2 determines the periods of the bifurcating periodic solutions: the periods
increase (resp. decrease) if T2 > 0 (resp. < 0).

Theorem 1 shows Sign Re(λ′(T ∗)) = SignS′
n(T ∗). Thus we have the following

result.

THEOREM 3. The Hopf bifurcations of the system (4) at the positive equilibrium
(I∗, N∗) when T = T ∗ are forward (resp. backward) if Sign{S′

n(T ∗) · ReC1(0)} = 1
(resp. −1) and the bifurcating periodic solutions on the center manifold are stable
(unstable) if ReC1(0) < 0 (resp. > 0). In particular, if T ∗ = Tmin and S′

0(Tmin) 6=
0, then the periodic solution bifurcated from (I∗, N∗) is stable (resp. unstable) if
ReC1(0) < 0 (resp. > 0).

4 Numerical Simulations

In this section, we shall carry out some numerical simulations to support our theoretical
analysis. There are eight parameters involved in (4) including the delay T . Next, we
choose two sets of parameters, under which (A1), (A2) and (A3′) are satisfied:

(a) µ = 6, d = 0.1, ε= 0.1, γ = 3.5, b = 12, a = 10 and d1 = 0.1;

(b) µ = 6, d = 0.1, ε= 0.1, γ = 3.5, b= 16, a = 10 and d1 = 0.3.
Under (a), (A4)-(A6) are met. We draw the graph of S0 and S1 versus T on

T ∈ [0, T 0) in Figure 1 (left) with T 0 = 24.63. In this case, there are only two critical
values of T denoted by Tmin ≈ 4.8357 and Tmax ≈ 21.808, respectively. Theorem 2(iib)
tells that a scenario and Hopf bifurcation occur, that is

(1) EE is asymptotically stable for T ∈ [0, Tmin)
⋃

(Tmax, T
0);

(2) EE becomes unstable for T ∈ (Tmin , Tmax);
(3) when T = Tmin or Tmax, there occurs a Hopf bifurcation at EE.

Figure 2 describes the case in (1) with T = 2.5. In addition, when T ≈ 4.8357 or
21.808, using the formula given in Section 3, we compute ReC1(0) |T=Tmin≈ −271.176 <
0 and ReC1(0) |T=Tmax≈ −188.5106 < 0, respectively. Consequently, when T = Tmin

(resp. T = Tmax), the Hopf bifurcation of system (4) at EE is forward (backward) and
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the bifurcating periodic solution is stable. Figure 3 with T = 5.195 and Figure 4 with
T = 21 describe the existence of stable periodic solution of (4).

Comparatively, under (b), (A4)-(A6) hold. We plot the curve of S0 on the interval
[0, T 0) with T 0 = 9.1689 (see Figure 1 (right)). It can be observed that Sn has no
zeros for arbitrary n ∈ N, satisfying the condition in Theorem 2(iia). Therefore, EE is
asymptotically stable for T ∈ [0, T 0).

To sum up, it seems that if b and d increase, then the oscillatory dynamical behavior
(under (a)) becomes stable (under (b)).

24.63 
0

4.8357 21.808

S
0

S
1

−500

−1000

9.1689
0

−1000

−500

S
0

Figure 1: Graph of Sn(T ) on [0, T 0). Left: S0 and S1 with parameters given in (a);
Right: S0 with parameters given in (b)
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Figure 2: EE is stable under (a) with T = 2.5
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Figure 3: A periodic solution of system (4) under (a) with T = 5.195
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Figure 4: A periodic solution of system (4) under (a) with T = 21
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