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Abstract

In this paper, we investigate the following system of nonlinear second-order
three-point boundary value problem
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:

−u′′ = f(t, v), t ∈ (0, 1),
−v′′ = g(t, u), t ∈ (0, 1),
u(0) = αu(η), u(1) = βu(η),
v(0) = αv(η), v(1) = βv(η),

where η ∈ (0, 1) and 0 < β ≤ α < 1. Green’s function for the associated lin-
ear boundary value problem is constructed, and several useful properties of the
Green’s function are obtained. Existence and multiplicity criteria of positive
solutions are established by using the well-known fixed point theorems of cone
expansion and compression.

1 Introduction

Multi-point boundary value problems (BVPs for short) of differential equations arise in
a variety of applied mathematics and physics. For instance, the vibrations of a wire of
uniform cross-section and composed of N parts of different densities can be set up as a
multi-point BVP [8]. The study of three-point BVPs for nonlinear ordinary differential
equations was initiated by Gupta [3]. Since then, nonlinear multi-point BVPs have
been studied by may authors, see [1, 2, 5, 6, 7, 9, 10, 11] and the references therein. In
particular, by using the Guo-Krasnosel’skii fixed point theorem in cone, Ma [6] proved
the existence of at least one positive solution to the following BVP

{
u′′(t) + h(t)f(u) = 0, 0 < t < 1,
u(0) = 0, u(1) = αu(η),

where η ∈ (0, 1), 0 < α < 1
η
, h ∈ C([0, 1], R+) and there exists t0 ∈ [0, 1] such that

h(t0) > 0, and f ∈ C(R+, R+) is either superlinear or sublinear. Recently, Zhou and

∗Mathematics Subject Classifications: 34B15
†Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050,

P. R. China
‡Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050,

P. R. China

55



56 Systems of Three-Point BVP

Xu [10] employed fixed point index theorems to consider the existence and multiplicity
of positive solutions to the system






−u′′ = f(t, v), t ∈ (0, 1),
−v′′ = g(t, u), t ∈ (0, 1),
u(0) = 0, u(1) = αu(η),
v(0) = 0, v(1) = αv(η),

where η ∈ (0, 1), 0 < α < 1
η

and f, g ∈ C([0, 1]× R+, R+).
Motivated by the excellent results mentioned above, in this paper we consider the

existence and multiplicity of positive solutions to the following system





−u′′ = f(t, v), t ∈ (0, 1),
−v′′ = g(t, u), t ∈ (0, 1),

u(0) = αu(η), u(1) = βu(η),
v(0) = αv(η), v(1) = βv(η),

(1)

where f, g ∈ C([0, 1] × R+, R+), g(t, 0) ≡ 0, η ∈ (0, 1) and 0 < β ≤ α < 1. First,
Green’s function for associated linear boundary value problem is constructed, and then,
several useful properties of the Green’s function are obtained. Finally, some existence
and multiplicity criteria of positive solutions to the system (1) are established. Our
main tools are the well-known fixed point theorems of cone expansion and compression
[4], which we state here for convenience of the reader.

THEOREM 1. Let E be a Banach space and P be a cone in E. Assume that Ω1

and Ω2 are open subsets of E such that 0 ∈ Ω1, Ω1 ⊂ Ω2, and let T : P ∩ (Ω2\Ω1) → P

be a completely continuous operator such that either
1) ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2, or
2) ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2 \Ω1).

THEOREM 2. Let E be a Banach space and P be a cone in E. Assume that
Ω1, Ω2 and Ω3 are open subsets of E such that 0 ∈ Ω1, Ω1 ⊂ Ω2, Ω2 ⊂ Ω3, and let
T : P ∩ (Ω3\Ω1) → P be a completely continuous operator such that the following
conditions are satisfied:

1) ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω1;
2) ‖Tu‖ ≤ ‖u‖ and Tu 6= u for u ∈ P ∩ ∂Ω2;
3) ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω3.

Then T has at least two fixed points u1 and u2 in P ∩ (Ω3\Ω1). Furthermore, u1 ∈
P ∩ (Ω2\Ω1) and u2 ∈ P ∩ (Ω3\Ω2).

