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Abstract

We investigate the global behavior of nonnegative solutions of the difference
equation

xn+1 =
δxn−m + xn−k

A + xn−k

, n = 0, 1, 2, ...,

with δ, A ∈ (0,∞), x−k, ..., x0 ∈ [0,∞) and 0 ≤ m < k. In particular we present
necessary and sufficient conditions for the existence of nonnegative prime period-
two solutions. We show that the two cases δ < A and δ > A give rise to different
invariant intervals. We also find regions of parameters δ and A where the equi-
librium points are globally asymptotically stable. Our results extend some recent
results.

1 Introduction

We investigate the global behavior of nonnegative solutions of the higher-order differ-
ence equation

xn+1 =
δxn−m + xn−k

A + xn−k

, n = 0, 1, 2, ..., (1)

with parameters δ, A ∈ (0,∞), initial conditions x−k, ..., x0 ∈ [0,∞) and 0 ≤ m < k.
Some special cases of (1) have been studied intensively. If m = 0, the investigation

of the global behavior of all positive solutions of (1) is proposed as an open problem by
Kulenvić and Ladas in [8]. Motivated by this open problem, Li and Sun [12] studied
the global character of positive solutions of (1). The special case where m = 0 and
k = 1 in (1) is studied in [9]. When m = 1, k = 2, (1) is investigated in [5], and
when m = 2, k = 3, (1) is studied in [1]. For other related results of nonlinear rational
difference equations we refer to [2-4, 6,7, 10,11, 13,14] and the references therein.

The purpose of this paper is to investigate the periodic character, invariant intervals
and global asymptotic stability of the equilibrium points. Our results extend some
known results (see Remarks 2.1, 3.1, 4.1 and 4.2).

The paper is organized as follows. In Section 2 we give the necessary and sufficient
conditions for the existence of nonnegative prime period-two solutions of (1). In Section
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3 we show that the two cases δ < A and δ > A give rise to different invariant intervals.
Finally, in Section 4 we find regions of parameters δ and A where the equilibrium points
are globally asymptotically stable.

Now we present some definitions and known results which will be useful in our
investigation of the behavior of solutions of (1).

Let I be some interval of real numbers, and let f : I × I → I be a continuously
differentiable function. Consider the difference equation

xn+1 = f(xn−m, xn−k), n = 0, 1, 2, ..., (2)

with m, k and the initial conditions the same as those in (1).
By a solution of (2) we mean a sequence {xn} which is defined for n ≥ −k and

satisfies (2) for n ≥ 0. A solution {xn} of (2) is said to be prime period-two if xn = xn+2

and xn 6= xn+1 for n ≥ −k. An interval J ⊂ I is called an invariant interval for (2) if
x−k, ..., x0 ∈ J implies that xn ∈ J for all n > 0. A point x̄ is called an equilibrium

point of (2) if x̄ = f(x̄, x̄).

DEFINITION 1.1. (a) The equilibrium point x̄ of (2) is called stable if, for every
ε > 0, there exists δ > 0 such that for all x−k, ..., x0 ∈ I with |xi − x̄| < δ, i = −k, ..., 0,
we have |xn − x̄| < ε for all n > 0.

(b) The equilibrium point x̄ of (2) is called locally asymptotically stable if it is stable
and if there exists c > 0 such that for all x−k, ..., x0 ∈ I with |xi − x̄| < c, i = −k, ..., 0,
we have lim

n→∞

xn = x̄.

(c) The equilibrium point x̄ of (2) is called a global attractor if, for every x−k, ..., x0 ∈
I, we have lim

n→∞

xn = x̄.

(d) The equilibrium point x̄ of (2) is called globally asymptotically stable if it is
stable and is a global attractor.

The linearized equation of (2) about an equilibrium point x̄ of (2) is the linear
difference equation

xn+1 = Pxn−m +Qxn−k, (3)

where

P =
∂f

∂x
(x̄, x̄), Q =

∂f

∂y
(x̄, x̄).

