Positive Solutions For A Singular Second Order Boundary Value Problem*

Wen-Shu Zhou ${ }^{\dagger}$

Received 28 January 2008

Abstract

In this paper we obtain sufficient conditions of existence of positive solutions for a singular second order boundary value problem. Our argument is based on regularization technique, upper and lower solutions method and the Arzelá-Ascoli theorem.

1 Introduction

In [1], Bertsch and Ughi investigated the following BVP which arises in study of a class of degenerate parabolic equations (also see $[2,3]$):

$$
\left\{\begin{array}{l}
u^{\prime \prime}+\frac{N-1}{t} u^{\prime}-\gamma \frac{\left|u^{\prime}\right|^{2}}{u}+1=0, \quad 0<t<1 \tag{1}\\
u(1)=u^{\prime}(0)=0
\end{array}\right.
$$

where N is a positive integer and $\gamma>0$, and obtained one decreasing positive solution via theories of ordinary differential equation. In the very recent paper [4], the authors considered the following BVP:

$$
\left\{\begin{array}{l}
u^{\prime \prime}+\frac{\lambda}{t} u^{\prime}-\gamma \frac{\left|u^{\prime}\right|^{2}}{u}+f(t)=0, \quad 0<t<1 \tag{2}\\
u(1)=u^{\prime}(0)=0
\end{array}\right.
$$

and proved, by the classical method of elliptic regularization, that BVP (2) has one positive solution which is not decreasing in the case: $\lambda>0, \gamma>\frac{1+\lambda}{2}, f \in C[0,1]$ and $f>0$ on $[0,1]$.

This paper considers the more general problem:

$$
\left\{\begin{array}{l}
u^{\prime \prime}+\lambda \frac{u^{\prime}}{t^{m}}-\gamma \frac{\left|u^{\prime}\right|^{2}}{u^{p}}+f(t)=0, \quad 0<t<1 \tag{3}\\
u(1)=u^{\prime}(0)=0
\end{array}\right.
$$

[^0]where $\lambda, m, \gamma, p>0, f(t) \in C[0,1]$ and $f(t)>0$ on $[0,1]$. By a solution to BVP (3) we mean a function $u \in C^{2}(0,1) \cap C^{1}[0,1]$ which is positive in (0,1) and satisfies (3). By an argument based on the regularization technique, upper and lower solutions and the Arzelá-Ascoli theorem, we obtain sufficient conditions of existence of solutions. Our main result reads

THEOREM 1. Let $\lambda \in(0,+\infty), p \in[1,2), m \in(0, p /(2-p)]$, and let $f \in C[0,1]$ and $f(t)>0$ on $[0,1]$. If $\gamma>\inf _{t \geqslant 1} \mathcal{G}(t)$, where $\mathcal{G}(t): \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is defined by

$$
\mathcal{G}(t)=\frac{p+\lambda(2-p)}{2} t^{p-1}+\frac{(2-p)^{2} \max _{[0,1]} f}{4} t^{p-2}
$$

then BVP (3) has at least one solution.
REMARK 1. If $p=1$, then $\inf _{t \geqslant 1} \mathcal{G}(t)=\frac{1+\lambda}{2}$. Clearly, Theorem 1 is an extension of the existence results of $[1,4]$.

REMARK 2. Let $p \in(1,2)$, and denote

$$
T_{0}=\frac{(2-p)^{3} \max _{[0,1]} f}{2(p-1)[p+\lambda(2-p)]}, \quad T_{*}=\left\{\begin{aligned}
T_{0}, & T_{0} \geqslant 1 \\
1, & T_{0}<1
\end{aligned}\right.
$$

Then $\inf _{t \geqslant 1} \mathcal{G}(t)=\mathcal{G}\left(T_{*}\right)$. Indeed, since $\lim _{t \rightarrow 0^{+}} \mathcal{G}(t)=\lim _{t \rightarrow+\infty} \mathcal{G}(t)=+\infty, \mathcal{G}(t)$ must reach a minimum at some point $t \in(0, \infty)$ such that $\mathcal{G}^{\prime}(t)=0$, and then, solving this equation yields $t=T_{0}$ and hence, $\inf _{t>0} \mathcal{G}(t)=\mathcal{G}\left(T_{0}\right)$. Since $\mathcal{G}^{\prime}(t) \geqslant 0$ for all $t \geqslant T_{0}$, we see that $\inf _{t \geqslant 1} \mathcal{G}(t)=\inf _{t>0} \mathcal{G}(t)=\mathcal{G}\left(T_{0}\right)$ if $T_{0} \geqslant 1$, and $\inf _{t \geqslant 1} \mathcal{G}(t)=\mathcal{G}(1)$ if $T_{0}<1$.