THEOREM 3. Let E be a Banach space and P be a cone in E. Assume that
Ω1, Ω2 and Ω3 are open subsets of E such that 0 ∈ Ω1, Ω1 ⊂ Ω2, Ω2 ⊂ Ω3, and let
T : P ∩ (Ω3\Ω1) → P be a completely continuous operator such that the following
conditions are satisfied:

1) ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1;
2) ‖Tu‖ ≥ ‖u‖ and Tu 6= u for u ∈ P ∩ ∂Ω2;
3) ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω3.

Then T has at least two fixed points u1 and u2 in P ∩ (Ω3\Ω1). Furthermore, u1 ∈
P ∩ (Ω2\Ω1) and u2 ∈ P ∩ (Ω3\Ω2).
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2 Some Lemmas

Throughout this paper, we denote

ξ =
1

1 − α+ (α− β)η
and γ = min

{
β(1 − η)

1 − βη
,

βη

1 − α+ αη

}
.

LEMMA 1. For y ∈ C[0, 1], the BVP

{
−u′′ = y(t), 0 < t < 1,
u(0) = αu(η), u(1) = βu(η)

(2)

has a unique solution

u(t) =

∫ 1

0

G(t, s)y(s)ds, (3)

where

G(t, s) = ξ






s[1 − βη + (β − 1)t], s ≤ min{t, η},
t[1 − βη + (β − 1)s] + α(1 − η)(s− t), t ≤ s ≤ η,

(1 − s)(t − αt+ αη) + (s− t)[1− α+ (α− β)η], η ≤ s ≤ t,

(1 − s)(t − αt+ αη), s ≥ max{t, η}

which will be called the Green’s function for the linear problem (2).

Indeed, since the unique solution of the BVP (2) can be expressed as

u(t) = −

∫ t

0

(t− s)y(s)ds + ξ[(1− α)t+ αη]

∫ 1

0

(1 − s)y(s)ds

+ξ[(α− β)t − α]

∫ η

0

(η − s)y(s)ds,

it is easy to verify that (3) is satisfied.

LEMMA 2. The Green’s function G(t, s) has the following properties:
1) G(t, s) ≥ 0 for 0 ≤ t, s ≤ 1
2) G(t, s) ≤ G(s, s) for 0 ≤ t, s ≤ 1;
3) G(t, s) ≤ ξ for 0 ≤ t, s ≤ 1;
4) G(t, s) ≥ γG(s, s) for η ≤ t ≤ 1 and 0 ≤ s ≤ 1.

Let E = C[0, 1] be equipped with the norm ‖u‖ = max0≤t≤1 |u(t)| and

P = {u ∈ E|u(t) ≥ 0 for t ∈ [0, 1] and min
η≤t≤1

u(t) ≥ γ ‖u‖}.

Then it is obvious that E is a Banach space and P is a cone in E. We define an
operator T : P → E by

Tu(t) =

∫ 1

0

G(t, s)f

(
s,

∫ 1

0

G(s, r)g(r, u(r))dr

)
ds, t ∈ [0, 1]. (4)
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It is easy to see that if T has a fixed point u ∈ P , then the system (1) has one solution

(
u,

∫ 1

0

G(s, r)g(r, u(r))dr

)
.

LEMMA 3. T : P → P is completely continuous.

PROOF. Suppose that u ∈ P. Then it follows from Lemma 2 that

0 ≤ Tu(t) =

∫ 1

0

G(t, s)f

(
s,

∫ 1

0

G(s, r)g(r, u(r))dr

)
ds

≤

∫ 1

0

G(s, s)f

(
s,

∫ 1

0

G(s, r)g(r, u(r))dr

)
ds, t ∈ [0, 1],

which implies that ‖Tu‖ ≤
∫ 1

0
G(s, s)f

(
s,

∫ 1

0
G(s, r)g(r, u(r))dr

)
ds. So,

min
η≤t≤1

Tu(t) = min
η≤t≤1

{∫ 1

0

G(t, s)f

(
s,

∫ 1

0

G(s, r)g(r, u(r))dr

)
ds

}

≥ γ

∫ 1

0

G(s, s)f

(
s,

∫ 1

0

G(s, r)g(r, u(r))dr

)
ds ≥ γ ‖Tu‖ .

Therefore, T : P → P . Furthermore, we can prove by standard arguments that
T : P → P is completely continuous.

