Strong Convergence Theorems Of Cesàro Mean Iterations Of Nonexpansive Mappings*

Yi Shuai Yang, Jing Jing Li and Yun An Cui ${ }^{\dagger}$

Received 15 October 2008

Abstract

In a reflexive and strictly convex Banach space which has uniformly Gâteaux differentiable norm, we consider the problem of the convergence of the Cesàro mean iterations for non-expansive mappings. Under suitable conditions, it was proved that the iterative sequence converges strongly to a fixed point. The results presented in this paper also extend and improve some recent results.

1 Introduction

Let X be a real Banach space and T a mapping with domain $D(T)$ and range $R(T)$ in $X . T$ is called non-expansive if for any $x, y \in D(T)$ such that

$$
\|T x-T y\| \leq\|x-y\|
$$

In 2000, Moudafi [5] introduced viscosity approximation methods and proved that if X is a real Hilbert space, for given $x_{0} \in C$, the sequence $\left\{x_{n}\right\}$ generated by the iteration process

$$
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) T x_{n}, \quad n \geq 0
$$

where $f: C \rightarrow C$ is a contraction mapping and $\left\{\alpha_{n}\right\} \subseteq(0,1)$ satisfies certain conditions, converges strongly to a fixed point of T in C.

In last decades, many mathematical workers studied the iterative algorithms for various mappings, and obtained a series of good results, see $[1,6,11]$.

In 2002, Xu [13] obtained the strong convergence of the iteration sequence $\left\{x_{n}\right\}$ given as follows:

$$
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) \frac{1}{n+1} \sum_{j=0}^{n} S^{j} x_{n} \quad \text { for } n=0,1,2, \ldots,
$$

[^0]for a non-expansive mapping in a uniformly convex and uniformly smooth Banach space. In 2004, Matsushita and Kuroiwa [3] extended the result of Xu to a nonexpansive nonself-mapping in the same space. In 2007, Song and Chen [10] proposed the following viscosity iterative process $\left\{x_{n}\right\}$ given by
$$
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) \frac{1}{n+1} \sum_{j=0}^{n} T^{j} x_{n}, \quad n \geq 0
$$
and proved that the explicit process $\left\{x_{n}\right\}$ converges to a fixed point p of T in a uniformly convex Banach space with weakly sequentially continuous duality mapping and $\left\{\alpha_{n}\right\}$ satisfies certain conditions. Very recently, Wangkeeree [12] extended Song and Chen's result to non-expansive nonself-mapping. The author [12] also extended the result of Matsushita and Kuroiwa [3] to that of a Banach space. The purpose of this paper is to study the strong convergence for the iterative sequence $\left\{x_{n}\right\}$ defined by
\[

$$
\begin{equation*}
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\gamma_{n} \frac{1}{n+1} \sum_{j=0}^{n} T^{j} x_{n} \tag{1}
\end{equation*}
$$

\]

Our results extend and improve the corresponding ones by [8, 9, 10, 13].

2 Preliminaries

Let X be a real Banach space, and let J denote the normalized duality mapping from X into $2^{X^{*}}$ given by

$$
\begin{equation*}
J(x)=\left\{f \in X^{*}:\langle x, f\rangle=\|x\|\|f\|,\|f\|=\|x\|\right\}, \quad \forall x \in X \tag{2}
\end{equation*}
$$

where X^{*} denotes the dual space of X and $\langle\cdot, \cdot\rangle$ denotes the generalized duality pairing. In the sequel, we shall denote the single-valued duality mapping by j, and denote $F(T)=\{x \in X: T x=x\}$. When $\left\{x_{n}\right\}$ is a sequence in X, then $x_{n} \rightarrow x\left(x_{n} \rightharpoonup\right.$ $x, x_{n} \rightharpoondown x$) will denote strong (weak, weak star)convergence of the sequence $\left\{x_{n}\right\}$ to x.

