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Abstract

In this paper we obtain sufficient conditions of existence of positive solutions
for a singular second order boundary value problem. Our argument is based on
regularization technique, upper and lower solutions method and the Arzeld-Ascoli
theorem.

1 Introduction

In [1], Bertsch and Ughi investigated the following BVP which arises in study of a class
of degenerate parabolic equations (also see [2, 3]):

N—l /12
u”—l—Tu/—”yM—l-l:O, 0<t<l,
u

u(1) = u'(0) =0,

(1)

where N is a positive integer and v > 0, and obtained one decreasing positive solution
via theories of ordinary differential equation. In the very recent paper [4], the authors
considered the following BVP:

A 712
u”—i—;u’—”y%—l—f(t):(), 0<t<l,

u(l) =u/'(0) =0,

(2)

and proved, by the classical method of elliptic regularization, that BVP (2) has one
positive solution which is not decreasing in the case: A > 0,y > %, f € C0,1] and
f>0on]0,1].
This paper considers the more general problem:
/ /12
ra R v 0, 0<t<n
u A =y T ) =0, 0<t<1,

u(l) = u/(0) =0,
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where A\, m,~,p > 0, f(t) € C[0,1] and f(t) > 0 on [0, 1]. By a solution to BVP (3) we
mean a function u € C?(0,1) N C[0, 1] which is positive in (0, 1) and satisfies (3). By
an argument based on the regularization technique, upper and lower solutions and the
Arzeld-Ascoli theorem, we obtain sufficient conditions of existence of solutions. Our
main result reads

THEOREM 1. Let A € (0,+00),p € [1,2),m € (0,p/(2 — p)], and let f € C[0,1]
and f(t) > 0 on [0,1]. If v > glgg(t), where G(t) : RT — R™ is defined by

PAAR=p) e, 2P maxen ],
2

G(1) = =2 ,

then BVP (3) has at least one solution.
REMARK 1. If p = 1, then ég{ Gg(t) = % Clearly, Theorem 1 is an extension of

the existence results of [1, 4].
REMARK 2. Let p € (1,2), and denote

(2 — p)® maxp 1) f { Ty, To =21,
TO = =

20— Dlp+A2-p)’ 1, Th<Ll
Then ggg(t) = G(T). Indeed, since 1im+ Gg(t) = . 1121 G(t) = +00, G(t) must reach a
=z t—0 ——+00

minimum at some point ¢ € (0, 00) such that G’(t) = 0, and then, solving this equation
yields ¢t = Ty and hence, inf G(t) = G(Tp). Since G'(t) > 0 for all t > Tp, we see that

%gfl’g(t) = %ggg( )= Q(TO) 1f To > 1, and mf Gt)=6(1) if Tp < 1.

2 Proof of Theorem 1
Let € € (0, 1), and define He(t,v,€) : (0,1) x R x R — R by

3 1%

Hé(tavag) = _)\(t—l-el/a)m +FY[IE(’U)]ZD - f(t)a

where o = and I.(v) = v+ €2 if v > 0, I.(v) = €2 if v < 0. We have

2
2—p’

A 1%
|H5(t,’U,§)| g m/a|§|+ €2p

< j/aa 1) + |§I2+maXf @)

(o +maXf) )

em/a €2p

+maxf

N

for all (t,v,€) € (0,1) x R x R, where H(s) = 1+ s for s > 0. Define operator
Le: C*(0,1) — C(0,1) by

(Lew)(t) = —u" + He(t,u,u’), 0<t<1.
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(L.

u(l

We call v an upper solution (lower solution) of problem (5) if Leu > (<)0 in (0,1), and
u(t) = ()0 for t =0, 1.

We will apply the upper and lower solutions method (see [5, pp.153, Theorem 2.5.4]
or [6, Theorem 1 and Remark 2.4]) to obtain one positive solution of problem (5). Note

Consider the problem:

)¢

u)(t) =0, 0<t<l,
)=u

(0) = (5)

that f0+ H?S) ds = +00. Then it suffices to find a lower solution and an upper solution

to obtain a solution.

LEMMA 1. Let U = G with a = 32, where W(t) = t(1 - ¢) and C; € (0, 1)
such that 2C a + C1aX20 177 4 427 Pa? I[nll]lf(t) Then U is a lower solution of
0,1

problem (5).

PROOF. Note that W = =2, W < ¢ and [W’'| < 1 on [0,1]. Since U > 0 in (0, 1),
some calculations give by noticing o > 1+ m

U/ |U/|2

Le — 7 _ _ t
Uv=-v )‘(t+e1/a)m+7(U+e2)p 1)
U/ | /|2
v )‘(t+el/a)m T — /0
=2CaWe ! — Crafa — 1)Wa*2|w |2
a—1 /
+ cmu FACEPRR W2 — (1)
( 61/04)771
a—1 /
<20aWe ! 4 Cla)\w + yClLPa2|W/|2 — f(®)
< 201+ Cra(t + €/ 71=m 4 4O Pa? — f(t)
<2010+ CLad287 1™ 4 A2 P02 — I[nu]lf(t)
0,1
<0, O0<t< 1.

Thus, U is a lower solution of problem (5). The lemma follows.

Let 11>1§ H(s) = 6. Then it follows from the definition of infimum and v > ¢ that
for g = %5 > 0, there exists C > 1, such that H(C) < d+ dg < 7.