The characteristic equation of (3) is the equation

λk+1 − Pλk−m −Q = 0. (4)

LEMMA 1.1. (Linearized stability) I f all the roots of (4) lie in the open unit disk
|λ| < 1, then the equilibrium x̄ of (2) is locally asymptotically stable.

2 Prime Period-Two Solution

For the existence of prime period-two solutions of (1) we have the following result.

THEOREM 2.1. (a) If m is even, (1) has no nonnegative prime period-two solution.



82 Dynamics of a Rational Difference Equation

(b) If m is odd and k is even, (1) has a nonnegative prime period-two solution if
and only if δ = A+1. Furthermore, if δ = A+1, then ..., φ, ψ, φ, ψ, ... is a nonnegative
prime period-two solution of (1) if and only if φ > 1, φ 6= 2 and ψ = φ

φ−1 .

(c) If m, k are odd, (1) has a nonnegative prime period-two solution if and only if
δ + 1 > A. Furthermore, if δ + 1 > A, (1) has only two nonnegative prime period-two
solutions 0, α, 0, α, ... and α, 0, α, 0, ... with α = δ + 1 −A.

REMARK 2.1. If m = 0, statement (a) here is the same as Theorem 2.2 in [12],
and if m = 1, k = 2, statement (b) is the same as Lemma 3.1 in [5] .

Proof of Theorem 2.1. (a) Assume to the contrary that (1) has a nonnegative prime
period-two solution {xn}. There are two cases to be considered.

Case 1. Suppose k is even, then xn−m = xn−k = xn for n ≥ 0. It follows from (1)
that

{

x1 =
δx−m+x−k

A+x−k
= δx0+x0

A+x0
,

x0 = x2 =
δx1−m+x1−k

A+x1−k
= δx1+x1

A+x1
,

which leads to (A + δ + 1)(x1 − x0) = 0, and then x1 = x0 since A + δ + 1 > 0. This
contradicts the fact that {xn} is prime period-two.

Case 2. Suppose k is odd, then xn+1 = xn−k and xn = xn−m for n ≥ 0. By (1) we
have

{

x1 =
δx−m+x−k

A+x−k
= δx0+x1

A+x1
,

x0 = x2 =
δx1−m+x1−k

A+x1−k
= δx1+x0

A+x0
,

(5)

which implies that
x1 + x0 = 1 − δ −A. (6)

By (5) and (6), it is easy to see that x1 and x0 are the two solutions of equation

x2 + x(δ +A − 1) − δ(1 − δ −A) = 0.

Then
x1x0(x1 + x0) = −δ(1 − δ −A)2 ≤ 0.

So 1−δ−A = 0 since x0, x1 ∈ [0,∞) and δ > 0, and by (6) we have x0 +x1 = 0, which
yields that x0 = x1 = 0. This also contradicts the fact that {xn} is prime period-two.

(b) Suppose that (1) has a nonnegative prime period-two solution {xn}. Then
xn+1 = xn−m and xn = xn−k for n ≥ 0 since m is odd and k is even, and it follows
from (1) that

{

x1 =
δx−m+x−k

A+x−k
= δx1+x0

A+x0
,

x0 = x2 =
δx1−m+x1−k

A+x1−k
= δx0+x1

A+x1
,

which yields that (A − δ + 1)(x1 − x0) = 0, and then δ = A+ 1 since x1 6= x0.
On the other hand, if δ = A + 1, let x2i = 3, x2i+1 = 3/2 for i ≥ −k/2, it is easy

to verify that {xn} is a solution of (1), i.e., (1) has a nonnegative prime period-two
solution.

