
Applied Mathematics E-Notes, 9(2009), 89-94 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

A Simple Interpretation Of Two Stochastic Processes

Subject To An Independent Death Process∗

Joseph Gani†, Randall J. Swift‡

Received 21 January 2008

Abstract

In this explanatory note, we interpret two known results for a death process

and a birth process subject to an independent death process. The first example is

the carrier-borne epidemic, while the second is the polymerisation chain reaction.

The interpretations allow a more intuitive understanding of the resulting formulae

for the probability generating functions of the processes.

1 Introduction

In some biological phenomena, the size of a population X(t) at time t ≥ 0 is influenced
by an independent process Y (t) and is often modeled as a continuous time bivariate
Markov chain {(X(t), Y (t)) : t ≥ 0}.

One classic example is the carrier-borne epidemic process detailed by Weiss (1965).
In this process the number of susceptibles X(t) are modeled as a death process subject
to the number of infectious carriers Y (t), which themselves follow an independent death
process.

The bivariate Markov chain {(X(t), Y (t)) : t ≥ 0} for the process X(t) subject
to the independent process Y (t) is often characterized by the probability generating
function (p.g.f.) for the transient probabilities. The p.g.f. which usually arises as a
solution of a partial differential equation is often difficult to interpret conceptually. In
this brief article, we present a conceptual framework for the p.g.f. of two such processes.

2 The Carrier-Borne Epidemic

In the carrier-borne epidemic process, as outlined in Weiss (1965) and Daley & Gani
(1999), infection spreads through contact between an infectious carrier and a suscep-
tible. The carriers are subject to a pure death process while an infected susceptible is
directly removed from the population.
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If there are initially n susceptibles and b infectious carriers at time t = 0, and we
let the nonnegative integer-valued processes X(t) and Y (t) represent the numbers of
susceptibles and carriers of the disease, then

{(X(t), Y (t)) : t ≥ 0}

can be modeled as a continuous time bivariate Markov chain.
The transitions and rates for this chain in the interval (t, t+ δt) are described as

transition rate
(x, y) → (x− 1, y) βxyδt

(x, y) → (x, y− 1) µyδt,

where β is the infection parameter and µ is the death parameter of the carriers.
The carrier process {Y (t) : t ≥ 0} is a pure death process with the well known p.g.f.

ψY (v, t) = E(vY (t)) =
(

ve−µt + 1 − e−µt
)b
, for 0 ≤ v ≤ 1,

so that

P (Y (t) = k | Y (0) = b) =

(

b

k

)

e−µkt(1 − e−µt)b−k, k = 0, . . . , b.

The susceptible process X(t) is subject to the influence of the process Y (t), which is
itself independent of X(t).

If we let
Pij(t) = Pr(X(t) = i, Y (t) = j|X(0) = n, Y (0) = b),

for i = 0, . . . , n, j = 0, . . . , b, then it can be shown that the p.g.f.

φ(z, v, t) = E
(

zX(t)vY (t)
)

=

n
∑

i=0

b
∑

j=0

Pij(t)z
ivj

of the process satisfies the partial differential equation (p.d.e.)

∂φ

∂t
= β(1 − z)v

∂2φ

∂z∂v
− µ(v − 1)

∂φ

∂v
. (1)

The solution of this p.d.e. is obtained using the separation of variables method and can
be found in either Bailey (1975) or Daley & Gani (1999); the resulting p.g.f. is

φ(z, v, t) =

n
∑

i=0

(z − 1)i

(

n

i

)[

µ

µ+ βi
+

(

v −
µ

µ+ βi

)

e−(µ+βi)t

]b

. (2)

Let us attempt to interpret the structure of this p.g.f.. Given that the number of
susceptibles X(t) = i is fixed, a single carrier will have the partial p.g.f.

ve−(µ+βi)t +

∫ t

0

µe−(µ+βi)u du = ve−(µ+βi)t +
µ

µ+ βi

(

1 − e−(µ+βi)t
)

,
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so that the b independent carriers will have the partial p.g.f.

[

µ

µ + βi
+

(

v −
µ

µ+ βi

)

e−(µ+βi)t

]b

.

For v = 1, this leads to the probability

P {0 ≤ Y (t) ≤ b|X(t) = i} =

[(

βi

µ + βi

)

e−(µ+βi)t +
µ

µ+ βi

]b

= pi
i(t), (say),

for the carriers when there are X(t) = i susceptibles.
Now the susceptibles follow a binomial death distribution with probability qi(t) of

death, and pi(t) = 1 − qi(t), so that the p.g.f. is

[zpi(t) + 1 − pi(t)]
n

= [(z − 1)pi(t) + 1]
n

=

n
∑

k=0

(z − 1)k

(

n

k

)

pk
i (t).

Thus if one writes for the ith term of a series
∑

k ak, the indicator

Ii

(

∑

k

ak

)

= ai

then

φ(z, 1, t) =

n
∑

i=0

Ii [(z − 1)pi(t) + 1]
n

=

n
∑

i=0

(z − 1)i

(

n

i

)

pi
i(t)

=

n
∑

i=0

(z − 1)i

(

n

i

)[(

βi

µ+ βi

)

e−(µ+βi)t +
µ

µ + βi

]b

,

which would ensue if the p.g.f. E(zX(t)vY (t)) is

φ(z, v, t) =

n
∑

i=0

(z − 1)i

(

n

i

)[

µ

µ+ βi
+

(

v −
µ

µ+ βi

)

e−(µ+βi)t

]b

.