Recall that the norm is said to be uniformly Gâteaux differentiable if for each $x \in S_{X}:=\{x \in X:\|x\|=1\}$ the limit $\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}$ exists uniformly for $x \in S_{X}$. It is well known that every uniformly smooth Banach space has uniformly Gâteaux differentiable norm, and this implies that the duality mapping $J: X \rightarrow 2^{X^{*}}$ defined by (2) is single-valued and uniformly continuous on bounded subset of X from the strong topology of X to the weak star topology of X^{*} (see e.g., [7]). A Banach space X is said to be strictly convex if $\|x\|=\|y\|=1, x \neq y$ implies $\left\|\frac{x+y}{2}\right\|<1$. Now, let us first recall the following lemmas.

LEMMA 1.[4] Let X be a real Banach space. For each $x, y \in X$, the following conclusion holds:

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j(x+y)\rangle, \quad \forall j(x+y) \in J(x+y)
$$

LEMMA 2. [2] Let $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}$ be three nonnegative real sequences satisfying $a_{n+1} \leq\left(1-t_{n}\right) a_{n}+b_{n}+c_{n}$ with $\left\{t_{n}\right\} \subset[0,1], \sum_{n=0}^{\infty} t_{n}=\infty, b_{n}=o\left(t_{n}\right)$, and $\sum_{n=0}^{\infty} c_{n}<\infty$. Then $a_{n} \rightarrow 0$.

LEMMA 3. [11] Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in a Banach space X and let $\left\{\gamma_{n}\right\}$ be a sequence in $[0,1]$ with $0<\lim _{\inf }^{n \rightarrow \infty} \gamma_{n} \leq \limsup _{n \rightarrow \infty} \gamma_{n}<1$. Suppose that $x_{n+1}=\gamma_{n} x_{n}+\left(1-\gamma_{n}\right) y_{n}$ for all $n \in \mathbb{N}$ and

$$
\limsup _{n \rightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

Then $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$.

3 Main Results

Let X be a Banach space, C a nonempty closed convex subset of X, and $T: C \rightarrow C$ a non-expansive mapping with $F(T) \neq \emptyset$ and $f: C \rightarrow C$ be a contraction with contraction constant α. For $t_{n} \in(0,1)$, define a mapping $T_{t_{n}}^{f}: C \rightarrow C$ by

$$
T_{t_{n}}^{f}(z)=t_{n} f(z)+\left(1-t_{n}\right) \frac{1}{n+1} \sum_{i=0}^{n} T^{i} z
$$

Clearly, for each $z \in C$ we have $T_{t_{n}}^{f}$ is a contractive mapping with contraction constant $t=1-t_{n}(1-\alpha)$. Hence, it follows from Banach's contractive principle that $T_{t_{n}}^{f}$ has a unique fixed point (say) $z_{n} \in C$, that is,

$$
\begin{equation*}
z_{n}=t_{n} f\left(z_{n}\right)+\left(1-t_{n}\right) \frac{1}{n+1} \sum_{i=0}^{n} T^{i} z_{n} \tag{3}
\end{equation*}
$$

Now if we set $T_{n}:=\frac{1}{n+1} \sum_{i=0}^{n} T^{i}$, then the mapping $T: C \rightarrow C$ is said to satisfy property (A) if C is bounded and for each $x \in C, \lim _{n \rightarrow \infty}\left\|T_{n} x-T\left(T_{n} x\right)\right\|=0$.

There exist non-expansive mappings satisfying property (A).
EXAMPLE 4. Take $C=[0,1]$ and the norm is the ordinary Euclidean distance on the line. For each $x \in C, T x=\frac{x}{2}$, then $T_{n} x=\frac{1}{n+1} \sum_{i=0}^{n} \frac{x}{2^{i}}$ and $T\left(T_{n} x\right)=$ $\frac{1}{n+1} \sum_{i=0}^{n} \frac{x}{2^{2+1}}$. Hence we have

