# An Answer To The Conjecture Of Satnoianu* 

Yu Miao ${ }^{\dagger}$, Shou Fang Xu ${ }^{\ddagger}$, Ying Xia Chen ${ }^{\S}$

Received 23 September 2008


#### Abstract

In this short paper, we obtain an answer to the conjecture of Satnoianu by a simpler method in the view of probability theory. The conditions of our results are independent with some known answers.


## 1 Introduction

In [2], Mazur proposed the open problem: if $a, b, c$ are positive real numbers such that $a b c>2^{9}$, then

$$
\begin{equation*}
\frac{1}{\sqrt{1+a}}+\frac{1}{\sqrt{1+b}}+\frac{1}{\sqrt{1+c}} \geq \frac{3}{\sqrt{1+\sqrt[3]{a b c}}} \tag{1}
\end{equation*}
$$

In fact, in 2001, Satnoianu [3] has studied the following inequality

$$
\begin{equation*}
\sum_{\text {cyclic }} \frac{a}{\sqrt{a^{2}+\lambda b c}} \geq \frac{3}{\sqrt{1+\lambda}}(a, b, c>0, \lambda \geq 8) \tag{2}
\end{equation*}
$$

In addition, Satnoianu proposed the following inequality as a conjecture

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\frac{x_{i}^{n-1}}{x_{i}^{n-1}+\lambda \prod_{k \neq i} x_{k}}\right)^{\frac{1}{n-1}} \geq n(1+\lambda)^{-\frac{1}{n-1}} . \tag{3}
\end{equation*}
$$

Shortly after the proposed conjecture, Janous [1] gave the proof of the inequality (3) by means of Lagrange's method of multipliers and Satnoianu [4] obtained a generalized version of inequality (3) as follows

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\frac{x_{i}^{n-1}}{\alpha x_{i}^{n-1}+\beta \prod_{k \neq i} x_{k}}\right)^{\frac{1}{n-1}} \geq n(\alpha+\beta)^{-\frac{1}{n-1}} \tag{4}
\end{equation*}
$$

[^0]where $n \geq 2, x_{i}>0, i=1,2, \ldots, n, \alpha, \beta>0$ and $\beta \geq\left(n^{n-1}-1\right) \alpha$. Recently, Wu [5] established the following more generalized inequality
\[

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\frac{x_{i}^{q}}{\alpha x_{i}^{q}+\beta \prod_{k=1}^{n} x_{k}^{q / n}}\right)^{\frac{1}{p}} \geq n(\alpha+\beta)^{-\frac{1}{p}} \tag{5}
\end{equation*}
$$

\]

where $\alpha, \beta, x_{i}(i=1,2, \ldots, n)$ are positive real numbers, $q \in \mathbb{R}$, and $p<0$, or $p>0$ with $\beta \geq\left(n^{\max \{p, 1\}}-1\right) \alpha$.

If we rewrite the inequality (5) as

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{\alpha+\beta \exp \left\{\frac{1}{n} \sum_{k=1}^{n} \log x_{k}^{q}-\log x_{i}^{q}\right\}}\right)^{\frac{1}{p}} \geq(\alpha+\beta)^{-\frac{1}{p}} \tag{6}
\end{equation*}
$$

then it is easy to see that (6) is equivalent to

$$
\begin{equation*}
E\left(\frac{X}{\alpha X+\beta \exp \{E \log X\}}\right)^{\frac{1}{p}} \geq(\alpha+\beta)^{-\frac{1}{p}} \tag{7}
\end{equation*}
$$

where $X$ is a random variable taking values $x_{1}^{q}, x_{2}^{q}, \ldots, x_{n}^{q}$ with the probability $P(X=$ $\left.x_{i}^{q}\right)=\frac{1}{n}$ and $E(X)$ denotes the mathematical expectation of $X$. In fact, $X$ can be an any positive random variable. Hence we could generalize the conjecture of Satnoianu as: "Under what conditions does the inequality (7) holds?"

## 2 Main Results

Before our works, we need give the following useful
LEMMA 1. Let $f(x)=\left(a+b e^{x}\right)^{p}$, where $a, b>0, x \in \mathbb{R}$. If $p>0$ or if $p<0$ with $p b e^{x}+a \leq 0$, then $f(x)$ is a convex function.

PROOF. The method is elementary. Since a twice differentiable function of one variable is convex on an interval if and only if its second derivative is non-negative and

$$
\begin{aligned}
& f^{\prime}(x)=p b\left(a+b e^{x}\right)^{p-1} e^{x} \\
& f^{\prime \prime}(x)= p(p-1) b^{2}\left(a+b e^{x}\right)^{p-2} e^{2 x}+p b\left(a+b e^{x}\right)^{p-1} e^{x} \\
&=p b e^{x}\left(a+b e^{x}\right)^{p-2}\left[(p-1) b e^{x}+\left(a+b e^{x}\right)\right] \\
&=p b e^{x}\left(a+b e^{x}\right)^{p-2}\left[p b e^{x}+a\right]
\end{aligned}
$$

the desired result is easy to be obtained.
PROPOSITION 1. Let random variable $X>0$ a.e. and $\alpha, \beta>0$. If $p<0$ or if $p>0$ with $X \leq \beta e^{E \log X} /(\alpha p)$ a.e., then we have

$$
\begin{equation*}
E\left(\frac{X}{\alpha X+\beta \exp \{E \log X\}}\right)^{\frac{1}{p}} \geq(\alpha+\beta)^{-\frac{1}{p}} \tag{8}
\end{equation*}
$$