2 Proof of Theorem 1

Let $\epsilon \in(0,1)$, and define $H_{\epsilon}(t, v, \xi):(0,1) \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$
H_{\epsilon}(t, v, \xi)=-\lambda \frac{\xi}{\left(t+\epsilon^{1 / \alpha}\right)^{m}}+\gamma \frac{|\xi|^{2}}{\left[I_{\epsilon}(v)\right]^{p}}-f(t)
$$

where $\alpha=\frac{2}{2-p}$, and $I_{\epsilon}(v)=v+\epsilon^{2}$ if $v \geqslant 0, I_{\epsilon}(v)=\epsilon^{2}$ if $v<0$. We have

$$
\begin{align*}
\left|H_{\epsilon}(t, v, \xi)\right| & \leqslant \frac{\lambda}{\epsilon^{m / \alpha}}|\xi|+\gamma \frac{|\xi|^{2}}{\epsilon^{2 p}}+\max _{[0,1]} f \\
& \leqslant \frac{\lambda}{\epsilon^{m / \alpha}}\left(1+|\xi|^{2}\right)+\frac{\gamma}{\epsilon^{2 p}}|\xi|^{2}+\max _{[0,1]} f \tag{4}\\
& \leqslant\left(\frac{\lambda}{\epsilon^{m / \alpha}}+\frac{\gamma}{\epsilon^{2 p}}+\max _{[0,1]} f\right) \mathcal{H}(|\xi|)
\end{align*}
$$

for all $(t, v, \xi) \in(0,1) \times \mathbb{R} \times \mathbb{R}$, where $\mathcal{H}(s)=1+s^{2}$ for $s \geqslant 0$. Define operator $L_{\epsilon}: C^{2}(0,1) \rightarrow C(0,1)$ by

$$
\left(L_{\epsilon} u\right)(t)=-u^{\prime \prime}+H_{\epsilon}\left(t, u, u^{\prime}\right), \quad 0<t<1
$$

Consider the problem:

$$
\left\{\begin{array}{l}
\left(L_{\epsilon} u\right)(t)=0, \quad 0<t<1, \tag{5}\\
u(1)=u(0)=0 .
\end{array}\right.
$$

We call u an upper solution (lower solution) of problem (5) if $L_{\epsilon} u \geqslant(\leqslant) 0$ in $(0,1)$, and $u(t) \geqslant(\leqslant) 0$ for $t=0,1$.

We will apply the upper and lower solutions method (see [5, pp.153, Theorem 2.5.4] or [6, Theorem 1 and Remark 2.4]) to obtain one positive solution of problem (5). Note that $\int_{0}^{+\infty} \frac{s}{\mathcal{H}(s)} d s=+\infty$. Then it suffices to find a lower solution and an upper solution to obtain a solution.

LEMMA 1. Let $U=C_{1} W^{\alpha}$ with $\alpha=\frac{2}{2-p}$, where $W(t)=t(1-t)$ and $C_{1} \in(0,1)$ such that $2 C_{1} \alpha+C_{1} \alpha \lambda 2^{\alpha-1-m}+\gamma C_{1}^{2-p} \alpha^{2} \leqslant \min _{[0,1]} f(t)$. Then U is a lower solution of problem (5).

PROOF. Note that $W^{\prime \prime}=-2, W \leqslant t$ and $\left|W^{\prime}\right| \leqslant 1$ on $[0,1]$. Since $U>0$ in $(0,1)$, some calculations give by noticing $\alpha \geqslant 1+m$