$$
\begin{aligned}
\left\|T_{n} x-T\left(T_{n} x\right)\right\| & =\left\|\frac{1}{n+1} \sum_{i=0}^{n} \frac{x}{2^{i}}-\frac{1}{n+1} \sum_{i=0}^{n} \frac{x}{2^{i+1}}\right\| \\
& \leq \frac{1}{n+1} \sum_{i=0}^{n}\left\|\frac{x}{2^{i}}-\frac{x}{2^{i+1}}\right\| \\
& \leq \frac{1}{n+1}\left(1-\left(\frac{1}{2}\right)^{n+1}\right) \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. That is T satisfies property (A).
LEMMA 5. Let C be a nonempty bounded closed convex subset of Banach space X and $T: C \rightarrow C$ be a non-expansive mapping. For each $x \in C$ and the Cesàro means $T_{n} x=\frac{1}{n+1} \sum_{i=0}^{n} T^{i} x$,
(i) T_{n} is non-expansive from C to itself.
(ii) $\lim _{n \rightarrow \infty}\left\|T_{n+1} x-T_{n} x\right\|=0$.

PROOF. (i) It is easy to see that T_{n} is a mapping from C to itself. We now prove that T_{n} is non-expansive. In fact, since T is non-expansive, then for each $x, y \in C$ we have

$$
\begin{equation*}
\left\|T_{n} x-T_{n} y\right\| \leq \frac{1}{n+1} \sum_{i=0}^{n}\left\|T^{i} x-T^{i} y\right\| \leq \frac{1}{n+1} \sum_{i=0}^{n}\|x-y\|=\|x-y\| \tag{4}
\end{equation*}
$$

This implies that T_{n} is non-expansive.
(ii) Since C is bounded, it is easy to prove that the sequence $\left\{T^{i} x\right\}$ is bounded and there exists a constant $M>0$ such that $M>\max \left\{\sup _{x \in C}\left\|T^{i} x\right\|: i=0,1, \ldots\right\}$. Thus,

$$
\begin{aligned}
\left\|T_{n+1} x-T_{n} x\right\| & =\left\|\frac{1}{n+2} \sum_{i=0}^{n+1} T^{i} x-\frac{1}{n+1} \sum_{i=0}^{n} T^{i} x\right\| \\
& \leq \frac{\left\|\sum_{i=0}^{n+1} T^{i} x-\sum_{i=0}^{n} T^{i} x\right\|}{n+2}+\frac{1}{(n+2)(n+1)}\left\|\sum_{i=0}^{n} T^{i} x\right\| \\
& \leq \frac{1}{n+2}\left\|T^{n+1} x\right\|+\frac{1}{(n+2)(n+1)} \sum_{i=0}^{n}\left\|T^{i} x\right\| \\
& \leq \frac{1}{n+2} M+\frac{1}{n+2} M=\frac{2 M}{n+2} \rightarrow 0
\end{aligned}
$$

Since X has a uniformly Gâteaux differentiable norm, the duality mapping is uniformly continuous on bounded subsets of X from the strong topology of X to the weak star topology of X^{*} (see e.g., [7]). By Lemma 5 and Theorem 3.2 of [10], it is easy to prove the following theorem.

THEOREM 6. Let X be a reflexive and strictly convex Banach space which has uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of X, $T: C \rightarrow C$ a non-expansive mapping with $F(T) \neq \emptyset$ and $f: C \rightarrow C$ be a contraction with contraction constant α. For any given $z_{0} \in C$, let $\left\{z_{n}\right\}$ be the iterative sequence defined by (3) and $\lim _{n \rightarrow \infty} t_{n}=0$. Suppose that T satisfies property (A). Then $\left\{z_{n}\right\}$ converges strongly to some fixed point p of T.

LEMMA 7. Let C be a nonempty closed convex subset of a real Banach space X, T be a non-expansive self-mapping of C with $F(T) \neq \emptyset$. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ be three real sequences in $[0,1]$ and satisfy (i) $\alpha_{n}+\beta_{n}+\gamma_{n}=1$; (ii) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$; (iii) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$. Let the sequence $\left\{x_{n}\right\}$ be defined by (1) and $T_{n}=\frac{1}{n+1} \sum_{j=0}^{n} T^{j}$, then we have
(a) $\left\{x_{n}\right\}$ is bounded;
(b) $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{n} x_{n}\right\|=0$.

