
Applied Mathematics E-Notes, 9(2009), 192-196 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

A Remark On A Uniqueness Result For A Boundary

Value Problem Of Eighth-Order∗

Cristian–Paul Danet†

Received 21 June 2008

Abstract

A maximum principle is presented for a function defined on solutions of a

class of eighth-order elliptic equations. As an application, the uniqueness of the

solution for the corresponding boundary value problem in a strictly convex plane

domain is established.

1 Introduction

Dunninger [2] developed a maximum principle from which follows the uniqueness for
the classical solution of the boundary value problem

{

∆2u + cu = f in Ω ⊂ IRn,
u = g, ∆u = h on ∂Ω,

where c > 0 is a constant.

We note that a uniqueness result for solutions of a more general fourth-order elliptic
equation, under the same boundary conditions follows from Corollary 1 of [7].

The uniqueness question for solutions of the boundary value problem (here a, b ≥
0 and c > 0 in Ω)

{

∆3u − a(x)∆2u + b(x)∆u− c(x)u = f in Ω ⊂ IRn,
u = g, ∆u = h, ∆2u = i on ∂Ω,

has been settled in a satisfactory way by Schaefer [5] (the constant coefficient case with
n=2) and Goyal and Goyal [3] (the constant and variable coefficient case).

In this note we consider classical solutions (i.e., C8(Ω) ∩C6(Ω)) of

∆4u − a(x)∆3u + b(x)∆2u − c(x)∆u + du = 0, (1)

in the bounded plane domain Ω, where a, b, c and d satisfy (2)–(5), and present ([1]) a
maximum principle for a certain function defined on the solutions of (1). Then we use
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the maximum principle to prove a uniqueness result for the corresponding boundary
value problem.

Throughout we shall be concerned with functions defined on a bounded domain
Ω ⊂ IR2. We shall let ∇, ∆ and∆m denote respectively the gradient operator, the
Laplace operator, the m - times iterated Laplace operator.

2 Uniqueness Result

The uniqueness result can be inferred from the following maximum principle [1]

LEMMA 1. Let u be a classical solution of (1). Assume that

a > 0, ∆(1/a) ≤ 0 in Ω, (2)

b ≥ 0 in Ω, (3)

c > 0, ∆(1/c) ≤ 0 in Ω, (4)

and

d > 0 (5)

are satisfied. Then the functional

P =
c(x)

2
(∆u)2 +

a(x)

2
(∆2u)

2
+ d(|∇u|2 − u∆u) + |∇(∆2u)|2 − ∆2u∆3u (6)

assumes its maximum value on ∂Ω. The result also holds if a and c are nonnegative
constants.

THEOREM 1. There is at most one classical solution of the boundary value problem

{

∆4u − a∆3u + b(x)∆2u − c∆u + du = f in Ω,
u = g, ∆u = h, ∆2u = i, ∆3u = j on ∂Ω,

(7)

where a, c ≥ 0, b satisfies (3), d satisfies (5), and the curvature k of ∂Ω (Ω is a smooth
domain ) is strictly positive.

PROOF. The proof is similar to the proof of Theorem 2.3 in [1]. It is displayed
here for completeness.

We suppose that u1 and u2 are two solutions of (7). Defining v = u1 − u2, we see
that v satisfies (1) and

v = ∆v = ∆2v = ∆3v = 0 on ∂Ω. (8)

By virtue of Lemma 1

P ≤ max
∂Ω

P in Ω. (9)
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Since v = ∆2v = 0 on ∂Ω, we have

|∇v| =
∣

∣

∣

∂v

∂n

∣

∣

∣
on ∂Ω (10)

and

|∇(∆2v)| =
∣

∣

∣

∂(∆2v)

∂n

∣

∣

∣
on ∂Ω, (11)

where ∂/∂n denotes the outward directed normal derivative operator.
Now suppose that

∂v

∂n
=

∂(∆2v)

∂n
= 0 on ∂Ω. (12)

By (8), (9), (10), (11) and (12) we get

P ≤ 0 in Ω,

which gives
−dv∆v − ∆2v∆3v ≤ 0 in Ω. (13)

Integrating (13) over Ω and using Green’s identity we obtain

∫

Ω

d|∇v|2 +

∫

Ω

|∇(∆2v)|2 ≤ 0.

Hence v ≡ 0 in Ω by continuity.
Thus we will have the required uniqueness if we prove (12).

We now prove (12).

