Counting Primes In The Quadratic Intervals*

Mehdi Hassani ${ }^{\dagger}$

Received 29 November 2008

Abstract

In direction of the classical conjecture of the existence of prime numbers in all quadratic intervals $\left(n^{2},(n+1)^{2}\right)$, we show that there are infinity many positive integer values of n such that this interval contains more than $\frac{n}{1+\log n}$ primes.

For $\alpha \geq 1$, we set $\Delta \pi^{[\alpha]}(n)=\pi\left((n+1)^{\alpha}\right)-\pi\left(n^{\alpha}\right)$, where $\pi(x)$ is the number of primes not exceeding x. A classical conjecture in Number Theory asserts that all quadratic intervals $\left(n^{2},(n+1)^{2}\right)$ contain primes, i.e., the inequality $\Delta \pi^{[2]}(n) \geq 1$ holds for all n. In this short note, related by this conjecture, we show that

$$
\limsup _{n \rightarrow \infty} \frac{\Delta \pi^{[2]}(n)}{n / \log n} \geq 1
$$

To do this, we use the following sharp bounds [1] for the function $\pi(x)$:

$$
\begin{equation*}
L(x):=\frac{x}{\log x}\left(1+\frac{1}{\log x}+\frac{1.8}{\log ^{2} x}\right) \leq \pi(x) \quad(x \geq 32299) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi(x) \leq U(x):=\frac{x}{\log x}\left(1+\frac{1}{\log x}+\frac{2.51}{\log ^{2} x}\right) \quad(x \geq 355991) \tag{2}
\end{equation*}
$$

More precisely, we prove:
THEOREM 1. For infinity many positive integer values of n, the following inequality holds

$$
\frac{n}{1+\log n} \leq \Delta \pi^{[2]}(n)
$$

PROOF. Let $x=n^{2}$ in (1). Then for $n \geq 180=\lceil\sqrt{32299}\rceil$ we obtain

$$
\frac{n^{2}}{2 \log n}\left(1+\frac{1}{2 \log n}+\frac{9}{20 \log ^{2} n}\right)<\pi\left(n^{2}\right) .
$$

[^0]Also, it is clear that for every $n \geq 2$, we have

$$
\frac{n^{2}}{2 \log n}+4-\frac{9}{\log 9}-\sum_{k=3}^{n-1} \frac{\log ^{2} k}{\log \log k}<\frac{n^{2}}{2 \log n}\left(1+\frac{1}{2 \log n}+\frac{9}{20 \log ^{2} n}\right)
$$

We combine these two inequalities to get the following inequality

$$
\frac{n^{2}}{2 \log n}+4-\frac{9}{\log 9}-\sum_{k=3}^{n-1} \frac{\log ^{2} k}{\log \log k}<\pi\left(n^{2}\right) \quad(n \geq 180)
$$

and we rewrite this as follows

$$
\frac{1}{2}\left(\frac{n^{2}}{\log n}-\frac{3^{2}}{\log 3}\right)-\sum_{k=3}^{n-1} \frac{\log ^{2} k}{\log \log k}<\pi\left(n^{2}\right)-\pi\left(3^{2}\right)
$$

This inequality yields that

$$
\sum_{k=3}^{n-1}\left\lfloor\frac{1}{2}\left(\frac{(k+1)^{2}}{\log (k+1)}-\frac{k^{2}}{\log k}\right)-\frac{\log ^{2} k}{\log \log k}\right\rfloor<\sum_{k=3}^{n-1} \pi\left((k+1)^{2}\right)-\pi\left(k^{2}\right) \quad(n \geq 180)
$$

Now, we note that terms under summations on both sides, are non-negative integers, and this asserts that the inequality

$$
\left\lfloor\frac{1}{2}\left(\frac{(n+1)^{2}}{\log (n+1)}-\frac{n^{2}}{\log n}\right)-\frac{\log ^{2} n}{\log \log n}\right\rfloor \leq \pi\left((n+1)^{2}\right)-\pi\left(n^{2}\right)
$$

holds for infinity many positive integer values of n. Since for $n \geq 7413$ the left hand side of the last inequality is greater than $\frac{n}{1+\log n}$, we obtain the result. This completes the proof.

NOTE 1. The following stronger version of the above result has been checked by computer for $3 \leq n \leq 10000$:

$$
-\frac{\log ^{2} n}{\log \log n}-1<\Delta \pi^{[2]}(n)-\frac{1}{2}\left(\frac{(n+1)^{2}}{\log (n+1)}-\frac{n^{2}}{\log n}\right)<\log ^{2} n \log \log n
$$

This may hold for all values of n, "this is a conjecture".
NOTE 2. Let

$$
g(n)=\#\left\{t \mid t \in \mathbb{N}, t \leq n,\left(t^{2},(t+1)^{2}\right) \text { contains a prime }\right\}
$$

Clearly, $\lim _{n \rightarrow \infty} g(n)=\infty$ and $g(n) \leq n$. A lower bound for $g(n)$ is $g(n) \geq M(n)$, where
$M(n)=\max _{m}\left\{\sum_{k=597}^{n}\left\lfloor\frac{1}{2}\left(\frac{(k+1)^{2}}{\log (k+1)}-\frac{k^{2}}{\log k}\right)-\frac{\log ^{2} k}{\log \log k}\right\rfloor \leq \sum_{k=m}^{n} U\left((k+1)^{2}\right)-L\left(k^{2}\right)\right\}$.

This holds for every $n \geq 597$, and obtained by considering Theorem 1. As $n \rightarrow \infty$, we have

$$
M(n)=O(n)
$$

Finally, we guess that for every $\epsilon>0$ there exists $n_{\epsilon} \in \mathbb{N}$ such that for all $n>n_{\epsilon}$ we have $M(n)>(1-\epsilon) n$.

NOTE 3. We end this note by introducing a question. What is the value of the following quantity $\inf \left\{\alpha: \Delta \pi^{[\alpha]}(n) \geq 1\right.$ holds for all $\left.n \in \mathbb{N}\right\}$?

Acknowledgment. I express my thanks to Ejkova Ekaterina (Katya) for her useful comments on the English writing of this note.

References

[1] P. Dusart, Inégalités explicites pour $\psi(X), \theta(X), \pi(X)$ et les nombres premiers, C. R. Math. Acad. Sci. Soc. R. Can., 21(2)(1999), 53-59.

[^0]: *Mathematics Subject Classifications: 11A41, 11N05.
 ${ }^{\dagger}$ Department of Mathematics, Institute for Advanced Studies in Basic Sciences, P.O. Box 451951159, Zanjan, Iran