PROOF. Let $Y=-\log X$, then (8) is equivalent to

$$
\begin{equation*}
E\left(\frac{1}{\alpha+\beta e^{-E Y} e^{Y}}\right)^{\frac{1}{p}} \geq(\alpha+\beta)^{-\frac{1}{p}} \tag{9}
\end{equation*}
$$

By Lemma 1. and Jensen's inequality, the proof is easy to be obtained.
From the above proposition, we have the following result and the proof is easy.
THEOREM 1. Let $\alpha, \beta>0$ and $X$ be a discrete random variable taking positive numbers $x_{1}, x_{2}, \ldots, x_{n}$ with $P\left(X=x_{i}\right)=a_{i}$, where $\sum_{i=1}^{n} a_{i}=1$. In addition, let $M=\max \left\{x_{i}, 1 \leq i \leq n\right\}$ and $m=\min \left\{x_{i}, 1 \leq i \leq n\right\}$. If $p<0$ or if $p>0$ with $M / m \leq \beta /(\alpha p)$, then we have

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}\left(\frac{x_{i}}{\alpha x_{i}+\beta \prod_{k=1}^{n} x_{k}^{a_{i}}}\right)^{\frac{1}{p}} \geq(\alpha+\beta)^{-\frac{1}{p}} \tag{10}
\end{equation*}
$$

In particular, if $a_{1}=a_{2}=\cdots=a_{n}=\frac{1}{n}$, we have

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\frac{x_{i}}{\alpha x_{i}+\beta \prod_{k=1}^{n} x_{k}^{1 / n}}\right)^{\frac{1}{p}} \geq n(\alpha+\beta)^{-\frac{1}{p}} \tag{11}
\end{equation*}
$$

REMARK 1. By comparing the conditions of Theorem 1. with the ones of Wu in [5], we find that these assumptions are independent each other. In fact, the only difference is between " $M / m \leq \beta /(\alpha p)$ " and " $\beta \geq\left(n^{\max \{p, 1\}}-1\right) \alpha$ ", from that we can not judge which condition is weaker than the other.

REMARK 2. For the infinite sequence $\left\{x_{i}\right\}_{i=1}^{\infty}$, let $\sum_{i=1}^{\infty} a_{i}=1, M=\sup _{i \geq 1} x_{i}<$ $\infty$ and $m=\inf _{i \geq 1} x_{i}>0$, then by the same discussions as Theorem 1., we have

$$
\begin{equation*}
\sum_{i=1}^{\infty} a_{i}\left(\frac{x_{i}}{\alpha x_{i}+\beta \prod_{k=1}^{\infty} x_{k}^{a_{i}}}\right)^{\frac{1}{p}} \geq(\alpha+\beta)^{-\frac{1}{p}} \tag{12}
\end{equation*}
$$

The following result is the integral form of the conjecture of Satnoianu.
THEOREM 2. Let $\alpha, \beta>0$ and $X$ be a positive continuous random variable on $(0, \infty)$ with the probability density function $f(x)$. If $p<0$ or if $p>0$ with $X \leq \beta e^{E \log X} /(\alpha p)$ a.e., then we have

$$
\begin{equation*}
\int_{0}^{\infty}\left(\frac{x}{\alpha x+\beta \exp \left\{\int_{0}^{\infty} \log x f(x) d x\right\}}\right)^{\frac{1}{p}} f(x) d x \geq(\alpha+\beta)^{-\frac{1}{p}} \tag{13}
\end{equation*}
$$

In particular, if $X$ possesses uniform distribution on the support interval $[a, b]$, i.e., the probability density function of $X$ is equal to $(b-a)^{-1}, x \in[a, b]$ and zero elsewhere. Then if $b / a \leq \beta /(\alpha p)$, then we have

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b}\left(\frac{x}{\alpha x+\beta \exp \left\{\frac{1}{b-a} \int_{a}^{b} \log x d x\right\}}\right)^{\frac{1}{p}} d x \geq(\alpha+\beta)^{-\frac{1}{p}} \tag{14}
\end{equation*}
$$

## References

[1] W. Janous, On a conjecture of Razvan Satnoianu, Gazeta Matematica Seria A, XX(XCIX) (2002), 97-103.
[2] M. Mazur, Problem 10944, Amer. Math. Monthly, 109(2002), 475.
[3] R. A. Satnoianu, The proof of the conjectured inequality from theMathematical Olympiad, Washington DC 2001, Gazeta Matematica, 106 (2001), 390-393.
[4] R. A. Satnoianu, Improved GA-convexity inequalities, J. Inequal. Pure Appl. Math., 3(5)(2002), Art. 82.
[5] S. H. Wu, Note on a conjecture of R. A. Satnoianu, Math. Inequal. Appl. $12(1)(2009), 147-151$.


[^0]:    *Mathematics Subject Classifications: 26D15
    ${ }^{\dagger}$ College of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan, 453007, P. R. China. E-mail: yumiao728@yahoo.com.cn
    $\ddagger$ Department of mathematics, Xinxiang University, Xinxiang, Henan, 453000, P. R. China
    §College of Mathematics and Information Science, Pingdingshan University, Pingdingshan, Henan, 467000, P. R. China

