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Abstract

In this paper, we study the existence and uniqueness of mild solutions for

second order initial value problems, with nonlocal conditions, by using the Banach

fixed point theorem and the theory of strongly continuous cosine family.

1 Introduction

Let X be a Banach space with norm ‖.‖ and throughout this paper we assume the
notation J = [0, b]. Let B = C(J, X) be Banach space of all continuous functions from
J into X, endowed with the norm

‖x‖b = sup{‖x(t)‖ : x ∈ B, t ∈ J}.

In the present paper we consider the following second order nonlinear integrodifferential
equations with nonlocal conditions:

x′′(t) = Ax(t) + f
(

t, x(t),

∫ t

0

k(t, s, x(s))ds
)

, t ∈ J, (1)

x(0) = x0 + q(x), (2)

x
′

(0) = y0 + p(x), (3)

where A is an infinitesimal generator of a strongly continuous cosine family {C(t) : t ∈
R} in Banach space X, f : J × X × X → X, k : J × J × X → X, q, p : B → X are
appropriate continuous functions, and x0, y0 are given elements of X.

The work on nonlocal initial value problem (IVP) was initiated by Byszewski. In
[3], Byszewski, using the method of semigroups and the Banach fixed point theorem
proved the existence and uniqueness of mild, strong and classical solution of first order
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102 Second Order Volterra Integrodifferential Equations with Nonlocal Conditions

IVP. For the importance of nonlocal conditions in different fields, the interesting reader
is referred to [1,2,4,8] and the references cited therein.

The aim of the this paper is to study the global existence of solutions of the equations
(1)–(3). The main tool used in our analysis is based on the contraction mapping
principle and the cosine function theory. The theorem proved in this paper generalize
the some results obtained by Hernandez in [5]. We are motivated by the work of
Hernandez in [5] and influenced by the work of Byszewski [3].

The paper is organized as follows: In Section 2, we present the preliminaries and
hypotheses. Section 3 deals with the main results. Finally, in Section 4, we give an
example of ‘wave’ equation to illustrate the application of our theorem.

2 Preliminaries and Hypotheses

In many cases it is advantageous to treat second order abstract differential equations
directly rather than to convert it into order systems. A useful technique for the study of
abstract second order equations is the theory of strongly continuous cosine family. We
refer the reader to [6,10,11] for the necessary concepts about cosine functions. Next,
we only mention a few results and notations needed to establish our results. A one
parameter family {C(t) : t ∈ R} of bounded linear operators mapping the Banach
space X into itself is called a strongly continuous cosine family if and only if

(a) C(0) = I (I is the identity operator);

(b) C(t)x is strongly continuous in t on R for each fixed x ∈ X;

(c) C(t + s) + C(t − s) = 2C(t)C(s) for all t, s ∈ R.

If {C(t) : t ∈ R} is a strongly continuous cosine family in X, then {S(t) : t ∈ R},
associated to the given strongly continuous cosine family, is defined by

S(t)x =

∫ t

0

C(s)xds, x ∈ X, t ∈ R. (4)

For a closed operator G : D(G) ⊂ X → X we denote by [D(G)] the space D(G)
endowed with the graph norm ‖.‖G. The infinitesimal generator A : X → X of a
cosine family {C(t) : t ∈ R} is defined by

Ax =
d2

dt2
C(t)x|t=0, x ∈ D(A),

where D(A) = {x ∈ X : C(.)x ∈ C2(R, X)}. Moreover, let M and N be two positive
constants with M ≥ 1, such that ‖C(t)‖ ≤ M and ‖S(t)‖ ≤ N for every t ∈ J .

In this paper, [D(A)] is the space D(A) = {x ∈ X : C(.)x ∈ C2(R, X)}, endowed
with the norm

‖x‖A = ‖x‖+ ‖Ax‖, x ∈ D(A).