PROOF. (a). From Lemma 5(i) we have T_{n} is non-expansive. We now show that the sequence $\left\{x_{n}\right\}$ is bounded. In fact, take $u \in F(T)$,

$$
\begin{aligned}
\left\|x_{n+1}-u\right\| & =\left\|\alpha_{n}\left(f\left(x_{n}\right)-u\right)+\beta_{n}\left(x_{n}-u\right)+\gamma_{n}\left(T_{n} x_{n}-u\right)\right\| \\
& \leq \alpha_{n}\left\|f\left(x_{n}\right)-u\right\|+\beta_{n}\left\|x_{n}-u\right\|+\gamma_{n}\left\|T_{n} x_{n}-u\right\| \\
& \leq\left(1-(1-\alpha) \alpha_{n}\right)\left\|x_{n}-u\right\|+\alpha_{n}\|f(u)-u\|
\end{aligned}
$$

It implies by induction that

$$
\left\|x_{n}-u\right\| \leq \max \left\{\left\|x_{0}-u\right\|, \frac{1}{1-\alpha}\|f(u)-u\|\right\}
$$

and $\left\{x_{n}\right\}$ is bounded, so are $\left\{f\left(x_{n}\right)\right\},\left\{T x_{n}\right\}$ and $\left\{T_{n} x_{n}\right\}$. Next we rewrite the iteration process (1) as follows

$$
\begin{aligned}
x_{n+1} & =\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\gamma_{n} T_{n} x_{n} \\
& =\beta_{n} x_{n}+\left(1-\beta_{n}\right)\left[\frac{\alpha_{n}}{1-\beta_{n}} f\left(x_{n}\right)+\frac{\gamma_{n}}{1-\beta_{n}} T_{n} x_{n}\right]
\end{aligned}
$$

Thus, if we set $y_{n}=\tilde{\gamma}_{n} f\left(x_{n}\right)+\left(1-\tilde{\gamma}_{n}\right) T_{n} x_{n}$, where $\tilde{\gamma}_{n}=\frac{\alpha_{n}}{1-\beta_{n}}$, then we get

$$
\begin{equation*}
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) y_{n} \tag{5}
\end{equation*}
$$

It is easy to check that $\left\{y_{n}\right\}$ is bounded.
Next we show that $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0$. To see this, we calculate

$$
\begin{aligned}
y_{n+1}-y_{n}= & \tilde{\gamma}_{n+1} f\left(x_{n+1}\right)+\left(1-\tilde{\gamma}_{n+1}\right) T_{n+1} x_{n+1}-\tilde{\gamma}_{n} f\left(x_{n}\right)-\left(1-\tilde{\gamma}_{n}\right) T_{n} x_{n} \\
= & \tilde{\gamma}_{n+1}\left(f\left(x_{n+1}\right)-f\left(x_{n}\right)\right)+\left(1-\tilde{\gamma}_{n+1}\right)\left(T_{n+1} x_{n+1}-T_{n+1} x_{n}\right) \\
& +\left(1-\tilde{\gamma}_{n+1}\right)\left(T_{n+1} x_{n}-T_{n} x_{n}\right)+\left(\tilde{\gamma}_{n+1}-\tilde{\gamma}_{n}\right)\left(f\left(x_{n}\right)-T_{n} x_{n}\right) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left\|y_{n+1}-y_{n}\right\| \leq & \alpha \tilde{\gamma}_{n+1}\left\|x_{n+1}-x_{n}\right\|+\left(1-\tilde{\gamma}_{n+1}\right)\left\|T_{n+1} x_{n}-T_{n} x_{n}\right\| \\
& +\left(1-\tilde{\gamma}_{n+1}\right)\left\|x_{n+1}-x_{n}\right\|+\left|\tilde{\gamma}_{n+1}-\tilde{\gamma}_{n}\right|\left\|f\left(x_{n}\right)-T_{n} x_{n}\right\| .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\left\|y_{n+1}-y_{n}\right\|- & \left\|x_{n+1}-x_{n}\right\| \\
\leq & (\alpha-1) \tilde{\gamma}_{n+1}\left\|x_{n+1}-x_{n}\right\|+\left|\tilde{\gamma}_{n+1}-\tilde{\gamma}_{n}\right|\left\|f\left(x_{n}\right)-T_{n} x_{n}\right\| \\
& +\left(1-\tilde{\gamma}_{n+1}\right)\left\|T_{n+1} x_{n}-T_{n} x_{n}\right\| .
\end{aligned}
$$

