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Abstract

In this paper, by using Ahlfors’ theory of covering surfaces, we prove that for

quasi-meromorphic mapping f satisfying lim supr→∞
T (r,f)

(log r)2
= +∞, there exists

at least one Nevanlinna direction dealing with multiple values.

1 Introduction

In 1997, the value distribution theory of meromorphic functions due to R. Nevanlinna
(see [3,7] for standard references) was extended to the corresponding theory of quasi-
meromorphic mappings by Sun and Yang [1,6]. The singular direction for f(z) is one
of the main objects studied in the theory of value distribution of quasi-meromorphic
mappings. In [6], Sun and Yang obtained an existence theorem of the Borel direction by
the filling disc theorem of quasi-meromorphic mappings. Later, several types of singular
directions have been introduced in the literature. In 1999, Chen and Sun[1] defined
Nevanlinna directions of quasi-meromorphic mappings on the complex plane and proved
that there exists at least one Nevanlinna direction for quasi-meromorphic mappings of
infinite order and it is also one Borel direction with respect to the type function.
In 2004, Liu and Yang [4] studied the connections between the Julia direction and
the Nevanlinna direction of quasi-meromorphic mappings by applying a fundamental
inequality of an angular domain of quasi-meromorphic mappings.

In 2006, Li and Gu [5] proved that for a quasi-meromorphic mapping f satisfying

lim supr→∞
T (r,f)
(log r)2

= +∞, there exists at least one Nevanlinna direction. However,

it was not discussed whether there exists one Nevanlinna direction dealing with its
multiple values. In this paper we investigate this problem. In the following, some
definitions and notations are given, which can be found in [6].

DEFINITION 1. Let f be a complex and continuous functions in a region D. If
for any rectangle R = {x + iy; a < x < b, c < y < d} in D, f(x + iy) is an absolutely
continuous function of y for almost every x ∈ (a, b), and f(x + iy) is an absolutely
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198 Nevanlinna Direction of Quasi-Meromorphic Mapping

continuous function of x for almost every y ∈ (c, d), then f is said to be absolutely
continuous on lines in the region D. We also call that f is ACL in D.

DEFINITION 2. Let f be a homemorphism from D to D′. If (i) f is ACL in D,
and (ii) there exists K ≥ 1 such that f(z) = u(x, y) + iv(x, y) satisfies |fz| + |fz̄| ≤
K(|fz| − |fz̄|) a. e. in D, then f is called an univalent K-quasiconformal mapping in
D. If D′ is a region on Riemann sphere V , then f is named an univalent K-quasi-
meromorphic mapping in D.

DEFINITION 3. (see [6]) Let f be a complex and continuous function in the region
D. For every point z0 in D, if there is a neighborhood U(⊂ D) and a positive integer
n depending on z0, such that

F (z) =

{

(f(z))
1

n , f(z0) = ∞,

(f(z) − f(z0))
1

n + f(z0), f(z0) 6= ∞.

is an univalent K-quasi-meromorphic mapping, then f is named n-valent K-quasi-
merom-orphic mapping at point z0. If f is n-valent K-quasi-meromorphic at every
point of D, then f is called a K-quasi-meromorphic mapping in D.

Let V be the Riemann sphere whose diameter is 1. For any complex number a and
any positive real number r, let n(r, a) be the number of zero points of f(z) − a in disc
|z| < r, counted according to their multiplicities, n̄l)(r, a) be the number of distinct
zeros of f(z) − a with multiplicity ≤ l in disc |z| < r. Let Fr be the covering surface
f(z) = u(x, y) + iv(x, y) on sphere V and S(r, f) be the average covering times of Fr

to V ,

S(r, f) =
|Fr|
|V | =

1

π

∫ r

0

∫ 2π

0

|fz|2 − |fz̄|2
(1 + |f |2)2 rdϕdr,

where |Fr| and |V | are the areas of Fr and V respectively,

T (r, f) =

∫ r

0

S(r, f)

r
dr,

N(r, a) =

∫ r

0

n(t, a) − n(0, a)

t
dt + n(0, a) log r,

N̄ l)(r, a) =

∫ r

0

n̄l)(t, a) − n̄l)(0, a)

t
dt + n̄l)(0, a) logr.