We shall also make use of the space E = {x ∈ X : C(.)x ∈ C1(R, X)}. We refer to
Kisinsky [7] for details, that E endowed with the norm

‖x‖E = ‖x‖ + sup
t∈J

‖AS(t)x‖, x ∈ E,
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is a Banach space. The operator-valued function g(t) =

[

C(t) S(t)
AS(t) C(t)

]

is a strongly

continuous group of bounded linear operators on the space E × X generated by the

operator A =

[

0 I

A 0

]

defined on D(A) ×E. From this, it follows that AS(t) : E → X

is a bounded operator and that AS(t)x → 0, as t → 0, for each x ∈ E. Furthermore,
if x : [0,∞) → X is a locally integrable, then

y(t) =

∫ t

0

S(t − s)x(s)ds

defines an E-valued continuous function, which is a consequence of the fact that

∫ t

0

g(t − s)

[

0
x(s)

]

ds =





∫ t

0
S(t − s)x(s) ds

∫ t

0
C(t − s)x(s) ds





defines an E × X-valued continuous function.

DEFINITION. A function x ∈ B is a mild solution of the problem (1)–(3) if condi-
tion (2) is verified and satisfy

x(t) = C(t)[x0 + q(x)] + S(t)[y0 + p(x)]

+

∫ t

0

S(t − s)f
(

s, x(s),

∫ s

0

k(s, τ, x(τ ))dτ
)

ds, t ∈ J. (5)

We list the following hypotheses for our convenience.

(H1) X is a Banach space with norm ‖.‖ and x0, y0 ∈ X.

(H2) t ∈ J and Br = {z : ‖z‖ ≤ r} ⊂ X.

(H3) f : J × X × X → X is continuous in t on J and there exist positive constants
L1

f , L2
f such that

‖f(t, x1, y1) − f(t, x2, y2)‖ ≤ L1
f‖x1 − x2‖ + L2

f‖y1 − y2‖.

(H4) k : J × J × X → X is continuous in t, s on J and there exists a constant K > 0
such that

‖k(t, s, x1) − k(t, s, x2)‖ ≤ K‖x1 − x2‖.

(H5) q, p : B → X are continuous and there exist constants Lq , Lp > 0 such that

‖q(x1) − q(x2)‖ ≤ Lq‖x1 − x2‖b and

‖p(x1) − p(x2)‖ ≤ Lp‖x1 − x2‖b, for x1, x2 ∈ C(J, Br).

(H6) A is the infinitesimal generator of strongly continuous cosine family {C(t) : t ∈ R}
and S(t), the sine function associated with C(t), which is defined in (4).
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(H7)

L1 = max
t∈J

‖f(t, 0, 0)‖,

K1 = max
t∈J

‖k(t, s, 0)‖,

Q = max
x∈C(J,Br )

‖q(x)‖,

P = max
x∈C(J,Br )

‖p(x)‖.

(H8) The constants ‖x0‖, ‖y0‖, r, b, L1
f , L2

f , K, Lq, Lp, M, N, L1, K1, Q, and P

satisfy the following inequalities:

M [‖x0‖ + Q] + N [‖y0‖ + P ] + N
[

L1
f rb + L2

fKrb2 + L2
fK1b

2 + L1b
]

≤ r,

[MLq + N(Lp + L1
f b + L2

fKb2)] < 1.

We need the following integral inequality, often referred to as Gronwall-Bellman
inequality [9, p.11].

LEMMA 1. Let u and f be continuous functions defined on R+ and c be a nonneg-
ative constant. If

u(t) ≤ c +

∫ t

0

f(s)u(s)ds,

for t ∈ R+, then

u(t) ≤ c exp
(

∫ t

0

f(s)ds
)

,

for t ∈ R+.

3 Existence of Mild Solution

Now we establish our first result.

THEOREM 1. Suppose that the hypotheses [H1] − [H8] hold, then the problem
(1)–(3) has a unique mild solution on J .