Thus, we have from (ii) and Lemma 5(ii) that

$$
\limsup _{n \rightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

Apply Lemma 3 to get $\left\|y_{n}-x_{n}\right\|=0$. Again by Eq. (5) we get

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left(1-\beta_{n}\right)\left\|y_{n}-x_{n}\right\|=0
$$

This implies from (1) that

$$
\begin{aligned}
\left\|x_{n}-T_{n} x_{n}\right\| & \leq\left\|x_{n+1}-x_{n}\right\|+\left\|x_{n+1}-T_{n} x_{n}\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\alpha_{n}\left\|f\left(x_{n}\right)-T_{n} x_{n}\right\|+\beta_{n}\left\|x_{n}-T_{n} x_{n}\right\|
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\left\|x_{n}-T_{n} x_{n}\right\| \leq \frac{1}{1-\beta_{n}}\left\|x_{n+1}-x_{n}\right\|+\frac{\alpha_{n}}{1-\beta_{n}}\left\|f\left(x_{n}\right)-T_{n} x_{n}\right\| \rightarrow 0 \tag{6}
\end{equation*}
$$

We give an example concerning $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$.
EXAMPLE 8. For each $n \geq 1$, we set $\alpha_{n}=\frac{1}{n+4}, \gamma_{n}=1-\alpha_{n}-\beta_{n}$ and

$$
\beta_{n}= \begin{cases}\frac{1}{3}+\frac{1}{n+5} & \text { if } n \text { is odd } \\ \frac{1}{4}+\frac{1}{n+6} & \text { if } n \text { is even }\end{cases}
$$

Then $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ satisfying the assumption of Lemma 7.
THEOREM 9. Let X be a reflexive and strictly convex Banach space which has uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of X, $T: C \rightarrow C$ a non-expansive mapping with $F(T) \neq \emptyset$ and $f: C \rightarrow C$ be a contraction with contraction constant α. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ be three real sequences in $[0,1]$ and satisfy (i) $\alpha_{n}+\beta_{n}+\gamma_{n}=1$; (ii) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$; (iii) $0<$ $\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$. Let the sequence $\left\{x_{n}\right\}$ be defined by (1). Suppose T satisfies property (A), then $\left\{x_{n}\right\}$ converges strongly to fixed point of T.

PROOF. By Lemma 7, We have the following assertions:
(I) $\left\{x_{n}\right\}$ is bounded, so are $\left\{f\left(x_{n}\right)\right\}$ and $\left\{T_{n} x_{n}\right\}$;
(II) $\lim _{n \rightarrow \infty}\left\|T_{n} x_{n}-x_{n}\right\|=0$.

We show that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle p-f(p), j\left(p-x_{n}\right)\right\rangle \leq 0 \tag{7}
\end{equation*}
$$

Indeed we can write $z_{m}-x_{n}=t_{m}\left(f\left(z_{m}\right)-x_{n}\right)+\left(1-t_{m}\right)\left(T_{m} z_{m}-x_{n}\right)$. Putting

$$
\begin{aligned}
P_{n}(m)= & \left(\left\|T_{m} x_{n}-T_{n} x_{n}\right\|+\left\|T_{n} x_{n}-x_{n}\right\|\right)\left(\left\|T_{m} x_{n}-T_{n} x_{n}\right\|\right. \\
& \left.+\left\|T_{n} x_{n}-x_{n}\right\|+2\left\|z_{m}-x_{n}\right\|\right),
\end{aligned}
$$

then we have from (II) that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|T_{m} x_{n}-T_{n} x_{n}\right\| & \leq \limsup _{n \rightarrow \infty}\left\|T_{n-m} x_{n}-x_{n}\right\| \\
& \leq \limsup _{n \rightarrow \infty}\left\|T_{n} x_{n}-x_{n}\right\|=0
\end{aligned}
$$