$$
\begin{aligned}
L_{\epsilon} U= & -U^{\prime \prime}-\lambda \frac{U^{\prime}}{\left(t+\epsilon^{1 / \alpha}\right)^{m}}+\gamma \frac{\left|U^{\prime}\right|^{2}}{\left(U+\epsilon^{2}\right)^{p}}-f(t) \\
\leqslant & -U^{\prime \prime}-\lambda \frac{U^{\prime}}{\left(t+\epsilon^{1 / \alpha}\right)^{m}}+\gamma \frac{\left|U^{\prime}\right|^{2}}{U^{p}}-f(t) \\
= & 2 C_{1} \alpha W^{\alpha-1}-C_{1} \alpha(\alpha-1) W^{\alpha-2}\left|W^{\prime}\right|^{2} \\
& +C_{1} \alpha \lambda \frac{W^{\alpha-1} W^{\prime}}{\left(t+\epsilon^{1 / \alpha}\right)^{m}}+\gamma C_{1}^{2-p} \alpha^{2}\left|W^{\prime}\right|^{2}-f(t) \\
\leqslant & 2 C_{1} \alpha W^{\alpha-1}+C_{1} \alpha \lambda \frac{W^{\alpha-1} W^{\prime}}{\left(t+\epsilon^{1 / \alpha}\right)^{m}}+\gamma C_{1}^{2-p} \alpha^{2}\left|W^{\prime}\right|^{2}-f(t) \\
\leqslant & 2 C_{1} \alpha+C_{1} \alpha \lambda\left(t+\epsilon^{1 / \alpha}\right)^{\alpha-1-m}+\gamma C_{1}^{2-p} \alpha^{2}-f(t) \\
\leqslant & 2 C_{1} \alpha+C_{1} \alpha \lambda 2^{\alpha-1-m}+\gamma C_{1}^{2-p} \alpha^{2}-\min _{[0,1]} f(t) \\
\leqslant & 0, \quad 0<t<1 .
\end{aligned}
$$

Thus, U is a lower solution of problem (5). The lemma follows.
Let $\inf _{s \geqslant 1} H(s) \equiv \delta$. Then it follows from the definition of infimum and $\gamma>\delta$ that for $\delta_{0}=\frac{\gamma-\delta}{2}>0$, there exists $C_{*} \geqslant 1$, such that $H\left(C_{*}\right)<\delta+\delta_{0}<\gamma$.

LEMMA 2. There exists a positive constant $\epsilon_{0} \in(0,1)$, such that for any $\epsilon \in\left(0, \epsilon_{0}\right)$, $V_{\epsilon}=C_{*}\left(t+\epsilon^{\frac{1}{\alpha}}\right)^{\alpha}$ is an upper solution of problem (5).

PROOF. Noticing $\alpha \geqslant 2$ and $1+m \leqslant \alpha$, we have

$$
\begin{aligned}
L_{\epsilon} V_{\epsilon}= & -V_{\epsilon}^{\prime \prime}-\lambda \frac{V_{\epsilon}^{\prime}}{\left(t+\epsilon^{1 / \alpha}\right)^{m}}+\gamma \frac{\left|V_{\epsilon}^{\prime}\right|^{2}}{\left(V_{\epsilon}+\epsilon^{2}\right)^{p}}-f(t) \\
= & -C_{*} \alpha(\alpha-1)\left(t+\epsilon^{1 / \alpha}\right)^{\alpha-2}-\lambda \alpha C_{*}\left(t+\epsilon^{1 / \alpha}\right)^{\alpha-1-m} \\
& +\gamma C_{*}^{2-p} \alpha^{2}\left[1+\epsilon^{2} C_{*}^{-1}\left(t+\epsilon^{1 / \alpha}\right)^{-\alpha}\right]^{-p}-f(t) \\
\geqslant & -C_{*} \alpha(\alpha-1)\left[1+\epsilon^{1 / \alpha}\right]^{\alpha-2}-\lambda \alpha C_{*}\left[1+\epsilon^{1 / \alpha}\right]^{\alpha-1-m} \\
& +\gamma C_{*}^{2-p} \alpha^{2}\left[1+\epsilon C_{*}^{-1}\right]^{-p}-\max _{[0,1]} f(s) \\
= & \gamma C_{*}^{2-p} \alpha^{2}-C_{*} \alpha(\alpha-1)-\lambda \alpha C_{*}-\max _{[0,1]} f(s)+e_{\epsilon} \\
= & C_{*}^{2-p} \alpha^{2}\left(\gamma-\mathcal{G}\left(C_{*}\right)\right)+e_{\epsilon}, \quad 0<t<1,
\end{aligned}
$$

where $e_{\epsilon}=C_{*} \alpha(\alpha-1)\left[1-\left(1+\epsilon^{1 / \alpha}\right)^{\alpha-2}\right]+\lambda \alpha C_{*}\left[1-\left(1+\epsilon^{1 / \alpha}\right)^{\alpha-1-m}\right]+\left[1+\epsilon C_{*}^{-1}\right]^{-p}-1$. Clearly, $e_{\epsilon} \rightarrow 0, \quad(\epsilon \rightarrow 0)$. Since $\gamma>\mathcal{G}\left(C_{*}\right)$, there exists $\epsilon_{0} \in(0,1)$ such that

$$
C_{*}^{2-p} \alpha^{2}\left(\gamma-\mathcal{G}\left(C_{*}\right)\right)+e_{\epsilon} \geqslant 0
$$

