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Abstract

We prove a bound of the tail probability for a sum of n independent random

variables. It can be applied under mild assumptions; the variables are not assumed

to be almost surely absolutely bounded, or admit finite moments of all orders. In

some cases, it is better than the bound obtained via the Fuk-Nagaev inequality.

To illustrate this result, we investigate the bound of the tail probability for a sum

of n weighted i.i.d. random variables having the symmetric Pareto distribution.

1 Introduction

Let (Yi)i∈N∗ be a sequence of independent random variables. For any n ∈ N
∗, we wish to

determine the smallest sequence of functions pn(t) such that P (
∑n

i=1 Yi ≥ t) ≤ pn(t),
t ∈ [0,∞[. This problem is well-known; numerous results exist. The most famous
of them is the Markov inequality. Under mild assumptions on the moments of the
Xi’s, it gives a polynomial bound pn(t). Under the same assumptions, this bound
can be improved by the Fuk-Nagaev inequality (see [2]). If the Xi’s are almost surely
absolutely bounded, or admit finite moments of all orders (and these moments satisfy
some inequalities), the Bernstein inequalities provide better results. See [6] and [7] for
further details.

In this note, we present a new bound pn(t). It can be applied under mild assump-
tions on the Xi’s; only knowledge of the order of a finite moment is required. The
main interest of the proposed inequality is that it can be applied when the ‘Bernstein
conditions’ are not satisfied, and can give better results than the Fuk-Nagaev inequal-
ity (and the Markov inequality). The tail probability for a sum of n weighted i.i.d.
random variables having the symmetric Pareto distribution is studied. This is par-
ticularly interesting because the exact expression of the distribution of such a sum is
really difficult to identify (see [8]). Moreover, there are some applications in economics,
actuarial science, survival analysis and queuing networks.
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The note is organized as follows. Section 2 presents a general tail bound. An
application of this bound to the Pareto distribution can be found in Section 3. Sec-
tion 4 provides a comparative study of the considered inequality and the Fuk-Nagaev
inequality.

2 A General Tail Bound

Theorem 1 below presents a bound of the tail probability for a sum of n independent
random variables. As for the Fuk-Nagaev inequality (and the Markov inequality), it
requires knowledge only of the order of a finite moment.

THEOREM 1. Let (Yi)i∈N∗ be a sequence of independent random variables. We
suppose that

− for any n ∈ N
∗ and any i ∈ {1, . . . , n}, E(Yi) = 0,

− there exists a real number p ≥ 2 such that, for any n ∈ N
∗ and any i ∈ {1, . . . , n},

E(|Yi|
p) < ∞.

Then, for any t > 0 and any n ∈ N
∗, we have

P

(

n
∑

i=1

Yi ≥ t

)

≤ Cpt
−p max

(

rn,p(t), (rn,2(t))
p/2
)

+ exp

(

−
t2

16bn

)

, (1)

where, for any u ∈ {2, p}, rn,u(t) =
∑n

i=1 E

(

|Yi|
u1{|Yi|≥

3bn
t }

)

, bn =
∑n

i=1 E
(

Y 2
i

)

,

Cp = 22pcp, and cp refers to the Rosenthal inequality (see Lemma 1 below).

PROOF. Let n ∈ N
∗. For any t > 0, we have

P

(

n
∑

i=1

Yi ≥ t

)

= P

(

n
∑

i=1

(Yi − E (Yi)) ≥ t

)

≤ U + V,

where

U = P

(

n
∑

i=1

(

Yi1{|Yi|≥
3bn

t } − E

(

Yi1{|Yi|≥
3bn

t }

))

≥
t

2

)

and

V = P

(

n
∑

i=1

(

Yi1{|Yi|<
3bn

t } − E

(

Yi1{|Yi|<
3bn

t }

))

≥
t

2

)

.