Let Ω(ϕ1, ϕ2) = {z ∈ C : ϕ1 < arg z < ϕ2}(0 ≤ ϕ1 < ϕ2 ≤ 2π), we denote

S(r, ϕ1, ϕ2; f) =
|Fr|
|V | =

1

π

∫ r

0

∫ ϕ2

ϕ1

|fz|2 − |fz̄|2
(1 + |f |2)2 rdϕdr,

T (r, ϕ1, ϕ2; f) =

∫ r

0

S(r, ϕ1, ϕ2; f)

r
dr,

when ϕ1 = 0, ϕ2 = 2π, we note S(r, 0, 2π; f) = S(r, f), T (r, 0, 2π; f) = T (r, f).
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For any complex number a, let n(r, ϕ1, ϕ2; a) be the number of zero points of
f(z) − a in sector Ω(ϕ1, ϕ2) ∩ {z : |z| < r}, counted according to their multiplici-
ties, n̄l)(r, ϕ1, ϕ2; a) the number of distinct zeros of f(z) − a with multiplicity ≤ l in
sector Ω(ϕ1, ϕ2) ∩ {z : |z| < r}. We define

N(r, ϕ1, ϕ2; a) =

∫ r

0

n(t, ϕ1, ϕ2; a) − n(0, ϕ1, ϕ2; a)

t
dt + n(0, ϕ1, ϕ2; a) log r,

N̄ l)(r, ϕ1, ϕ2; a) =

∫ r

0

n̄l)(t, ϕ1, ϕ2; a) − n̄l)(0, ϕ1, ϕ2; a)

t
dt + n̄l)(0, ϕ1, ϕ2; a) log r.

Next we give the definitions concerning the Nevanlinna direction of quasi-meromorphic
mappings dealing with multiple values.

DEFINITION 4. Let f be a K-quasi-meromorphic mapping and l(≥ 3) be a positive
integer. Then we call Θl)(a, ϕ0) the deficiency of the value a in the direction ∆(ϕ0):
arg z = ϕ0, 0 ≤ ϕ0 < 2π. We call a the deficiency value of f in the direction ∆(ϕ0) if
Θl)(a, ϕ0) > 0, where

Θl)(a, ϕ0) = 1 − lim sup
ε→+0

lim sup
r→∞

N̄ l)(r, ϕ0 − ε, ϕ0 + ε; a)

T (r, ϕ0 − ε, ϕ0 + ε; f)
.

DEFINITION 5. We call ∆(ϕ0) : arg z = ϕ0 the Nevanlinna direction of f dealing
with multiple values if

∑

a∈C∪{∞}

Θl)(a, ϕ0) ≤
2(l + 1)

l

holds for any finitely many deficient value a, where l(≥ 3) is a positive integer.

In this paper, we will prove the following theorem which improves the corresponding
result in [5].

THEOREM 1. Let f be the K-quasi-meromorphic mapping and l(≥ 3) be a positive
integer. If

lim sup
r→∞

T (r, f)

(log r)2
= +∞,

then there exists at least one Nevanlinna direction dealing with multiple values.

2 Some Lemmas

Let F be a finite covering surface of F1, F is bounded by a finite number of analytic
closed Jordan curves, its boundary is denoted by ∂F . We call the part of ∂F , which
lies the interior of F1, the relative boundary of F , and denote its length by L. Let D

be a domain of F1, its boundary consists of finite number of points or analytic closed
Jordan curves, and F (D) be the part of F , which lies above D. We denote the area of
F, F1, F (D) and D by |F |, |F1|, |F (D)| and |D|, respectively. We call

S =
|F |
|F1|

, S(D) =
|F (D)|
|D|
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the mean covering numbering of F relative to F1, D, respectively.

LEMMA 1. (See [2, Lemma 4]) Let F be a simply connected finite covering surfaces
on the unit sphere V , Dj(j = 1, 2, . . . , q) be q(≥ 3) disjoint disks with radius δ(> 0),

and n
l)
j be the number of simply connected islands in F (Dj), which consist of not more

than l sheets, then
q

∑

ν=1

nl)
ν > (q − 2 − 2

l
)S − C

δ3
L,

where C = 960 + 2πq and l ≥ 3 is a positive integer.