A calculation gives (using (10) and (11))

∂P

∂n
= c∆v

∂(∆v)

∂n
+ a∆2v

∂(∆2v)

∂n
+ 2d

∂v

∂n

∂2v

∂n2
−

d∆v
∂v

∂n
− dv

∂(∆v)

∂n
+ 2

∂(∆2v)

∂n

∂2(∆2v)

∂n2
− ∆3v

∂(∆2v)

∂n
− ∆2v

∂(∆3v)

∂n
on ∂Ω.

Using (8) we obtain

∂P

∂n
= 2d

∂v

∂n

∂2v

∂n2
+ 2

∂(∆2v)

∂n

∂2(∆2v)

∂n2
on ∂Ω. (14)

By introducing normal coordinates in the neighbourhood of the boundary, we can
write

∆v =
∂2v

∂n2
+

∂2v

∂s2
+ k

∂v

∂n
, (15)

where ∂/∂s denotes the tangential derivative operator.

Since v = ∆v = 0 on ∂Ω, relation (15) becomes

∂2v

∂n2
= −k

∂v

∂n
.
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Similarly, since ∆2v = ∆3v = 0 on ∂Ω we have

∂2(∆2v)

∂n2
= −k

∂(∆2v)

∂n
.

Hence (14) becomes

∂P

∂n
= −2dk

(

∂v

∂n

)2

− 2k

(

∂(∆2v)

∂n

)2

≤ 0 on ∂Ω.

This contradicts Hopf’s lemma at a point x0 ∈ ∂Ω, where P (P 6≡ constant) assumes
its maximum value (by Lemma 1).

Hence P constant in Ω.

Thus
∂P

∂n
= 0 on ∂Ω

and consequently (12) is established.

It is known that once we have a maximum principle for an equation, the nonexis-
tence of a nontrivial solution of the zero - boundary problem will be a consequence.
An inverse result, of establishing a maximum principle from some nonexistence results
was carried out by Schaefer and Walter (Theorem 2, [6]).

Using their result and our Theorem 1, we obtain the following maximum principle

COROLLARY 1. Suppose that u is a classical solution of the boundary value
problem

{

∆4u − a∆3u + b∆2u − c∆u + du = 0 in Ω,
∆u = 0, ∆2u = 0, ∆3u = 0 on ∂Ω,

where a, b, c ≥ 0, d satisfies (5), and the curvature k of ∂Ω (Ω is a smooth domain) is
strictly positive. Then there exists a constant K > 0 such that

max
Ω

|u| ≤ K max
∂Ω

|u|.

3 Remarks

1. If a = b = c = d = 0 in Theorem 1, then the dimension and geometry conditions
are redundant (see Theorem 8, [4]).

2. We note that some sign conditions on the coefficients a, b, c, d are needed in
Theorem 1 (and perhaps some geometry conditions) since u1(x, y) ≡ 0 and u2(x, y) =
sin x siny satisfy

{

∆4u − 16u = 0 in Ω,
u = ∆u = ∆2u = ∆3u = 0 on ∂Ω,

where Ω = (0, 2π) × (0, 2π).
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3. Various other P - functions could be derived as well.
For example the functions

P1 = (∆3u − a∆2u − bu)2/2 + (d∆2u + u)2/2 + (c − b)(|∇(∆u)|2 − ∆u∆2u)

(b − d2)(∆2u)2/2 + (ad + b2)(|∇u|2 − u∆u) + (ac − ab − d)(∆u)2/2

+(bc − b2 − 1)u2/2,

where c > b ≥ d2, c − b ≥ max{d/a, 1/b}, d, a > 0 ;

P2 = (a∆3u + d∆u)2/2 + (a2∆2u + du)2/2 + a2(c + d)(|∇(∆u)|2 − ∆u∆2u)

+a(ab − d − a3)(∆2u)2/2 + (abd − d2 − a2d)(∆u)2/2 + d2(a − 1)u2/2,

where a ≥ 1, ab− d − a3 ≥ 0, c ≥ 0, b, d > 0,
take a maximum on ∂Ω (u is a solution of (1)).
Analogously as before we are led to some uniqueness results for problem (7), which are
weaker than the result stated in Theorem 1.

4. It seems very likely that the following is true:
There exists at most one classical solution (C2m(Ω) ∩ C2m−2(Ω), m ≥ 5) of

{

∆mu − am−1∆
m−1u + am−2∆

m−2u + · · ·+ (−1)ma0u = f in Ω,
u = g1, ∆u = g2, . . . , ∆m−1u = gm on ∂Ω,

where the constants ai ≥ 0, i = 1, . . . , m−1, a0 > 0 and the curvature k of ∂Ω (Ω ⊂ IR2

is a smooth domain ) is strictly positive. This is still an open question.
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