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Abstract

New parametric two point integral inequalities for n-time differentiable func-

tions are presented. These inequalities are used to obtain some new estimations

for the remainder in Taylor’s formula. New inequalities for the expectation and

variance of a random variable defined on a finite interval are also given.

1 Introduction

In the literature on numerical integration, the following estimation is well known as
the trapezoid inequality:
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sup
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|f ′′ (x)| , (1)

where the mapping f : [a, b] → R is twice differentiable on the interval (a, b), with
the second derivative bounded on (a, b) . For more results on the trapezoid inequality
and their applications we refer to [3], while in [2] we can find the following result: Let
f ∈ Cn [a, b] be a function such that f(n+1) is integrable and bounded on (a, b) . Then
for any positive number ρ the following estimation holds:
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This inequality is used in [2] in order to obtain several inequalities for n-time differen-
tiable functions, as for example some generalizations of inequality (1).

In what follows, we present some two point integral inequalities for n-time differen-
tiable functions involving two parameters which are generalizations of inequality (2).
As applications to that some new interesting integral inequalities are given which are
being used to obtain some estimations for the expectation and the variance of a random
variable defined on a finite interval. The results presented here are related to the ones
obtained in paper [1]. New inequalities involving the remainder in Taylor’s formula
are also presented which give better approximations compared to the classical Taylor’s
expansion.

2 Main Results

We begin with the following result.

THEOREM 1. Assume (p, q) is a pair of conjugate exponents, that is 1 ≤ p, q ≤
∞, 1

p
+ 1

q
= 1. Let g : [a, b] → R be a (n + 1)-time differentiable function on (a, b) for

some n ≥ 1 with g(n+1) integrable on (a, b) . Then for n ≥ 2 and all α, β ∈ R we have
the inequalities
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∥g(n+1)
∥

∥

p
if g(n+1) ∈ Lp [a, b] , 1 < p < ∞
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,(3)

and the first inequality in (3) is sharp in the following two cases: i) n is odd and
β
α
∈
[

1
n
, n
]

, ii) n is even and α = 0 or β
α

/∈
[

1
n
, n
]

.

PROOF. Let Kn (u, x) be the kernel given by

Kn (u, x) :=







α−nβ
n−1 (a − u)

n
if u ∈ [a, x]

nα−β
n−1 (b − u)

n
if u ∈ (x, b]

, n > 1.

Then, using twice the Taylor’s formula with an integral form of remainder we easily
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get
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Moreover, it is easy to verify that any sequence (In) , n ≥ 0 the following identity holds

n
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Combining (4) with (5) and (6) we easily get the following identity:
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Now we will use identity (7) to prove Theorem 1.
If g(n+1) ∈ L∞ [a, b], then it is not difficult to get:
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which combined with identity (7) lead to first estimation in (3).
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Let consider now that either n is an odd integer and β
α

∈
[

1
n
, n
]

which means

(nα − β) (nβ − α) ≥ 0, or n is even and β
α

/∈
[

1
n
, n
]

(a 6= 0), that is (nα − β) (nα− β) ≤
0. Then for g (x) = xn+1 we find out easily that inequality (8) holds as an equality.
That means, using the identity (7) as well, that the first inequality in (3) is sharp.

Now, if g(n+1) ∈ Lp [a, b] , 1 < p < ∞, then, by using Hölder’s inequality, we have
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which combined with the identity (7) gives the second inequality in (3).
Finally, let g(n+1) ∈ L1 [a, b] . Then,
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which combined with (7) leads to third inequality in (3).

REMARK 1. If we apply the first inequality in (3) for α = nρ−(−1)n

n+1 , β = ρ−(−1)nn

n+1 ,
we get inequality (2). Therefore inequality (3) can be regarded as a generalization of
(2).

If we apply the first inequality in (3) for n = 2 we have the following result:

COROLLARY 1. Let g : [a, b] → R be a three time differentiable function on (a, b)
with g′′′ bounded on (a, b). Then for all α, β ∈ R we have the inequality
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and inequality (10) is sharp.

PROOF. Applying (9) for α = 2
3
g′ (b) + 1

3
g′ (a) and β = 1

3
g′ (b) + 2

3
g′ (a), we get

(10). Further, an easy calculation yields that for g (x) = (x − a)
3

the equality in (10)
holds. Therefore inequality (10) is sharp.