LEMMA 2. (See [5, Lemma 2.2] Let f(z) be a K-quasi-meromorphic mapping
on the angular domain Ω(ϕ0 − δ, ϕ0 + δ), a1, . . . , aq(q ≤ 3) are distinct points on
the unit sphere V and the spherical distance of any two points is no small than γ ∈
(0, 1

2 ). Let F0 = V \ {a1, a2, . . . , aq}, D = Ω(r, ϕ0 − ϕ, ϕ0 + ϕ) ∩ {z : |z| > 1} \
{f−1(a1), f

−1(a2), . . . , f
−1(a1)} and Dr = D ∩ {z : |z| < r}(r > 1), Fr = f(Dr) ⊂ V .

Then for any positive number ϕ satisfying 0 < ϕ < δ, we have

L(∂f(Dr )) ≤
√

2Kπ
[

d(S(r,ϕ0−ϕ,ϕ0+ϕ;f)−S(1,ϕ0−ϕ,ϕ0+ϕ;f))
dϕ

]
1

2

(log r)
1

2

+
√

2Kδrµ
1

2 (r, ϕ0 − δ, ϕ0 + δ) +
√

2Kδµ
1

2 (1, ϕ0 − δ, ϕ0 + δ),
(1)

where Fr is the covering surface of F0 and L(∂f(Dr)) is the length of the relative
boundary of Fr relative to F0, and

µ(r, ϕ0 − δ, ϕ0 + δ) =

∫ ϕ0+δ

ϕ0−δ

|fz|2 − |fz̄|2
(1 + |f(reiϕ|2)2 rdϕ.

LEMMA 3. Let f(z) be a K-quasi-meromorphic mapping on the angular domain
Ω(ϕ0 − δ, ϕ0 + δ), a1, . . . , aq(q ≤ 3) are distinct points on the unit sphere V and the
spherical distance of any two points is no small than γ ∈ (0, 1

2). Then

(q − 2 − 2
l
)S(r, ϕ0 − ϕ, ϕ0 + ϕ; f)

≤ ∑q
j=1 n̄l)(r, ϕ0 − δ, ϕ0 + δ; aj) + 2C2γ−6π2K

(q−2− 2

l
)(δ−ϕ)

log r

+(q − 2 − 2
l
)S(1, ϕ0 − ϕ, ϕ0 + ϕ; f)

+2Cγ−3δ
1

2 K
1

2 r
1

2 µ
1

2 (r, ϕ0 − δ, ϕ0 + δ)

+2Cγ−3δ
1

2 K
1

2 µ
1

2 (1, ϕ0 − δ, ϕ0 + δ)

(2)

and
(q − 2 − 2

l
)T (r, ϕ0 − ϕ, ϕ0 + ϕ; f)

≤ ∑q

j=1 N̄ l)(r, ϕ0 − δ, ϕ0 + δ; aj) + 2C2γ−6π2K

(q−2−2

l
)(δ−ϕ)

(log r)2

+(q − 2 − 2
l
)T (1, ϕ0 − ϕ, ϕ0 + ϕ; f)

+(q − 2 − 2
l
)S(1, ϕ0 − ϕ, ϕ0 + ϕ; f) log r

+2Cγ−3δ
1

2 K
1

2 µ
1

2 (1, ϕ0 − δ, ϕ0 + δ) log r + λ(r, ϕ0 − δ, ϕ0 + δ)

(3)

for any ϕ, 0 < ϕ < δ, where C is a constant depending only on {a1, a2, . . . , aq}. λ(r, ϕ0−
δ, ϕ0 + δ) = 2Cγ−3δ

1

2 K
1

2

∫ r

1
(µ(r,ϕ0−δ,ϕ0+δ)

r
)

1

2 dr,

λ(r, ϕ0 − δ, ϕ0 + δ) ≤ 2Cγ−3δ
1

2 π
1

2 K
1

2 (T (r, ϕ0 − δ, ϕ0 + δ; f))
1

2 log T (r, ϕ0− δ, ϕ0 + δ; f)
(4)
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outside a set Eδ of r at most, where Eδ consists of a series of intervals and satisfies
∫

Eδ

(r log r)−1dr < +∞.