This shows that for any $\epsilon \in\left(0, \epsilon_{0}\right), L_{\epsilon} V_{\epsilon} \geqslant 0,0<t<1$. The lemma follows.
According to [5, pp.153, Theorem 2.5.4] or [6, Theorem 1 and Remark 2.4], for any fixed $\epsilon \in\left(0, \epsilon_{0}\right)$, problem (5) has a solution $u_{\epsilon} \in C^{1}[0,1]$ satisfying $u_{\epsilon}^{\prime} \in C^{1}(0,1)$ and

$$
\begin{equation*}
V_{\epsilon} \geqslant u_{\epsilon} \geqslant U>0, \quad t \in(0,1) \tag{6}
\end{equation*}
$$

Hence u_{ϵ} satisfies

$$
\begin{equation*}
u_{\epsilon}^{\prime \prime}+\lambda \frac{u_{\epsilon}^{\prime}}{\left(t+\epsilon^{1 / \alpha}\right)^{m}}-\gamma \frac{\left|u_{\epsilon}^{\prime}\right|^{2}}{\left(u_{\epsilon}+\epsilon^{2}\right)^{p}}+f(t)=0, \quad 0<t<1 \tag{7}
\end{equation*}
$$

LEMMA 3. There exists a positive constant C_{2} independent of ϵ, such that for all $\epsilon \in\left(0, \epsilon_{0}\right)$

$$
\begin{equation*}
\left|u_{\epsilon}^{\prime}(t)\right| \leqslant C_{2}, \quad t \in[0,1] . \tag{8}
\end{equation*}
$$

PROOF. It follows from $u_{\epsilon}(1)=u_{\epsilon}(0)=0$ and $u_{\epsilon} \geqslant 0$ for all $t \in[0,1]$ that

$$
\begin{equation*}
u_{\epsilon}^{\prime}(0) \geqslant 0 \geqslant u_{\epsilon}^{\prime}(1) \tag{9}
\end{equation*}
$$

Integrating (7) over $(0,1)$ and integrating by parts give

$$
\begin{aligned}
& \left.u_{\epsilon}^{\prime}(t)\right|_{0} ^{1}+\left.\frac{\lambda u_{\epsilon}(t)}{\left(t+\epsilon^{1 / \alpha}\right)^{m}}\right|_{0} ^{1}+m \lambda \int_{0}^{1} \frac{u_{\epsilon}}{\left(t+\epsilon^{1 / \alpha}\right)^{1+m}} d t \\
& -\gamma \int_{0}^{1} \frac{\left|u_{\epsilon}^{\prime}\right|^{2}}{\left(u_{\epsilon}+\epsilon^{2}\right)^{p}} d t+\int_{0}^{1} f(t) d t=0,
\end{aligned}
$$

and then, we obtain by (9)

$$
\gamma \int_{0}^{1} \frac{\left|u_{\epsilon}^{\prime}\right|^{2}}{\left(u_{\epsilon}+\epsilon^{2}\right)^{p}} d t \leqslant\left.\frac{\lambda u_{\epsilon}(t)}{\left(t+\epsilon^{1 / \alpha}\right)^{m}}\right|_{0} ^{1}+m \lambda \int_{0}^{1} \frac{u_{\epsilon}}{\left(t+\epsilon^{1 / \alpha}\right)^{1+m}} d t+\int_{0}^{1} f(t) d t
$$

Since $m \leqslant \frac{p}{2-p}, 1+m \leqslant \alpha=\frac{2}{2-p}$. From (6), it is easy to see that $\left.\frac{\lambda u_{\epsilon}(t)}{\left(t+\epsilon^{1 / \alpha}\right)^{m}}\right|_{0} ^{1}+$ $m \lambda \int_{0}^{1} \frac{u_{\epsilon}}{\left(t+\epsilon^{1 / \alpha}\right)^{1+m}} d t$ is uniformly bounded and hence, there exists a positive constant C_{3} independent of ϵ, such that

$$
\begin{equation*}
\int_{0}^{1} \frac{\left|u_{\epsilon}^{\prime}\right|^{2}}{\left(u_{\epsilon}+\epsilon^{2}\right)^{p}} d t \leqslant C_{3} \tag{10}
\end{equation*}
$$