It follows that $\lim \sup _{n \rightarrow \infty} P_{n}(m)=0$ and using Lemma 1, we obtain

$$
\begin{aligned}
\left\|z_{m}-x_{n}\right\|^{2} \leq & \left(1-t_{m}\right)^{2}\left\|T_{m} z_{m}-x_{n}\right\|^{2}+2 t_{m}\left\langle f\left(z_{m}\right)-x_{n}, J\left(z_{m}-x_{n}\right)\right\rangle \\
\leq & \left(1-t_{m}\right)^{2}\left(\left\|T_{m} z_{m}-T_{m} x_{n}\right\|+\left\|T_{m} x_{n}-T_{n} x_{n}\right\|+\left\|T_{n} x_{n}-x_{n}\right\|\right)^{2} \\
& +2 t_{m}\left\langle f\left(z_{m}\right)-x_{n}, J\left(z_{m}-x_{n}\right)\right\rangle \\
\leq & \left(1-t_{m}\right)^{2}\left\|z_{m}-x_{n}\right\|^{2}+P_{n}(m)+2 t_{m}\left\|z_{m}-x_{n}\right\|^{2} \\
& +2 t_{m}\left\langle f\left(z_{m}\right)-z_{m}, J\left(z_{m}-x_{n}\right)\right\rangle .
\end{aligned}
$$

The last inequality implies

$$
\left\langle z_{m}-f\left(z_{m}\right), J\left(z_{m}-x_{n}\right)\right\rangle \leq \frac{t_{m}}{2}\left\|z_{m}-x_{n}\right\|^{2}+\frac{1}{2 t_{m}} P_{n}(m)
$$

This implies that

$$
\limsup _{n \rightarrow \infty}\left\langle z_{m}-f\left(z_{m}\right), J\left(z_{m}-x_{n}\right)\right\rangle \leq M \frac{t_{m}}{2}
$$

where $M>0$ is a constant such that $M \geq\left\|z_{m}-x_{n}\right\|^{2}$ for all $m, n \geq 1$. Taking the $\lim \sup$ as $m \rightarrow \infty$, by Theorem 6 we obtain (7).

Finally we show that $x_{n} \rightarrow p$. Apply Lemma 1 and (1) to get

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2}= & \left\|\alpha_{n}\left(f\left(x_{n}\right)-p\right)+\beta_{n}\left(x_{n}-p\right)+\gamma_{n}\left(T_{n} x_{n}-p\right)\right\|^{2} \\
\leq & \left\|\beta_{n}\left(x_{n}-p\right)+\gamma_{n}\left(T_{n} x_{n}-p\right)\right\|^{2}+2 \alpha_{n}\left\langle f\left(x_{n}\right)-p, J\left(x_{n+1}-p\right)\right\rangle \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-p\right\|^{2}+2 \alpha_{n}\left\langle f\left(x_{n}\right)-f(p), J\left(x_{n+1}-p\right)\right\rangle \\
& +2 \alpha_{n}\left\langle f(p)-p, J\left(x_{n+1}-p\right)\right\rangle \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-p\right\|^{2}+2 \alpha \alpha_{n}\left\|x_{n}-p\right\|\left\|x_{n+1}-p\right\| \\
& +2 \alpha_{n}\left\langle f(p)-p, J\left(x_{n+1}-p\right)\right\rangle \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-p\right\|^{2}+\alpha \alpha_{n}\left(\left\|x_{n}-p\right\|^{2}+\left\|x_{n+1}-p\right\|^{2}\right) \\
& +2 \alpha_{n}\left\langle f(p)-p, J\left(x_{n+1}-p\right)\right\rangle .
\end{aligned}
$$