PROOF. Under the condition of Lemma 3 and Lemma 2, we have

S(Dr) = S(r, ϕ0 − ϕ, ϕ0 + ϕ; f) − S(1, ϕ0 − ϕ, ϕ0 + ϕ; f). (5)

Using Lemma 1, we easily obtain

(q − 2 − 2
l
)[S(r, ϕ0 − ϕ, ϕ0 + ϕ; f) − S(1, ϕ0 − ϕ, ϕ0 + ϕ; f)]

≤ ∑q
j=1 n̄l)(r, ϕ0 − δ, ϕ0 + δ; aj) + Cγ−3L(∂(Dr)).

(6)

where C is a constant depending only on {a1, a2, . . . , aq}.
Taking (1) into (6), we have

(q − 2 − 2
l
)[S(r, ϕ0 − ϕ, ϕ0 + ϕ; f) − S(1, ϕ0 − ϕ, ϕ0 + ϕ; f)]

−∑q
j=1 n̄l)(r, ϕ0 − δ, ϕ0 + δ; aj) − Cγ−3

√
2Kδrµ

1

2 (r, ϕ0 − δ, ϕ0 + δ)

−Cγ−3
√

2Kδµ
1

2 (1, ϕ0 − δ, ϕ0 + δ)

≤ Cγ−3
√

2Kπ
[

d(S(r,ϕ0−ϕ,ϕ0+ϕ;f)−S(1,ϕ0−ϕ,ϕ0+ϕ;f))
dϕ

]
1

2

(log r)
1

2 .

(7)

We denote

A(r, ϕ) = (q − 2 − 2
l
)[S(r, ϕ0 − ϕ, ϕ0 + ϕ; f) − S(1, ϕ0 − ϕ, ϕ0 + ϕ; f)]

−∑q

j=1 n̄l)(r, ϕ0 − δ, ϕ0 + δ; aj) − Cγ−3
√

2Kδrµ
1

2 (r, ϕ0 − δ, ϕ0 + δ)

−Cγ−3
√

2Kδµ
1

2 (1, ϕ0 − δ, ϕ0 + δ).
(8)

By (7) and (8), we have

A(r, ϕ) ≤ Cγ−3
√

2Kπ

[

d(S(r, ϕ0 − ϕ, ϕ0 + ϕ; f) − S(1, ϕ0 − ϕ, ϕ0 + ϕ; f))

dϕ

]
1

2

(log r)
1

2 .

(9)
From (8) we verify that A(r, ϕ) is an increasing function of ϕ. Thus, there exists

δ0 > 0, such that A(r, ϕ) ≤ 0 for 0 < ϕ ≤ δ0 and A(r, ϕ) > 0 for ϕ > δ0.
We shall take the two cases in the following into consideration:
Case 1. For ϕ > δ0, by (9) we have

[A(r, ϕ)]2 ≤ 2C2γ−6Kπ2 d(S(r, ϕ0 − ϕ, ϕ0 + ϕ; f) − S(1, ϕ0 − ϕ, ϕ0 + ϕ; f))

dϕ
log r.

(10)
By (8) we have

dA(r, ϕ)

dϕ
=

(

q − 2 − 2

l

)

d(S(r, ϕ0 − ϕ, ϕ0 + ϕ; f) − S(1, ϕ0 − ϕ, ϕ0 + ϕ; f))

dϕ
. (11)

From (10) and (11) we have

[A(r, ϕ)]2 ≤ 2C2γ−6Kπ2 log r

q − 2 − 2
l

· dA(r, ϕ)

dϕ
,
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i.e.,

dϕ ≤ 2C2γ−6Kπ2 log r

q − 2 − 2
l

· dA(r, ϕ)

[A(r, ϕ)]2
.

Integrating two sides of the inequality leads to

δ − ϕ =

∫ δ

ϕ

dϕ ≤ 2C2γ−6Kπ2 log r

q − 2 − 2
l

∫ δ

ϕ

dA(r, ϕ)

[A(r, ϕ)]2
≤ 2C2γ−6Kπ2 log r

q − 2 − 2
l

· 1

A(r, ϕ)
.

