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Counting Primes In The Quadratic Intervals*
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Abstract

In direction of the classical conjecture of the existence of prime numbers in all
quadratic intervals (n?, (n + 1)?), we show that there are infinity many positive

integer values of n such that this interval contains more than ﬁ primes.

For a > 1, we set Arl®l(n) = 7((n + 1)%) — 7(n®), where m(z) is the number
of primes not exceeding z. A classical conjecture in Number Theory asserts that all
quadratic intervals (n2, (n+ 1)) contain primes, i.e., the inequality Arl?(n) > 1 holds
for all n. In this short note, related by this conjecture, we show that
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To do this, we use the following sharp bounds [1] for the function 7(x):
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More precisely, we prove:

THEOREM 1. For infinity many positive integer values of n, the following inequal-

ity holds
n

- < 2.
1+4+logn — Ar(n)

PROOF. Let z =n? in (1). Then for n > 180 = [v/32299 | we obtain

n? 14 1 n 9 < 7(n?)
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Also, it is clear that for every n > 2, we have
n—1
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We combine these two inequalities to get the following inequality
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and we rewrite this as follows

1 ([ n? 32 = log?k 9 9
§(logn_log3>_ <m(n’) = m(3).

This inequality yields that
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Now, we note that terms under summations on both sides, are non-negative integers,
and this asserts that the inequality
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holds for infinity many positive integer values of n. Since for n > 7413 the left hand
side of the last inequality is greater than we obtain the result. This completes

_n
1+4+logn’
the proof.

NOTE 1. The following stronger version of the above result has been checked by
computer for 3 < n < 10000:

log® n 1 ( (n+1)2 n?

- log® nloglog n.
2 \log(n +1) 1ogn> < log'mloglogn

This may hold for all values of n, “this is a conjecture”.
NOTE 2. Let
gin) =#{t|teN, t <n, (¢ (t+1)?) contains a prime}.

Clearly, lim,_,oc g(n) = oo and g(n) < n. A lower bound for g(n) is g(n) > M(n),
where
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This holds for every n > 597, and obtained by considering Theorem 1. As n — oo, we
have
M(n) = O(n).

Finally, we guess that for every € > 0 there exists n. € N such that for all n > n, we
have M(n) > (1 — e)n.

NOTE 3. We end this note by introducing a question. What is the value of the
following quantity inf {a . Anl®l(n) > 1 holds for all n € N }?
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