Let us bound U and V , in turn.
The upper bound for U . The Markov inequality yields

U ≤ 2pt−p
E

(∣

∣

∣

∣

∣

n
∑

i=1

(

Yi1{|Yi|≥
3bn

t } − E

(

Yi1{|Yi|≥
3bn

t }

))

∣

∣

∣

∣

∣

p)

. (2)

Now, let us introduce the Rosenthal inequality (see [9]).
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LEMMA 1 (Rosenthal’s inequality). Let p ≥ 2 and (Xi)i∈N∗ be a sequence of
independent random variables such that, for any n ∈ N

∗ and any i ∈ {1, . . . , n},
E(Xi) = 0 and E(|Xi|

p) < ∞. Then we have

E

(∣

∣

∣

∣

∣

n
∑

i=1

Xi

∣

∣

∣

∣

∣

p)

≤ cp max





n
∑

i=1

E (|Xi|
p) ,

(

n
∑

i=1

E
(

X2
i

)

)p/2


 ,

where, for any τ > p/2, cp = 2 max
(

τp, pτp/2eτ
∫∞

0 xp/2−1(1 − x)−τdx
)

.

Under mild assumptions on the Xi’s, the constant cp of Lemma 1 can be improved.
We refer to [1], [4] and [10].

For any i ∈ {1, . . . , n}, set Zi = Yi1{|Yi|≥
3bn

t } −E

(

Yi1{|Yi|≥
3bn

t }

)

. Since E(Zi) = 0

and E (|Zi|
p) ≤ 2p

E

(

|Yi|
p1{|Yi|≥

3bn
t }

)

≤ 2p
E (|Yi|

p) < ∞, Lemma 1 applied to the

independent variables (Zi)i∈N∗ gives

E

(∣

∣

∣

∣

∣

n
∑

i=1

Zi

∣

∣

∣

∣

∣

p)

≤ cp max





n
∑

i=1

E (|Zi|
p) ,

(

n
∑

i=1

E
(

Z2
i

)

)p/2


 . (3)

It follows from (2) and (3) that

U ≤ 2pt−pcp max

(

n
∑

i=1

E (|Zi|
p) ,

(

n
∑

i=1

E
(

Z2
i

)

))

≤ 22pt−pcp max





n
∑

i=1

E

(

|Yi|
p1{|Yi|≥

3bn
t }

)

,

(

n
∑

i=1

E

(

Y 2
i 1{|Yi|≥

3bn
t }

)

)p/2




= Cpt
−p max

(

rn,p(t), (rn,2(t))
p/2
)

, (4)

where Cp = 22pcp.

The upper bound for V . Let us present one of the Bernstein inequalities. See, for
instance, [6].

LEMMA 2 (Bernstein’s inequality). Let (Xi)i∈N∗ be a sequence of independent
random variables such that, for any n ∈ N

∗ and any i ∈ {1, . . . , n}, E(Xi) = 0 and
|Xi| ≤ M < ∞. Then, for any λ > 0 and any n ∈ N

∗, we have

P

(

n
∑

i=1

Xi ≥ λ

)

≤ exp

(

−
λ2

2(d2
n + λM

3 )

)

,

where d2
n =

∑n
i=1 E(X2

i ).

For any i ∈ {1, . . . , n}, set Zi = Yi1{|Yi|<
3bn

t } −E

(

Yi1{|Yi|<
3bn

t }

)

. Since E(Zi) = 0

and |Zi| ≤ |Yi|1{|Yi|<
3bn

t } + E

(

|Yi|1{|Yi|<
3bn

t }

)

≤ 6bn

t
, Lemma 2 applied with the
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independent variables (Zi)i∈N∗ and the parameters λ = t
2 and M = 6bn

t , gives

V ≤ exp



−
t2

8
(

∑n
i=1 V

(

Yi1{|Yi|<
3bn

t }

)

+ t
6

(

6bn

t

)

)



 .

Since
∑n

i=1 V

(

Yi1{|Yi|<
3bn

t }

)

≤
∑n

i=1 E
(

Y 2
i

)

= bn, it comes

V ≤ exp

(

−
t2

16bn

)

. (5)

Putting (4) and (5) together, we obtain the inequality

P

(

n
∑

i=1

Yi ≥ t

)

≤ U + V ≤ Cpt
−p max

(

rn,p(t), (rn,2(t))
p/2
)

+ exp

(

−
t2

16bn

)

.

Theorem 1 is proved.