Thus

A(r, ϕ) ≤ 2C2γ−6Kπ2 log r
(

q − 2 − 2
l

)

(δ − ϕ)
. (12)

Case 2. Because A(r, ϕ) ≤ 0 when 0 < ϕ ≤ δ0 , the above inequality also holds.
By Cases 1 and Case 2, we can easily get

A(r, ϕ) ≤ 2C2γ−6Kπ2 log r
(

q − 2 − 2
l

)

(δ − ϕ)
,

for any ϕ, 0 < ϕ < δ. Combining with the definition of A(r, ϕ), we can easily get (2).
By dividing r and then integrating from 1 to r on two sides of (2) we get

(q − 2 − 2
l
)T (r, ϕ0 − ϕ, ϕ0 + ϕ; f)

≤ ∑q

j=1 N̄ l)(r, ϕ0 − δ, ϕ0 + δ; aj) + 2C2γ−6π2K

(q−2− 2

l
)(δ−ϕ)

(log r)2

+(q − 2 − 2
l
)T (1, ϕ0 − ϕ, ϕ0 + ϕ; f)

+(q − 2 − 2
l
)S(1, ϕ0 − ϕ, ϕ0 + ϕ; f) log r

+2Cγ−3δ
1

2 K
1

2 µ
1

2 (1, ϕ0 − δ, ϕ0 + δ) log r

+2Cγ−3δ
1

2 K
1

2

∫ r

1
[µ(r,ϕ0−δ,ϕ0+δ)

r
]
1

2 dr.

(13)

From the definitions of S(r, ϕ1, ϕ2; f), µ(r, ϕ0 − δ, ϕ0 + δ) and λ(r, ϕ0 − δ, ϕ0 + δ), and
Schwarz’s inequality we get

(λ(r, ϕ0 − δ, ϕ0 + δ))2 = 4C2γ−6δK

[

∫ r

1

(

µ(r,ϕ0−δ,ϕ0+δ)
r

)
1

2

dr

]2

≤ 4C2γ−6δK
∫ r

1 µ(r, ϕ0 − δ, ϕ0 + δ)dr
∫ r

1 r−1dr

≤ 4C2γ−6πδK log r
∫ r

1
dS(r, ϕ0 − δ, ϕ0 + δ; f)

≤ 4C2γ−6πδKS(r, ϕ0 − δ, ϕ0 + δ; f) log r

= 4C2γ−6πδK
dT (r,ϕ0−δ,ϕ0+δ;f)

dr
r log r.

(14)

Choosing r0, r0 > 0 such that T (r0, ϕ0 − δ, ϕ0 + δ; f) > 1, and setting Eδ = {r0 < r <

∞ : (λ(r, ϕ0 − δ, ϕ0 + δ))2 > 4C2γ−6πδKT (r, ϕ0 − δ, ϕ0 + δ; f)(log T (r, ϕ0 − δ, ϕ0 +
δ; f))2}, we have

∫

Eδ

dr
r log r

≤
∫

Eδ

dT (r,ϕ0−δ,ϕ0+δ;f)
T (r,ϕ0−δ,ϕ0+δ;f)(log T (r,ϕ0−δ,ϕ0+δ;f))2

≤ [logT (r0, ϕ0 − δ, ϕ0 + δ; f)]−1 < +∞.
(15)

Then when r > r0 and r 6∈ Eδ, (4) holds.
Thus, we complete the proof of Lemma 3.
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3 Proof of Theorem 1

By hypothesis of Theorem 1, there exists an increasing sequence rn(rn → +∞, as
n → ∞) such that

lim
n→∞

T (rn, f)

(log rn)2
= +∞.

By the finite covering theorem at [0, 2π], we know that there exists some ϕ0 such that
ϕ0 ∈ [0, 2π] and

lim sup
n→∞

T (rn, ϕ0 − ϕ, ϕ0 + ϕ; f)

T (rn, f)
> 0 (16)

for arbitrary ϕ, 0 < ϕ < ϕ0. Hence, we claim that the direction ∆(ϕ0) : arg z = ϕ0 is
the Nevanlinna direction in Theorem 1.