Furthermore, suppose δ = A+ 1. It is easy to see that ..., φ, ψ, φ, ψ, ... is a nonneg-
ative prime period-two solution of (1) if and only if

ψ =
δψ + φ

δ − 1 + φ
, φ =

δφ+ ψ

δ − 1 + ψ
with φ, ψ ≥ 0, φ 6= ψ, (7)
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and we can also get easily that (7) holds if and only if

ψ + φ = ψφ with φ, ψ ≥ 0, φ 6= ψ. (8)

Clearly, (8) is equivalent to that φ > 1, φ 6= 2 and ψ = φ
φ−1 . Therefore (b) is true.

(c) Suppose {xn} is a nonnegative prime period-two solution of (1). Then xn+1 =
xn−m = xn−k for n ≥ 0 since m, k are odd, and we have

xn+1 =
δxn−m + xn−k

A + xn−k

=
δxn+1 + xn+1

A+ xn+1

for n ≥ 0, which implies that xn+1 = δ + 1 − A or xn+1 = 0 for n ≥ 0. Hence
δ + 1−A > 0 since {xn} is nonnegative and xn 6 =xn+1 for x ≥ −k. Furthermore, Let
α = δ+ 1−A > 0, it is easily to see that 0, α, 0, α, ... and α, 0, α, 0, ... are the only two
nonnegative prime period-two solutions of (1). So statement (c) holds. This completes
the proof.

3 Invariant Interval

In this section, we investigate the invariant intervals for (1).

THEOREM 3.1. Let {xn} be a nonnegative solution of (1). Then the following
statements are true.

(a) Suppose δ ≤ A. If x−m, ..., x0 ∈ [0, A/δ], then xn ∈ [0, A/δ] for n > 0.
(b) Suppose δ > A. If x−m, ..., x0 ∈ [A/δ,∞), then xn ∈ [A/δ,∞) for n > 0.

PROOF. (a) By (1) we have

x1 =
δx−m + x−k

A + x−k

≤
δ · A

δ
+ x−k

A+ x−k

= 1 ≤
A

δ
.

Assume that xi ∈ [0, A/δ] for 1 ≤ i ≤ n, we prove that xn+1 ∈ [0, A/δ]. In fact, by (1)
we have

xn+1 =
δxn−m + xn−k

A+ xn−k

≤
δ · A

δ
+ xn−k

A+ xn−k

= 1 ≤
A

δ
.

Therefore, xn ∈ [0, A/δ] for n > 0.
(b) By an argument similar to the proof of (a), we can prove that statement (b) is

true, and we omit the details.

If we have no the initial conditions x−m, ..., x0 ∈ [0, A/δ] (resp. x−m, ..., x0 ∈
[A/δ,∞)), the following theorem shows that we can also get that xn ∈ [0, A/δ) (resp.
xn ∈ (A/δ,∞)) for n sufficiently large provided δ < A (resp. δ > A).

THEOREM 3.2. Let {xn} be a nonnegative solution of (1). Then the following
statements are true.

(a) If δ < A, there exists N such that xn ∈ [0, A/δ) for n ≥ N .
(b) If δ > A and xi > 0 for −m ≤ i ≤ 0, there exists N such that xn ∈ (A/δ,∞)

for n ≥ N .



84 Dynamics of a Rational Difference Equation

REMARK 3.1. Theorem 3.1 and 3.2 extend Lemma 2.1 in [1], Theorem 2.3 and
Theorem 2.5 in [5], Theorem 2.2 in [9] and Theorem 3.2 in [12].

Proof of Theorem 3.2. (a) Suppose on the contrary that there exists a subsequence
{xni

} of {xn} such that xni
≥ A/δ and ni → ∞. Let M = max{x−m, ..., x0}. Then

there exists a positive integer p such that M ≤ (A/δ)p since δ < A, and we have
nI ≥ p(m + 1) for some positive integer I since ni → ∞. So nI = p′(m + 1) + q for
some p′ ≥ p and −m ≤ q ≤ 0.