Theorem 1 can be applied for a wide class of random variables. However, if the
variables are almost surely absolutely bounded, or have finite moments of all orders
satisfying some inequalities, the Bernstein inequalities can give more optimal results
than (1). When it is hard or not possible to prove that these conditions are satisfied,
Theorem 1 becomes of interest. This is illustrated in the example below and in Section
3 for the symmetric Pareto distribution. Other examples can be studied in a similar
fashion.

EXAMPLE. Let (Xi)i∈N∗ be i.i.d. random variables such that, for any x > 0,
P(|X1| ≥ x) ≤ ce−xγ

, γ > 0, c > 0. Taking

t = tn = (κ16E(X2
1 )n logn)1/2

with κ > 0, the inequality (1) implies the existence of a constant Fp > 0 such that, for
n and p large enough,

P

(

n
∑

i=1

Xi ≥ tn

)

≤ Fpt
−p
n n

(

P(|X1| ≥
3bn

tn
)

)1/2

+ exp

(

−
t2n

16bn

)

≤ n−p/2+1e
− 1

2

0

@

3(nE(X2
1 ))

1/2

(16κ log n)1/2

1

A

γ

+ n−κ ≤ 2n−κ.

We used the inequality: rn,u(t) ≤ n
(

E
(

|X1|
2u
))1/2

(

P(|X1| ≥
3bn

tn
)
)1/2

, u ∈ {1, 2}.

3 Application to the Pareto Distribution

Proposition 1 below investigates the bound of the tail probability for a sum of n
weighted i.i.d. random variables having the symmetric Pareto distribution.
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PROPOSITION 1. Let s > 2 and (Xi)i∈N∗ be i.i.d. random variables with the
probability density function

f(x) =

{

2−1s|x|−s−1, if |x| ≥ 1,

0 otherwise.
(6)

Let (ai)i∈N∗ be a sequence of nonzero real numbers such that
∑n

i=1 |ai|
s < ∞. Then,

for any n ∈ N
∗, any t ∈

(

0, 3bn

ρn

)

with ρn = (
∑n

i=1 |ai|
s)

1/s
and any p ∈

(

max( s
2
, 2), s

)

,

we have

P

(

n
∑

i=1

aiXi ≥ t

)

≤ Kp

(

t−2p+sbp−s
n

)

n
∑

i=1

|ai|
s + exp

(

−
t2

16bn

)

, (7)

where bn = s
s−2

∑n
i=1 a2

i , Kp = 3p−s max

(

s
s−p ,

(

s
s−2

)p/2
)

22pcp,

cp =











1 + 2p/2π−1/2Γ

(

p + 1

2

)

, 2 < p < 4,

E (|θ1 − θ2|
p) , p ≥ 4,

Γ(a) =
∫∞

0
xa−1e−xdx, a > 1, and θ1, θ2 are independent Poisson random variables

with parameter 2−1.

PROOF. Let n ∈ N
∗. Set, for any i ∈ {1, . . . , n}, Yi = aiXi. Clearly, (Yi)i∈N are

independent random variables such that, for any i ∈ {1, . . . , n}, E(Yi) = aiE(Xi) = 0
and, for any p ∈

(

max( s
2 , 2), s

)

, E(|Yi|
p) ≤ supi=1,...,n |ai|

p
E(|Xi|

p) < ∞. We are now
in the position to apply Theorem 1. We have bn =

∑n
i=1 E(Y 2

i ) = s
s−2

∑n
i=1 a2

i .

For any u ∈ {2, p} and any p ∈
(

max( s
2 , 2), s

)

, let us investigate the bound for

rn,u(t) =
∑n

i=1 E

(

|Yi|
u1{|Yi|≥

3bn
t }

)

=
∑n

i=1 |ai|
u
E

(

|Xi|
u1n

|Xi|≥
3bn
|ai|t

o

)

. Recall that

ρn = (
∑n

i=1 |ai|
s)

1/s
and σn = supi=1,...,n |ai|. Since t ∈

(

0, 3bn

ρn

)

⊆
(

0, 3bn

σn

)

, for any

i ∈ {1, . . . , n}, we have E

(

|Xi|
u1n

|Xi|≥
3bn
|ai|t

o

)

= s
∫∞

3bn
|ai|t

xu−s−1dx = s
s−u

(

3bn

|ai|t

)u−s

.