COROLLARY 2. Let g be as in Corollary 1. If g′ (a) = 0 and g′ (b) 6= 0, then the
following holds
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while if g′ (a) 6= 0 and g′ (b) = 0, we have the inequality
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Both inequalities are sharp.

PROOF. The above inequalities result in as an easy application from (10). In the

case when g (x) = (x − a)
3

and g (x) = (b − x)
3

the equalities in (11) and (12) hold as
well. Therefore the inequalities (11) and (12) are sharp.

3 An Application for Taylor’s Remainder

As usual, Rn (f ; x0, x) denotes the remainder in Taylor’s formula, that is,

Rn (f ; x0, x) = f (x) −
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.

THEOREM2 . Let I ⊂ R be an open interval, and x0 ∈ I. If f : I → R is a
(n + 2)−time differentiable function with f(n+2) integrable on I, then for all x ∈ I,
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,

where [{x0, x}] denotes the closed interval [min{x, x0} , max{x, x0}]. The first inequal-
ity is sharp.

PROOF. We distinguish two cases:
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First case: Let x ≥ x0. Then applying inequalities (3) for α = 1
n+1 , β = n

n+1 , g (x) =
f ′ (x), a = x, b = x0, and multiplying the result by (x − x0), we get,
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Now, if we replace k by k − 1, we have
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k
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)

.

Therefore, we conclude that

f (x) − f (x0) −
(f ′ (x) + nf ′ (x0))

n + 1
(x − x0) −

n−1
∑

k=1

n − k

n + 1
f(k+1) (x0)

(x − x0)
k+1

(k + 1)!

= Rn (f ; x0, x)−
x − x0

n + 1
Rn−1 (f ′; , x0, x) .

Finally, using this latter equality in (13) we get the desired result.

Second case: Let x < x0. Applying (3) for α = n
n+1

, β = 1
n+1

, g (x) = f ′ (x), a = x0,
b = x and working in a way similar to the first case, we get the desired result as well.
Finally, for f (x) = xn+2, we readily calculate:

Rn (f ; x0, x) = (n + 2) (x − x0)
n+1

x0 + (x − x0)
n+2

,
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and

Rn−1 (f ′; x0, x) = (n + 2)Rn−1

(

xn+1; x0, x
)

= (n + 2) (n + 1) (x − x0)
n

x0 + (n + 2) (x − x0)
n+1

.

So we finally have

∣
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∣

Rn (f ; x0, x) −
x − x0

n + 1
Rn−1 (f ′; x0, x)

∣

∣

∣

∣

=
1

n + 1
|x − x0|

n+2 .

On the other hand the following equality holds

|x − x0|
n+2

(n + 2)! (n + 1)

∥

∥

∥
f(n+2)

∥

∥

∥

∞
=

1

n + 1
|x − x0|

n+2
.

Combining those last two equalities we conclude that for f (x) = xn+2 the equality in
the first estimation of Theorem 2 holds. Consequently this inequality is sharp.

EXAMPLE 1. If we apply the first inequality of Theorem 2 for f (x) = ex and
x0 = 0, after some straightforward algebra it follows that

∣

∣

∣

∣

∣

ex −
1

n + 1 − x

n
∑

k=0

(n + 1 − k)
xk

k!

∣

∣

∣

∣

∣

≤
xn+2

(n + 2)! (n + 1 − x)
e

x+|x|
2 .

EXAMPLE 2. If we apply the first inequality of Theorem 2 for f (x) = lnx, x, x0 >
0, and taking into account that,

Rn (f ; x0, x) = lnx − lnx0 −

n
∑

k=1

(−1)
k+1 (x − x0)

k

kxk
0

,

and

Rn−1 (f ′; x0, x) =
1

x
−

1

x0

n−1
∑

k=0

(x0 − x)
k

xk
0

=
1

x
−

1

x0

1 −
(x0−x)n

xn

0

1 − x0−x
x0

=
(x0 − x)

n

xxn
0

,

we get,

∣

∣

∣

∣

∣

lnx − lnx0 −

n
∑

k=1

(−1)
k+1 (x − x0)

k

kxk
0

+
(x0 − x)

n+1

(n + 1)xxn
0

∣

∣

∣

∣

∣

≤
1

(n + 2) (n + 1)
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n+2

(min{x, x0})
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4 Applications for Expectation and Variance

Many authors using trapezoid and Ostrowski type inequalities have produced esti-
mations for the expectation and variance of a random variable X defined on a finite
interval. For example in [4] we can see some related inequalities using an Ostrowski
type inequality.