3 The PCR Process

Recently, Gani & Swift (2007) considered the polymerisation chain reaction (PCR)
process of enzyme molecules (DNA polymerase) that have the property of causing the
replication of DNA strands, while themselves degrading after a certain period. They
modeled this process as a DNA strand birth process subject to a death process for the
enzymes.

Their model considers X(t) DNA strands and Y (t) enzyme molecules at time t ≥ 0,
with X(0) = n and Y (0) = b with the transitions and rates in (t, t+ δt) given by
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transition rate

(x, y) → (x+ 1, y) βxyδt

(x, y) → (x, y− 1) µyδt,

The forward Kolmogorov equations for the probabilities

pi,j(t) = P {X(t) = i, Y (t) = j|X(0) = n, Y (0) = b}

are
d

dt
pi,j(t) = −(βi + µ)jpi,j(t) + µ(j + 1)pi,j+1(t) + βj(i − 1)pi−1,j(t),

for n ≤ i <∞, 0 ≤ j ≤ b. The p.g.f.

ψ(u, v, t) =
∞
∑

i=n

b
∑

j=0

pi,j(t)u
ivj , 0 ≤ u, v ≤ 1,

satisfies the p.d.e.
∂ψ

∂t
= µ(1 − v)

∂ψ

∂v
+ βuv(u − 1)

∂2ψ

∂u∂v
.

The solution, obtained by separation of variables, is

ψ(u, v, t) =

(

u

1 − u

)n ∞
∑

i=0

(−1)i

(

n+ i− 1

i

)(

u

1 − u

)i

×

[(

v −
µ

µ+ β(i + n)

)

e−(β(i+n)+µ)t +
µ

µ+ β(i+ n)

]b

=

(

u

1 − u

)n ∞
∑

i=0

(

n+ i− 1

i

)(

u

u− 1

)i

×

[(

v −
µ

µ+ β(i + n)

)

e−(β(i+n)+µ)t +
µ

µ+ β(i+ n)

]b

.

The p.g.f. for the number of DNA strands X(t) is found as

ψ(u, 1, t) =

∞
∑

i=0

(−1)i

(

n+ i− 1

i

)(

u

1 − u

)n+i

×

[(

β(i+ n)

µ+ β(i+ n)

)

e−(β(j+n)+µ)t +
µ

µ+ β(i+ n)

]b

.

To interpret the structure of this p.g.f., we follow a similar reasoning to that in
Section 2. Given that X(t) = i+ n is fixed, a single enzyme will have the partial p.g.f.

ve−(β(i+n)+µ)t+

∫ t

0

µe−(β(i+n)+µ)u du =

[(

v −
µ

β(i+ n) + µ

)

e−(β(i+n)+µ)t +
µ

β(i + n) + µ

]

so that for the b independent enzymes, the partial p.g.f. will be

[(

v −
µ

β(i + n) + µ

)

e−(β(i+n)+µ)t +
µ

β(i+ n) + µ

]b

.



J. Gani and R. J. Swift 93

For v = 1, this leads to the probability

P {X(t)|X(t) = i+ n} =

[(

β(i+ n)

µ+ β(i+ n)

)

e−(β(i+n)+µ)t +
µ

β(i + n) + µ

]b

= pn+i
n+i(t), (say).

Now the DNA strands follow a birth process with probability pi+n(t) of birth when
X(t) = i+ n so that the p.g.f. is

(

pi+n(t)u

1 − u+ pi+n(t)u

)n

=





pi+n(t)
(

u
1−u

)

1 + pi+n(t)
(

u
1−u

)





n

= pn
i+n(t)

(

u

1 − u

)n ∞
∑

i=0

(−1)i

(

n+ i− 1

i

)(

u

1 − u

)i

pi
i+n(t).

Writing once again

Ii

(

∑

k

ak

)

= ai

then

ψ(u, 1, t) =
∞
∑

i=0

Ii





pi+n(t)
(

u
1−u

)

1 + pi+n(t)
(

u
1−u

)





n

=

(

u

1 − u

)n ∞
∑

i=0

(−1)i

(

n+ i− 1

i

)(

u

1 − u

)i

pi+n
i+n(t)

=

∞
∑

i=0

(−1)i

(

n + i− 1

i

)(

u

1 − u

)n+i

×

[(

β(i + n)

µ + β(i + n)

)

e−(β(j+n)+µ)t +
µ

µ + β(i + n)

]b

as required. The ensuing p.g.f. for the bivariate process {(X(t), Y (t)) : t ≥ 0} would
then be

φ(z, v, t) =

(

u

1 − u

)n ∞
∑

i=0

(

n+ i− 1

i

)(

u

u− 1

)i

×

[(

v −
µ

µ + β(i + n)

)

e−(β(i+n)+µ)t +
µ

µ+ β(i+ n)

]b

.

4 Concluding Remarks

We have attempted to provide a more intuitive approach to the rather complex formulae
for the p.g.f.s of a death process and a birth process, each subject to an independent
death process. Much yet remains to be done to make such formulae more accessible to
workers in applied probability.
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