It then follows that

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} \leq & \frac{1-\alpha_{n}(2-\alpha)}{1-\alpha \alpha_{n}}\left\|x_{n}-p\right\|^{2}+\frac{\alpha_{n}^{2}}{1-\alpha \alpha_{n}}\left\|x_{n}-p\right\|^{2} \\
& +\frac{2 \alpha_{n}}{1-\alpha \alpha_{n}}\left\langle f(p)-p, J\left(x_{n+1}-p\right)\right\rangle \\
\leq & \left(1-\frac{2(1-\alpha) \alpha_{n}}{1-\alpha \alpha_{n}}\right)\left\|x_{n}-p\right\|^{2}+\frac{\alpha_{n}^{2}}{1-\alpha \alpha_{n}}\left\|x_{n}-p\right\|^{2} \\
& +\frac{2 \alpha_{n}}{1-\alpha \alpha_{n}}\left\langle f(p)-p, J\left(x_{n+1}-p\right)\right\rangle \\
\leq & \left(1-\tilde{t}_{n}\right)\left\|x_{n}-p\right\|^{2}+\frac{\alpha_{n}}{1-\alpha \alpha_{n}}\left(\alpha_{n} M+2 \tilde{\gamma}_{n+1}\right)
\end{aligned}
$$

where $\tilde{t}_{n}=\frac{2(1-\alpha) \alpha_{n}}{1-\alpha \alpha_{n}}, M>\sup _{n}\left\|x_{n}-p\right\|^{2}$ and $\tilde{\gamma}_{n+1}=\max \left\{\left\langle f(p)-p, J\left(x_{n+1}-p\right)\right\rangle, 0\right\}$. It is easily seen that $\lim _{n \rightarrow \infty} \tilde{\gamma}_{n+1}=0$. Apply Lemma 2 to conclude that $x_{n} \rightarrow p$.

Acknowledgment. The authors would like to thank Prof. Nikhat Bano and the anonymous referee for his valuable suggestions which helps to improve this manuscript.

References

[1] K. Kumar and B. K. Sharma, A generalized iterative algorithm for generalized successively pseudocontractions, Appl. Math. E-Notes, 6(2006), 202-210.
[2] L. S. Liu, Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., 194(1995), 114-125.
[3] S. Matsushita and D. Kuroiwa, Strong convergence of averaging iterations of nonexpansive nonself-mappings, J. Math. Anal. Appl., 294(2004), 206-214.
[4] C. H. Morales and J. S. Jung, Convergence of paths for pseudo-contractive mappings in Banach spaces, Proc. Amer. Math. Soc., 128(2000), 3411-3419.
[5] A. Moudafi, Viscosity approximation methods for fixed point problems, J. Math. Anal. Appl., 241(2000) 46-55.
[6] A. Rafiq, A convergence theorem for Mann fixed point iteration procedure, Appl. Math. E-Notes, 6(2006), 289-293.
[7] S. Reich, On the asymptotic behavior of nonlinear semigroups and the range of accretive operators, J. Math. Anal. Appl., 79(1981), 113-126.
[8] T. Shimizu and W. Takahashi, Strong convergence theorem for asymptotically nonexpansive mappings, Nonlinear Anal., 26(1996), 265-272.
[9] N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc., 125(1997), 3641-3645.
[10] Y. S. Song and R. D. Chen, Viscosity approximative methods to Cesaàro means for non-expansive mappings, Appl. Math. Comput., 186(2007), 1120-1128.
[11] T. Suzuki, Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl., 1(2005), 103-123.
[12] R. Wangkeeree, Viscosity approximative methods to Cesàro mean iterations for nonexpansive nonself-mappings in Banach spaces, Appl. Math. Comput., 201(2008), 239-249.
[13] H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., $66(2002), 240-256$.

[^0]: *Mathematics Subject Classifications: 47H09, 47H10.
 ${ }^{\dagger}$ Department of Mathematics, Harbin University of Science and Technology, Harbin 150080, P. R. China