On the other hand, if xn+1 ≥ A/δ, by (1) we can get easily that

xn−m =
A

δ
xn+1 +

1

δ
xn−k(xn+1 − 1) ≥

A

δ
xn+1

for n ≥ 0. So we have

xq ≥

(

A

δ

)p′

xq+p′(m+1) =

(

A

δ

)p′

xnI
≥

(

A

δ

)p′+1

>

(

A

δ

)p

≥M,

which contradicts the definition of M .
(b) Noticing that min{x−m, ..., x0} > 0, we can prove (b) in a way similar to the

proof of (a), and we omit the details. The proof is complete.

4 Global Asymptotic Stability

It is obvious that (1) has only two equilibrium points 0 and δ + 1−A. In this section,
we study the global asymptotic stability of the equilibrium points. Let us start with a
lemma.

LEMMA 4.1. Let f(x, y) = (δx+y)/(A+y). Then f is increasing in x if y ∈ [0,∞),
increasing in y if x ∈ [0, A/δ] and decreasing in y if x ∈ [A/δ,∞).

PROOF. This follows directly from the fact that

∂f(x, y)

∂x
=

δ

A+ y
and

∂f(x, y)

∂y
=

A − δx

(A+ y)2
.

We first give a result of global asymptotic stability of the zero equilibrium of (1).

THEOREM 4.1. If δ ≤ A− 1, the zero equilibrium of (1) is globally asymptotically
stable.

REMARK 4.1. Theorem 4.1 extends Theorem 2.1 in [1], Theorem 4.2 in [5], Theo-
rem 2.1 (a) in [9] and the first part of Theorem 2.1 (a) in [12].

Proof of Theorem 4.1. The characteristic equation of the linearized equation of (1)
about the zero equilibrium is

λk+1 −
δ

A
λk−m −

1

A
= 0. (9)

Let f(λ) = λk+1 and g(λ) = (δ/A)λk−m + 1/A. If δ < A − 1, we have |g(λ)| ≤
|δ/A + 1/A| < 1 = |f(λ)| for |λ| = 1. Then by Rouche’s Theorem the function f(λ)
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and f(λ) − g(λ) have the same number of zero points in the open unit disk |λ| < 1.
Therefore, all the roots of (9) satisfies |λ| < 1, and it follows from Lemma 1.1 that the
zero equilibrium is locally asymptotically stable.

Let {xn} be any nonnegative solution of (1). If δ = A− 1, it is easy to get from (1)
that xn+1 < max(xn−k, xn−m) provided that xn−k > 0 or xn−m > 0 for n ≥ 0. From
this it is easy to see that the zero equilibrium is stable.

On the other hand, by Theorem 3.2 (a), there exists N such that xn < A/δ for
n ≥ N since δ ≤ A − 1. Let S = lim sup

n→∞

xn, then 0 ≤ S ≤ A/δ, and it is easy to get

from (1) and Lemma 4.1 that

S ≤
(δ + 1)S

A+ S
,

which implies that S = 0 since S ≥ 0 and δ ≤ A − 1. Hence lim
n→∞

xn = 0, i.e., zero

equilibrium is a global attractor of all nonnegative solutions of (1). This completes the
proof.

Finally, we investigate the global asymptotic stability of the positive equilibrium
δ + 1 − A of (1) provided that A − 1 < δ. We note that by the global asymptotic
stability of the positive equilibrium we mean that the positive equilibrium is stable
and is a global attractor of all positive solutions of (1).

THEOREM 4.2. If 0 < |δ− A| < 1, the positive equilibrium point δ + 1 −A of (1)
is globally asymptotically stable.

REMARK 4.2. Theorem 4.2 extends Theorem 3.1 for the case 0 < |δ − A| < 1 in
[1], Theorem 6.3 and Theorem 8.3 in [5], Theorem 5.1 for the case A < δ < A+ 1 and
Theorem 3.2 in [9], and Theorem 3.3 and Corollary 3.1 in [12].