We want use some inequalities of the second section to obtain new inequalities for
the expectation and the variance of a random variable X defined on a finite interval.
Some similar results are presented in [1].

Let f : [a, b] → (0,∞) be a differentiable function on (a, b) with f ′ bounded on
(a, b) . Assume that f is a probability density function of a random variable X, that is
∫ b

a
f (x) dx = 1. Denote by µ and σ2 respectively the expectation and the variance of

X.

PROPOSITION 2. The following inequalities hold,
∣

∣

∣

∣

σ2 + (b − µ)

(

2a + b

3
− µ

)
∣

∣

∣

∣

≤
(b − a)

4

36
‖f ′‖∞ , (14)

and
∣

∣

∣

∣

σ2 + (a − µ)

(

2b + a

3
− µ

)∣

∣

∣

∣

≤
(b − a)

4

36
‖f ′‖∞ . (15)

Both inequalities are sharp.

PROOF. Let g : [a, b] → R+ be the function given by g (x) =
∫ x

a

∫ u

a
f (t) dtdu. Then

we have, that g′ (a) = 0, g′ (b) = 1 6= 0. Now, if we apply (11) for g, and taking into
account that we have

g (a) = 0,

g (b) =

∫ b

a

(u − b)
′
∫ u

a

f (t) dtdu =

∫ b

a

(b − u) f (u)du = b − µ,

and
∫ b

a

g (x) dx =

∫ b

a

(x − b)
′
∫ x

a

∫ u

a

f (t) dtdudx = −

∫ b

a

(x− b)

∫ x

a

f (t) dtdx

= −
1

2

∫ b

a

(

(x − b)
2
)′
∫ x

a

f (t) dtdx =
1

2

∫ b

a

(x − b)
2
f (x) dx

=
1

2

(

σ2 + (b − µ)
2
)

,

we directly get (14). An easy calculation yields that for f (x) = 2(x−a)

(b−a)2
, (14) holds as

an equality. So inequality (14) is sharp.
Let now g (x) =

∫ x

b

∫ u

b
f (t) dtdu, x ∈ [a, b] . Then, in a similar way as above we

could state that

g (b) = g′ (b) = 0, g′ (a) = −1, g (a) = µ − a,
∫ b

a

g (x)dx =
1

2

(

σ2 + (µ − a)
2
)

.
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So, we can apply (12) to obtain (15), and is easy to verify that for f (x) =
2(b−x)

(b−a)2
the

equality in (15) holds.
Now, applying Corollary 1 first for g (x) =

∫ x

a

∫ u

a
f (t) dtdu and then for g (x) =

∫ x

b

∫ u

b
f (t) dtdu, in similar way as above, we can prove the following proposition.

PROPOSITION 3. For all α, β ∈ R, we have the inequalities,

∣

∣

∣
3 (α + β)

(

σ2 + (b − µ)
2
)

− 6β (b − µ) (b − a) − (2β − α) (b − a)
2
∣

∣

∣

≤
(|2α − β| + |2β − α|) (b − a)4

12
‖f ′‖∞ , (16)

and
∣

∣

∣
3 (α + β)

(

σ2 + (µ − a)
2
)

− 6α (µ − a) (b − a) − (2α − β) (b − a)
2
∣

∣

∣

≤
(|2α− β| + |2β − α|) (b − a)

4

12
‖f ′‖∞ . (17)

REMARK 2. Setting β = −α in inequalities (16) and (17) we find that

∣

∣

∣

∣

µ −
3b− a

2

∣

∣

∣

∣

≤
(b − a)3

12
‖f ′‖∞ ,

and
∣

∣

∣

∣

µ −
3a − b

2

∣

∣

∣

∣

≤
(b − a)

3

12
‖f ′‖∞ .
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