By the inequality: $a \leqslant a^{2}+1 \quad(a \in \mathbb{R})$, we obtain

$$
\begin{equation*}
\frac{\left|u_{\epsilon}^{\prime}\right|}{\left(t+\epsilon^{1 / \alpha}\right)^{m}} \leqslant \frac{\left|u_{\epsilon}^{\prime}\right|^{2}}{\left(t+\epsilon^{1 / \alpha}\right)^{2 m}}+1, \quad t \in[0,1] \tag{11}
\end{equation*}
$$

By (6), we have $u_{\epsilon}+\epsilon^{2} \leqslant 2 C_{*}\left(t+\epsilon^{1 / \alpha}\right)^{\alpha}, \quad t \in[0,1]$. Noticing $\alpha p \geqslant 2 m$, we see that there exists a positive constant C_{4} independent of ϵ, such that

$$
\left(u_{\epsilon}+\epsilon^{2}\right)^{p} \leqslant C_{4}\left(t+\epsilon^{1 / \alpha}\right)^{2 m}, \quad t \in[0,1] .
$$

Combining this and (11) we obtain

$$
\frac{\left|u_{\epsilon}^{\prime}\right|}{\left(t+\epsilon^{1 / \alpha}\right)^{m}} \leqslant C_{4} \frac{\left|u_{\epsilon}^{\prime}\right|^{2}}{\left(u_{\epsilon}+\epsilon^{2}\right)^{p}}+1, \quad t \in[0,1]
$$

which and (10) imply that

$$
\begin{equation*}
\int_{0}^{1} \frac{\left|u_{\epsilon}^{\prime}\right|}{\left(t+\epsilon^{1 / \alpha}\right)^{m}} d t \leqslant C_{3} C_{4}+1 \equiv C_{5} \tag{12}
\end{equation*}
$$

On the other hand, integrating (7) over $\left(t_{1}, t_{2}\right)$, we have

$$
\left.u_{\epsilon}^{\prime}(t)\right|_{t_{1}} ^{t_{2}}=-\lambda \int_{t_{1}}^{t_{2}} \frac{u_{\epsilon}^{\prime}}{\left(t+\epsilon^{1 / \alpha}\right)^{m}} d t+\gamma \int_{t_{1}}^{t_{2}} \frac{\left|u_{\epsilon}^{\prime}\right|^{2}}{\left(u_{\epsilon}+\epsilon^{2}\right)^{p}} d t-\int_{t_{1}}^{t_{2}} f(t) d t
$$

Combining this with (10) and (12) we obtain for all $\epsilon \in\left(0, \epsilon_{0}\right)$

$$
\begin{equation*}
\left|u_{\epsilon}^{\prime}\left(t_{2}\right)-u_{\epsilon}^{\prime}\left(t_{1}\right)\right| \leqslant C_{6}, \quad \forall t_{1}, t_{2} \in[0,1] \tag{13}
\end{equation*}
$$

where $C_{6}=\lambda C_{5}+\gamma C_{3}+\int_{0}^{1} f(t) d t$. Noticing $u_{\epsilon}(1)=u_{\epsilon}(0)=0$ and using the mean value theorem, there exists $t_{\epsilon} \in(0,1)$, such that $u_{\epsilon}^{\prime}\left(t_{\epsilon}\right)=0$. Then taking $t_{1}=t_{\epsilon}$ in (13), we obtain the desired result.

By (6) and (8), we derive from (7) that there exists for any $\delta \in(0,1 / 2)$ a positive constant C_{δ} independent of ϵ, such that for all $\epsilon \in\left(0, \epsilon_{0}\right)$

$$
\left|u_{\epsilon}^{\prime \prime}(t)\right| \leqslant C_{\delta}, \quad \delta \leqslant t \leqslant 1-\delta
$$