PROOF. Let Z = {z ∈ B|z ∈ Br} and define an operator F : Z → Z by

(Fz)(t) = C(t)[x0 + q(z)] + S(t)[y0 + p(z)]

+

∫ t

0

S(t − s)f
(

s, z(s),

∫ s

0

k(s, τ, z(τ ))dτ
)

ds, t ∈ J. (6)

We shall first show that F maps Z into itself. To this end, from the definition of the
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operator F in (6) and our hypotheses, we obtain

‖(Fz)(t)‖ ≤ ‖C(t)[x0 + q(z)] + S(t)[y0 + p(z)]‖

+

∫ t

0

‖S(t − s)f
(

s, z(s),

∫ s

0

k(s, τ, z(τ ))dτ
)

‖ds

≤ M [‖x0‖ + Q] + N [‖y0‖ + P ]

+ N

∫ t

0

[

‖f
(

s, z(s),

∫ s

0

k(s, τ, z(τ ))dτ
)

− f(s, 0, 0) + f(s, 0, 0)‖
]

ds

≤ M [‖x0‖ + Q] + N [‖y0‖ + P ]

+ N

∫ t

0

[

L1
f r + L2

fKrb + L2
fK1b + L1

]

ds

≤ M [‖x0‖ + Q] + N [‖y0‖ + P ]

+ N
[

L1
f rb + L2

fKrb2 + L2
fK1b

2 + L1b
]

≤ r, (7)

for z ∈ Z and t ∈ J . Hence ‖Fz‖b ≤ r. Therefore, the equation (7) shows that the
operator F maps Z into itself.

Now, we shall show that F is a contraction on Z. Then for this every z1, z2 ∈ Z

and t ∈ J , we have

‖(Fz1)(t) − (Fz2)(t)‖ ≤ ‖C(t)‖‖q(z1) − q(z2)‖ + ‖S(t)‖‖p(z1) − p(z2)‖

+

∫ t

0

‖S(t − s)
[

f
(

s, z1(s),

∫ s

0

k(s, τ, z1(τ ))dτ
)

− f
(

s, z2(s),

∫ s

0

k(s, τ, z2(τ ))dτ
)

]

‖ds

≤
[

MLq + NLp

]

‖z1 − z2‖b

+ N

∫ t

0

[

L1
f‖z1(s) − z2(s)‖ + L2

f

∫ s

0

K‖z1(τ ) − z2(τ ))‖dτ
]

ds

≤
[

MLq + N(Lp + L1
f b + L2

fKb2)
]

‖z1 − z2‖b. (8)

If we take l =
[

MLq + N(Lp + L1
f b + L2

fKb2)
]

, then

‖Fz1 − Fz2‖b ≤ l‖z1 − z2‖b

with 0 < l < 1. This shows that the operator F is a contraction on the complete metric
space Z. By the Banach fixed point theorem, the function F has a unique fixed point
in the space Z and this point is the mild solution of problem (1)–(3) on J .

COROLLARY 1. Assume that the hypotheses [H1] − [H8] hold. Furthermore, if

(i) f : J × X × X → X is continuous and there exist constant Lt > 0 such that

‖f(t1, x1, y1) − f(t2 , x1, y1)‖ ≤ Lt|t1 − t2|,
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(ii) k : J × J × X → X is continuous and there exist constant Kt > 0 such that

‖k(t1, s, x1) − k(t2, s, x1)‖ ≤ Kt|t1 − t2|,

(iii)
(

y0 + p(x), x0 + q(x)
)

∈ D(A) × E.

Then x(.) is Lipschitz continuous on J .

PROOF. Since all the assumptions of Theorem 1 are satisfied then the problem
(1)–(3) has a unique mild solution belonging to Z which we denote it by x. Now we
will show that x(.) is Lipschitz continuous on J . Take

L2 = max
t∈J

‖f(t, x(t), 0)‖,

K2 = max
t∈J

‖k(t, s, x(s))‖.

Let t ∈ J and θ is a real number such that t + θ ∈ J . Then, for t ∈ J , and using
the strong continuity of the cosine family, we obtain

‖x(t + θ) − x(t)‖ ≤ C1θ +

∫ θ

0

‖S(t + θ − s)‖

×
[

‖f
(

s, x(s),

∫ s

0

k(s, τ, x(τ ))dτ
)

− f(s, x(s), 0)‖ + ‖f(s, x(s), 0)‖
]

ds

+

∫ t

0

‖S(t − s)‖
[

‖f
(

s + θ, x(s + θ),

∫ s+θ

0

k(s + θ, τ, x(τ ))dτ
)

− f
(

s, x(s),

∫ s

0

k(s, τ, x(τ ))dτ
)