LEMMA 2. There exists a positive constant ¢y € (0, 1), such that for any € € (0, €),
Ve=C.(t+ eé)o‘ is an upper solution of problem (5).
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PROOF. Noticing a > 2 and 1 +m < «, we have

V/ V/|2
LE‘/E — _V// _ )\ € € _ t
€ (t+61/a)m+7(‘/5+62)p f()

= —Cia(a—=1)(t + fl/a)OhQ —daC.(t + el/o‘)o‘*lfm
+ACE P [+ ECTHE+ )T = £(1)
= —C*OZ(OZ — 1)[1 4 61/04]0472 _ )\O[C*[l + 61/04]04717771

+CETPa? 1+ O TP - max f(s)

=C?Pa? - Coala — 1) — AaC,y — I[na)](f(s) + e
0,1
=02 Pa?(y - G(C.)) +e, 0<t<l,

where ¢, = Ca(a—1)[1—(14+€/*)* 2] 4 XaC,[1 - (1+€/*) 1"+ [1+eC 7P —1.
Clearly, e — 0, (e — 0). Since v > G(C.), there exists €y € (0,1) such that

C2Pa?(y — G(CL)) +ec = 0.

This shows that for any € € (0,¢p), LVe 2 0,0 < t < 1. The lemma follows.
According to [5, pp.153, Theorem 2.5.4] or [6, Theorem 1 and Remark 2.4], for any
fixed € € (0, €), problem (5) has a solution u. € C*[0, 1] satisfying u’ € C*(0,1) and

Vezue>U>0, te(0,1). (6)
Hence u, satisfies
U |ue|?
u;’+>\(t+el/a)m—7(u6+62>p+f(t):0, 0<t<l. (7)

LEMMA 3. There exists a positive constant Cy independent of €, such that for all
e € (0, €)
uc(t)] < C2, t€10,1]. (8)

PROOF. It follows from (1) = u¢(0) =0 and wu, > 0 for all ¢ € [0, 1] that
ue(0) = 0 > ug(1). (9)
Integrating (7) over (0, 1) and integrating by parts give

1
Ue

1
A ————dt
O"‘m ‘/0 (t+61/a)l+m

1 u’ |2 1
- édm/ t)dt = 0,
Fy/o (ue + €2)P 0 £)
and then, we obtain by (9)

1 e ()
/ _—
ue(t)’() + (t 4 el/a)m

1
u

1 1
— ¢t t)dt.
), Gt 10

1 2
|uel Aue(t)
dt <
FY~/0 (u5+€2)p (t_|_61/a)m
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1
Since m < 3%, 14+ m < o = 52-. From (6), it is easy to see that +

2—p

Aue(t)
@it |

mA fo Wdt is uniformly bounded and hence, there exists a positive constant
Cs5 independent of €, such that

b ful?

By the inequality: a < a?+1 (a € R), we obtain

4 A
(t_|_61/a)m = (t_|_61/a)2m

|ue

+1, telo,1]. (11)

By (6), we have u, + € < 2C,(t + ¢'/*)®, t € [0,1]. Noticing ap > 2m, we see that
there exists a positive constant Cy independent of €, such that

(ue 4+ )P < Cy(t 4+ /)™ te]0,1].
Combining this and (11) we obtain

Wl gl
(t + el/aym = 4(u5_|_62)p

+1, telo1],
which and (10) imply that
/1_ﬂi_ﬁ<cc+1c (12)
0 (t—|— el/a)m X L34 = U5

On the other hand, integrating (7) over (t1,t2), we have

to ta ’U/ ta | /|2
==X —  dt+ / ———dt — /
t /t1 (t + el/a)m v 4, (ue+€2)P ()

Combining this with (10) and (12) we obtain for all € € (0, €)

(1)

lul(tz) —uL(t1)] < Cs, Vi1,t2 € [0,1], (13)

where Cs = AC5 4+ vC3 + fo t)dt. Noticing u(1 ) = u.(0) = 0 and using the mean
value theorem, there exists t. € (0 1), such that u’(t. ) = 0. Then taking t; = . in
(13), we obtain the desired result.

By (6) and (8), we derive from (7) that there exists for any § € (0,1/2) a positive
constant Cy independent of ¢, such that for all € € (0, ¢)

lul(t)] < Cs, 6<t<1—0.

From this and (8) and using Arzeld-Ascoli theorem, there exist a subsequence of {u.},
still denoted by {u.}, and a function v € C*(0,1) N C[0, 1] such that, as ¢ — 0,

ue — u, uniformly in C][0, 1],

ue — u, uniformly in C'[5,1— 4],
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and hence, by uc(1) = uc(0) = 0 and (6), u satisfies u(1) = u(0) = 0, Cit™ > u(t) >
Cy[t(1—1t)]« for all t € [0, 1], therefore u(t) > 0 for all t € (0,1), and u/(0) = }iné ut) -

0. Then u satisfies the boundary conditions in (3).
Below, we show that u satisfies the equation in (3). Integrating (7) over [to, t] yields

, t |u/|2 J \ t ’U/ J t p ,
t) = _ Tl s — e ds— + 4 (to),
u(t) ”Y/to (ue + €2)P S /to (s + el/aym S /to f(s8)ds + u(to)

and letting e — 0 and using Lebesgue dominated convergence theorem, we have

, t |u/|2 t u’ t
u(t)zﬂy/ ds—)\/ —ds—/ f(s)ds +u'(tg), 0<t<1. (14)
to uP to sm to
From this, we see that u € C?(0,1) and satisfies the equation in (3).
It remains to show that u’ is continuous at ¢ = 0 and ¢ = 1. Letting ¢ — 0 in (10)
and (12) and using Fatou’s Lemma, we have

1 |u/|2 1 |’U/|
| n<e. [ Ha<c,

U

which show that W% 1v1 ¢ 71 [0,1]. By the absolute continuity of integral, we see

wp_ gm
from (14) that ' € C[0, 1]. Theorem 1 is proved.
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