Otherwise, for an arbitrary positive number ε0 > 0, there exists some complex
numbers {aj}(j = 1, 2, . . . , q)(q ≥ 3) such that the following inequality holds:

l

l + 1

q
∑

j=1

Θl)(aj, ϕ0) > 2 + 2ε0.

From Definition 4, we have

lim sup
ϕ→+0

lim sup
r→+∞

q
∑

j=1

N
l)
(r, ϕ0 − ϕ, ϕ0 + ϕ; aj)

T (r, ϕ0 − ϕ, ϕ0 + ϕ; f)
< q − 2(l + 1)

l
− 2(l + 1)ε0

l
.

Therefore, there exists some ϕ′ such that ϕ′ > 0 and the following inequality holds:

lim sup
r→+∞

q
∑

j=1

N
l)
(r, ϕ0 − ϕ, ϕ0 + ϕ; aj)

T (r, ϕ0 − ϕ, ϕ0 + ϕ; f)
< q − 2(l + 1)

l
− 2(l + 1)ε0

l
(17)

for an arbitrary ϕ, 0 < ϕ < ϕ′.
For any ϕ, 0 < ϕ < ϕ′, we define an increasing function as follows:

T (ϕ) = lim sup
n→+∞

T (rn, ϕ0 − ϕ, ϕ0 + ϕ; f)

T (rn, f)
.

From (16) we deduce T (ϕ) > 0. So we have 0 < T (ϕ) ≤ 1. By the increasing of T (ϕ) in
the interval [0, ϕ′] and the continuous theorem for monotonous functions, we see that
all discontinuous points of T (ϕ) constitute a countable set at most. Then, by Lemma
3, we can get

(q − 2 − 2

l
)T (rn, ϕ0 − ϕ, ϕ0 + ϕ; f) ≤

q
∑

j=1

N̄ l)(rn, ϕ0 − δ, ϕ0 + δ; aj) + O(log rn)2

+O((T (rn, ϕ0 − δ, ϕ0 + δ; f))
1

2 log T (rn, ϕ0 − δ, ϕ0 + δ; f)) (18)

for 0 < ϕ < δ < ϕ′ and rn 6∈ Eδ.
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From (17), (18) and the definition of T (ϕ) we can obtain

(

q − 2(l + 1)

l

)

T (ϕ) <

(

q − 2(l + 1)

l
− 2(l + 1)ε0

l

)

T (δ). (19)

From (16) we get
T (ϕ) → T (δ), ϕ → δ. (20)

Combining (20) with (19), we can obtain T (δ) = 0. This contradicts T (δ) > 0. The
proof is complete.

Acknowledgements. We thank the referee(s) for reading the manuscript very
carefully and making a number of valuable and kind comments which improved the
presentation. The research was supported by the Research Projects of Jingdezhen
Ceramic Institute and the Soft Scientific and Technological Research Projects of Jiangxi
Province ([2008]147).

References

[1] T. W. Chen and D. C.Sun, Singular directions of quasi-meromorphic mappings,
Acta Mathematica Scientia,Series A, 19(4)(1999), 472–478.

[2] Z. S. Gao, On the multiple values of quasiconformal mappings, J. of Math.,
19(2)(1999), 121–126 (in Chinese).

[3] W. Hayman, Meromorphic Functions, Clarendon, Oxford, 1964.

[4] M. S. Liu and Y. Yang, The Nevanlinna direction and Julia direction of quasi-
meromorphic mappings, Acta Mathematica Scientia, Series A, 24(5)(2004), 578–
582.

[5] C. H. Li and Y. X. Gu, A fundamental inequality for K-quasi-meromorphic map-
pings in an angular domain and its application, Acta Mathematica Sinica, Ser. A,
49(6)(2006), 1279–1287.

[6] D. C. Sun and L. Yang, Value distribution of K-quasi-meromorphic mappings,
Science in China, Series A, 27(2)(1997), 132–139.

[7] L. Yang, Value Distribution Theory, Springer-Verlag, Belin, 1993.