‖
]

ds

≤ C1θ +

∫ θ

0

N
[

Lt|s− s| + L1
f‖x(s) − x(s)‖

+ L2
f‖

∫ s

0

k(s, τ, x(τ ))dτ − 0‖ + L2

]

ds

+

∫ t

0

N
[

Lt|s + θ − s| + L1
f‖x(s + θ) − x(s)‖

+ L2
f‖

∫ s

0

k(s + θ, τ, x(τ ))dτ −

∫ s

0

k(s, τ, x(τ ))dτ‖

+ L2
f‖

∫ s+θ

s

k(s + θ, τ, x(τ ))dτ‖
]

ds

≤ C2θ + NL1
f

∫ t

0

‖x(s + θ) − x(s)‖ds, (9)

where C1, C2 are constants independents of θ and t ∈ J . Using Lemma 1 (with c =
C2θ), we get

‖x(t + θ) − x(t)‖b ≤ C2θe
NL1

f b, for t ∈ J.

Therefore, x(.) is Lipschitz continuous on J .
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4 Application

In this section, we give an example of ‘wave’ equation to illustrate of our main theorem.
Consider the following partial integrodifferential equation:

∂2w(t, u)

∂t2
=

∂2w(t, u)

∂u2
+ µ

(

t, w(t, u),

∫ t

0

a(t, s, w(s, u))ds
)

,

t ∈ J, u ∈ I = [0, π], (10)

w(t, 0) = w(t, π) = 0, t ∈ J, (11)

w(0, u) = x0(u) +

n
∑

i=1

αiw(ti, u), u ∈ I, (12)

∂w(t, u)

∂t
|t=0 = y0(u) +

k
∑

i=1

βiw(si, u), u ∈ I, (13)

where µ : J × R × R → R, a : J × J × R → R are continuous and 0 < ti, si < b,
αi, βi ∈ R are prefixed numbers. Let us take X = L2([0, π]). We define the operator
A : D(A) ⊂ X → X by Aw = wuu, where D(A) = {w(·) ∈ X : w(0) = w(π) = 0}. It is
well known that A is the generator of strongly continuous cosine function {C(t) : t ∈ R}
on X. Furthermore, A has discrete spectrum, the eigenvalues are −n2, n ∈ N, with

corresponding normalized characteristics vectors wn(u) :=
√

2
π

sin(nu), n = 1, 2, 3...,

and the following conditions hold :

(i) {wn : n ∈ N} is an orthonormal basis of X.

(ii) If w ∈ D(A) then Aw = −
∑

∞

n=1 n2 < w, wn > wn.

(iii) For w ∈ X, C(t)w =
∑

∞

n=1 cos(nt) < w, wn > wn. Moreover, from these expres-

sion, it follows that S(t)w =
∑

∞

n=1
sin(nt)

n
< w, wn > wn, that S(t) is compact

for every t > 0 and that ‖C(t)‖ ≤ 1 and ‖S(t)‖ ≤ 1 for every t ∈ J .

(iv) If H denotes the group of translations on X defined by H(t)x(u) = x̃(u + t),
where x̃ is the extension of x with period 2π, then C(t) = 1

2(H(t) + H(−t)).
Hence it follows, see [6], that A = G2, where G is the infinitesimal generator of
the group H and that E = {x ∈ L1(0, π) : x(0) = x(π) = 0}.

Define the functions f : J×X×X → X, a : J×J×X → X, and q, p : C(J, X) → X

as follows

f(t, x, y)u = µ(t, x(u), y(u)),

k(t, s, x)u = a(t, s, x(u)),

q(x)u =

n
∑

i=1

αix(ti, u),

p(x)u =

k
∑

i=1

βix(si, u), u ∈ C(I : X),
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for 0 < ti, si < b and 0 ≤ u ≤ π. Assume these functions satisfy the requirement of
hypotheses. From the above choices of the functions and generator A, the equations
(10)–(13) can be formulated as an abstract nonlinear second order integrodifferential
equations (1)–(3) in Banach space X. Since all hypotheses of the Theorem [1] are
satisfied, therefore, the Theorem 1 can be applied to guarantee the solution of the
nonlinear partial integrodifferential equation (10)–(13).
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