Proof of Theorem 4.2. The characteristic equation of the linearized equation of (1)
about the positive equilibrium δ + 1 −A is

λk+1 −
δ

1 + δ
λk−m +

δ − A

1 + δ
= 0. (10)

Let

f(λ) = λk+1 and g(λ) =
δ

1 + δ
λk−m −

δ − A

1 + δ
.

Since 0 < |δ − A| < 1, for |λ| = 1 we have

|g(λ)| ≤

∣

∣

∣

∣

δ

1 + δ

∣

∣

∣

∣

+

∣

∣

∣

∣

δ −A

1 + δ

∣

∣

∣

∣

< 1 = |f(λ)|.

Then by Rouche’s Theorem f(λ) and f(λ)−g(λ) have the same number of zero points
in the open unit disk |λ| < 1. Hence all the roots of (10) satisfies |λ| < 1, and it follows
from Lemma 1.1 that the equilibrium δ + 1 −A is locally asymptotically stable.

Now it is sufficient to prove the global attractivity of δ + 1 − A. Let {xn} be any
positive solution of (1). There are two cases to be considered.

Case 1. −1 < δ − A < 0.
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It follows from Theorem 3.2 (a) that there exists N such that xn < A/δ for n ≥ N .
Let a = min{xN , xN+1, . . . , xN+k, δ + 1 − A}. Then a > 0 since {xn} is positive. We
assert that

xn ≥ a for all n ≥ N. (11)

If n ≥ N + k + 1, there exists some positive integer p such that n = p(m+ 1) + q with
N + k −m ≤ q ≤ N + k, and we prove (11) by induction in p. If p = 1, noticing that
N ≤ m+ q − k ≤ N +m, by Lemma 4.1 we have

xm+1+q =
δxq + xm+q−k

A+ xm+q−k

≥
(δ + 1)a

A+ a
≥ a,

i.e., (11) holds for p = 1. If (11) holds for p ≤ r (i.e., for n ≤ r(m + 1) + q with
N + k −m ≤ q ≤ N + k), by Lemma 4.1 we get

x(r+1)(m+1)+q =
δxr(m+1)+q + xr(m+1)+q+m−k

A + xr(m+1)+q+m−k

≥
(δ + 1)a

A+ a
≥ a.

Therefore, (11) is true.
Let S = lim sup

n→∞

xn, I = lim inf
n→∞

xn. Then (11) implies that S ≥ I ≥ a > 0, and it

follows from Lemma 4.1 that

I ≥
(δ + 1)I

A + I
and S ≤

(δ + 1)S

A + S
,

which yields that I = δ + 1 − A = S, i.e., lim
n→∞

xn = δ + 1 −A.

Case 2. 0 < δ − A < 1.
By Theorem 3.2 (b), there exists N such that xn > A/δ for n ≥ N . Then we have

xn+1 =
δxn−m + xn−k

A+ xn−k

= 1 +
δ(xn−m −A/δ)

A+ xn−k

> 1

for n ≥ N +m, and by Lemma 4.1 we get

xn+1 =
δxn−m + xn−k

A + xn−k

≤
δxn−m + 1

A+ 1

for n ≥ N +m+ k + 1. Hence

lim sup
n→∞

xn ≤
1

A + 1 − δ
.

Let S = lim sup
n→∞

xn, I = lim inf
n→∞

xn, then

0 <
A

δ
≤ I ≤ S <∞. (12)

By Lemma 4.1, we have

I ≥
δI + S

A+ S
and S ≤

δS + I

A+ I
.
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This implies that
δI + S − IA ≤ IS ≤ δS + I − SA, (13)

which yields that (I − S)(A + 1 − δ) ≥ 0. Hence I = S since δ − A < 1, and this,
together with (12) and (13), leads to I = S = δ+1−A, i.e., lim

n→∞

xn = δ+1−A. The

proof is complete.
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