From this and (8) and using Arzelá-Ascoli theorem, there exist a subsequence of $\left\{u_{\epsilon}\right\}$, still denoted by $\left\{u_{\epsilon}\right\}$, and a function $u \in C^{1}(0,1) \cap C[0,1]$ such that, as $\epsilon \rightarrow 0$,

$$
\begin{aligned}
& u_{\epsilon} \rightarrow u, \text { uniformly in } C[0,1] \\
& u_{\epsilon} \rightarrow u, \text { uniformly in } C^{1}[\delta, 1-\delta]
\end{aligned}
$$

and hence, by $u_{\epsilon}(1)=u_{\epsilon}(0)=0$ and (6), u satisfies $u(1)=u(0)=0, C_{*} t^{\alpha} \geqslant u(t) \geqslant$ $C_{1}[t(1-t)]^{\alpha}$ for all $t \in[0,1]$, therefore $u(t)>0$ for all $t \in(0,1)$, and $u^{\prime}(0)=\lim _{t \rightarrow 0} \frac{u(t)}{t}=$ 0 . Then u satisfies the boundary conditions in (3).

Below, we show that u satisfies the equation in (3). Integrating (7) over $\left[t_{0}, t\right]$ yields

$$
u_{\epsilon}^{\prime}(t)=\gamma \int_{t_{0}}^{t} \frac{\left|u_{\epsilon}^{\prime}\right|^{2}}{\left(u_{\epsilon}+\epsilon^{2}\right)^{p}} d s-\lambda \int_{t_{0}}^{t} \frac{u_{\epsilon}^{\prime}}{\left(s+\epsilon^{1 / \alpha}\right)^{m}} d s-\int_{t_{0}}^{t} f(s) d s+u_{\epsilon}^{\prime}\left(t_{0}\right)
$$

and letting $\epsilon \rightarrow 0$ and using Lebesgue dominated convergence theorem, we have

$$
\begin{equation*}
u^{\prime}(t)=\gamma \int_{t_{0}}^{t} \frac{\left|u^{\prime}\right|^{2}}{u^{p}} d s-\lambda \int_{t_{0}}^{t} \frac{u^{\prime}}{s^{m}} d s-\int_{t_{0}}^{t} f(s) d s+u^{\prime}\left(t_{0}\right), \quad 0<t<1 \tag{14}
\end{equation*}
$$

From this, we see that $u \in C^{2}(0,1)$ and satisfies the equation in (3).
It remains to show that u^{\prime} is continuous at $t=0$ and $t=1$. Letting $\epsilon \rightarrow 0$ in (10) and (12) and using Fatou's Lemma, we have

$$
\int_{0}^{1} \frac{\left|u^{\prime}\right|^{2}}{u^{p}} d t \leqslant C_{3}, \quad \int_{0}^{1} \frac{\left|u^{\prime}\right|}{t^{m}} d t \leqslant C_{5}
$$

which show that $\frac{\left|u^{\prime}\right|^{2}}{u^{p}}, \frac{\left|u^{\prime}\right|}{t^{m}} \in L^{1}[0,1]$. By the absolute continuity of integral, we see from (14) that $u^{\prime} \in C[0,1]$. Theorem 1 is proved.

Acknowledgment. The author wants to thank the referee for his important comments which improve this paper. This research is supported by Dalian Nationalities University (no.20076209).

References

[1] M. Bertsch and M. Ughi, Positivity properties of viscosity solutions of a degenerate parabolic equation, Nonlinear Anal., 14(1990), 571-592.
[2] M. Bertsch, R. Dal Passo and M. Ughi, Discontinuous viscosity solutions of a degenerate parabolic equation, Trans. Amer. Math. Soc., 320(2)(1990), 779-798.
[3] G. I. Barenblatt, M. Bertsch and A. E. Chertock, V.M. Prostokishin, Self-similar intermediate asymptotic for a degenerate parabolic filtration-absorption equation. Proc. Nat. Acad. Sci. (USA), 18(97)(2000), 9844-9848.
[4] W. Zhou and S. Cai, Positive solutions to a singular differential equation of second order, Nonlinear Anal., 68 (2008), 2319-2327.
[5] D. Guo, J. Sun and Z. Liu, Functional Methods for Nonlinear Ordinary Differential Equations, Shandong Science and Technology Press, Jinan, 2005. (Chinese)
[6] D. Jiang and W. Gao, Singular boundary value problems for the one-dimension p-Laplacian, J. Math. Anal. Appl., 270 (2002), 561-581.

[^0]: *Mathematics Subject Classifications: 34B18
 ${ }^{\dagger}$ Department of Mathematics, Dalian Nationalities University, 116600, P.R. China