Therefore,

rn,u(t) =
s

s − u

(

3bn

t

)u−s n
∑

i=1

|ai|
s

and

max
(

rn,p(t), (rn,2(t))
p/2
)

≤ Rp

(

3bn

t

)p

max





(

3bn

tρn

)−s

,

(

(

3bn

tρn

)−s
)p/2



 ,

where Rp = max

(

s
s−p ,

(

s
s−2

)p/2
)

. Since t ∈
(

0, 3bn

ρn

)

and p > 2, we have

max





(

3bn

tρn

)−s

,

(

(

3bn

tρn

)−s
)p/2



 =

(

3bn

tρn

)−s

.
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Hence,

max
(

rn,p(t), (rn,2(t))
p/2
)

≤ Rp

(

3bn

t

)p−s n
∑

i=1

|ai|
s. (8)

Theorem 1 and (8) imply that

P

(

n
∑

i=1

aiXi ≥ t

)

≤ Kp

(

t−2p+sbp−s
n

)

n
∑

i=1

|ai|
s + exp

(

−
t2

16bn

)

,

where bn = s
s−2

∑n
i=1 a2

i , Kp = 3p−s max

(

s
s−p ,

(

s
s−2

)p/2
)

Cp, and Cp = 22pcp. Using

the optimal form of the Rosenthal constant cp for the symmetric random variables (see
[1], [4] and [10]), we complete the proof of Proposition 1.

For recent asymptotic results on the approximation of the tail probability of a sum
of n i.i.d. random variables having the symmetric Pareto distribution, we refer to [3].

Section 4 below compares the precision between (7) and the bound obtained via
the Fuk-Nagaev inequality.

4 Comparison with the Fuk-Nagaev Inequality

For the sake of clarity, recall the Fuk-Nagaev inequality. The considered version can
be found in [5].

LEMMA 3. (Fuk-Nagaev inequality) Let p ≥ 2 and (Yi)i∈N∗ be a sequence of
independent random variables such that, for any n ∈ N

∗ and any i ∈ {1, . . . , n},
E(Yi) = 0 and E(Y 2

i ) < ∞. Then, for any t > 0, we have

P

(

n
∑

i=1

Yi ≥ t

)

≤

n
∑

i=1

P(Yi ≥ ηt) + (ηt)−p
n
∑

i=1

E
(

Y p
i 1{0≤Yi≤ηt}

)

+ exp

(

−
t2

c∗pdn

)

, (9)

where dn =
∑n

i=1 E(Y 2
i ), η = p

p+2
, and c∗p = ep(p+2)2

2
.

In some cases, (7) can give better results than the Fuk-Nagaev inequality. For
instance, consider the symmetric Pareto distribution (i.e. (Xi)i∈N∗ are i.i.d. with
the probability density function (6) with s > 2). Suppose that n is large. For any
p ∈

(

max( s
2 , 2), s

)

, if we take t = tn = 23/2(sn log n)1/2 (∈
(

0, 3n1−1/s
)

), then we can
balance the two terms of the bound in (7); there exists a constant Qp > 0 such that

P

(

n
∑

i=1

Xi ≥ tn

)

≤ Qpn
1−s/2(log n)−p+s/2 + n1−s/2 ≤ 2n1−s/2. (10)
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For the same tn, the Fuk-Nagaev inequality (9) implies the existence of a constant
Rp > 0 such that, for any p > 0,

P

(

n
∑

i=1

Xi ≥ tn

)

≤ Rpn
1−p/2(logn)−p/2 + n

16
c∗p

(1−s/2)

≤ 2 max

(

n1−p/2, n
16
c∗p

(1−s/2)
)

. (11)

Since c∗p = ep(p+2)2

2 > 8e2 > 16, for n large enough, the rate of convergence in (10)
is faster than the one in (11). Therefore, in this case, (7) gives a better result than
the Fuk-Nagaev inequality. This superiority can be extended to tn = κ(n log n)1/2 for
0 < κ < 23/2s1/2.
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