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Abstract

In this short paper, we obtain an answer to the conjecture of Satnoianu by a

simpler method in the view of probability theory. The conditions of our results

are independent with some known answers.

1 Introduction

In [2], Mazur proposed the open problem: if a, b, c are positive real numbers such that
abc > 29, then

1√
1 + a

+
1√

1 + b
+

1√
1 + c

≥ 3
√
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3
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abc
. (1)

In fact, in 2001, Satnoianu [3] has studied the following inequality

∑

cyclic

a√
a2 + λbc

≥ 3√
1 + λ

(a, b, c > 0, λ ≥ 8). (2)

In addition, Satnoianu proposed the following inequality as a conjecture
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)
1
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≥ n(1 + λ)−
1

n−1 . (3)

Shortly after the proposed conjecture, Janous [1] gave the proof of the inequality (3)
by means of Lagrange’s method of multipliers and Satnoianu [4] obtained a generalized
version of inequality (3) as follows
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where n ≥ 2, xi > 0, i = 1, 2, . . . , n, α, β > 0 and β ≥ (nn−1 − 1)α. Recently, Wu [5]
established the following more generalized inequality

n
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xq
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αxq
i + β
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x
q/n
k

) 1

p

≥ n(α + β)−
1

p , (5)

where α, β, xi(i = 1, 2, . . . , n) are positive real numbers, q ∈ R, and p < 0, or p > 0
with β ≥ (nmax{p,1} − 1)α.

If we rewrite the inequality (5) as

1

n
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(
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) 1
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≥ (α + β)−
1

p , (6)

then it is easy to see that (6) is equivalent to

E

(

X

αX + β exp {E log X}

)
1

p

≥ (α + β)−
1

p , (7)

where X is a random variable taking values xq
1, x

q
2, . . . , x

q
n with the probability P (X =

xq
i ) = 1

n and E(X) denotes the mathematical expectation of X. In fact, X can be an
any positive random variable. Hence we could generalize the conjecture of Satnoianu
as: ”Under what conditions does the inequality (7) holds?”

2 Main Results

Before our works, we need give the following useful

LEMMA 1. Let f(x) = (a + bex)
p
, where a, b > 0, x ∈ R. If p > 0 or if p < 0 with

pbex + a ≤ 0, then f(x) is a convex function.

PROOF. The method is elementary. Since a twice differentiable function of one
variable is convex on an interval if and only if its second derivative is non-negative and

f ′(x) = pb(a + bex)p−1ex,

f ′′(x) = p(p − 1)b2(a + bex)p−2e2x + pb(a + bex)p−1ex

= pbex(a + bex)p−2[(p − 1)bex + (a + bex)]

= pbex(a + bex)p−2[pbex + a],

the desired result is easy to be obtained.

PROPOSITION 1. Let random variable X > 0 a.e. and α, β > 0. If p < 0 or if
p > 0 with X ≤ βeE log X/(αp) a.e., then we have

E
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X
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PROOF. Let Y = − log X, then (8) is equivalent to

E

(

1

α + βe−EY eY

) 1

p

≥ (α + β)−
1

p . (9)

By Lemma 1. and Jensen’s inequality, the proof is easy to be obtained.

From the above proposition, we have the following result and the proof is easy.

THEOREM 1. Let α, β > 0 and X be a discrete random variable taking positive
numbers x1, x2, . . . , xn with P (X = xi) = ai, where

∑n
i=1 ai = 1. In addition, let

M = max{xi, 1 ≤ i ≤ n} and m = min{xi, 1 ≤ i ≤ n}. If p < 0 or if p > 0 with
M/m ≤ β/(αp), then we have
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In particular, if a1 = a2 = · · · = an = 1
n , we have
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REMARK 1. By comparing the conditions of Theorem 1. with the ones of Wu
in [5], we find that these assumptions are independent each other. In fact, the only
difference is between “M/m ≤ β/(αp)” and “β ≥ (nmax{p,1} − 1)α”, from that we can
not judge which condition is weaker than the other.

REMARK 2. For the infinite sequence {xi}∞i=1, let
∑∞

i=1
ai = 1, M = supi≥1 xi <

∞ and m = infi≥1 xi > 0, then by the same discussions as Theorem 1., we have
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) 1
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The following result is the integral form of the conjecture of Satnoianu.

THEOREM 2. Let α, β > 0 and X be a positive continuous random variable
on (0,∞) with the probability density function f(x). If p < 0 or if p > 0 with
X ≤ βeE log X/(αp) a.e., then we have

∫ ∞

0

(

x

αx + β exp
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0
logxf(x)dx

}

) 1

p

f(x)dx ≥ (α + β)−
1

p . (13)

In particular, if X possesses uniform distribution on the support interval [a, b], i.e., the
probability density function of X is equal to (b − a)−1, x ∈ [a, b] and zero elsewhere.
Then if b/a ≤ β/(αp), then we have
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