3 Main Results

For a continuous function h : [0, 1]× R+ → R+, we denote

h0 = lim
u→0+

inf
t∈[0,1]

h(t, u)

u
, h∞ = lim

u→∞
inf

t∈[0,1]

h(t, u)

u
,

h0 = lim
u→0+

sup
t∈[0,1]

h(t, u)

u
, h∞ = lim

u→∞
sup

t∈[0,1]

h(t, u)

u
.

To derive the existence and multiplicity results of positive solutions to the system
(1), we make the following assumptions:

(A1) f
0 < a and g0 < a, where a = 1

R

1

0
G(r,r)dr

;

(A2) f∞ = ∞ and g∞ = ∞;
(A3) f0 > b and g0 > b, where b = 1

γ
R

1

η
G( η+1

2
,s)ds

;

(A4) f
∞ = 0 and g∞ = 0;

(A5) f(t, u) and g(t, u) are all nondecreasing with respect to u and there exists a
constant N > 0 such that

f

(
t,

∫ 1

0

ξg(s, N)ds

)
<
N

ξ
, t ∈ [0, 1];
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(A6) f(t, u) is nonincreasing and g(t, u) is nondecreasing with respect to u and there
exists a constant M > 0 such that

f

(
s,

∫ 1

0

G(r, r)g(r,M)dr

)
>

4M

ξη (1 − η)
2 , s ∈

[
η,

1 + η

2

]
;

(A7) f(t, u) is nondecreasing and g(t, u) is nonincreasing with respect to u and there
exists a constant W > 0 such that

f

(
s,

∫ 1

0

γG(r, r)g(r,W )dr

)
>

4W

ξη (1 − η)
2 , s ∈

[
η,

1 + η

2

]
.

THEOREM 4. Assume that (A1) and (A2) hold. Then the system (1) has at least
one positive solution.

PROOF. By (A1), we may choose H1 ∈ (0, 1) such that for any (t, u) ∈ [0, 1] ×
[0, H1), f(t, u) ≤ au and g(t, u) ≤ au. Thus, if u ∈ P and ‖u‖ = H1

2
, then

∫ 1

0

G(s, r)g(r, u(r))dr ≤ a

∫ 1

0

G(r, r)u(r)dr ≤ ‖u‖ =
H1

2
< H1, s ∈ [0, 1] ,

and so

Tu(t) ≤

∫ 1

0

G(s, s)f

(
s,

∫ 1

0

G(s, r)g(r, u(r))dr

)
ds

≤ a ‖u‖

∫ 1

0

G(s, s)a

∫ 1

0

G(r, r)drds= ‖u‖ , t ∈ [0, 1] .

If we let Ω1 = {u ∈ E : ‖u‖ < H1

2 }, then we have shown that

‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1. (5)

On the other hand, in view of (A2), there exist two positive numbers C1 and C2

such that for any (t, u) ∈ [0, 1]×R+, f(t, u) ≥ ϕu − C1 and g(t, u) ≥ ψu − C2, where

ϕ > 0 and ψ > 0 satisfy ϕ
∫ 1

η
G

(
η+1
2 , s

)
ds ≥ 2 and ψγ2

∫ 1

η
G(s, s)ds ≥ 1. Then for

u ∈ P , we have

Tu

(
η + 1

2

)
=

∫ 1

0

G

(
η + 1

2
, s

)
f

(
s,

∫ 1

0

G(s, r)g(r, u(r))dr

)
ds

≥

∫ 1

0

G

(
η + 1

2
, s

) [
ϕ

∫ 1

0

G(s, r)g(r, u(r)dr− C1

]
ds

≥ 2 ‖u‖ −C3,

where C3 = ϕC2

∫ 1

0
G

(
η+1
2
, s

) ∫ 1

0
G(r, r)drds+C1

∫ 1

0
G

(
η+1
2
, s

)
ds. Consequently, ‖Tu‖ ≥

Tu(η+1
2 ) ≥ ‖u‖ as ‖u‖ → ∞. Thus, for H2 > 0 large enough, if we let Ω2 = {u ∈ E :

‖u‖ < H2}, then we have

‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2. (6)
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Therefore, it follows from (5), (6) and Theorem 1 that T has a fixed point in P ∩
(Ω2\Ω1), which implies that the system (1) has at least one positive solution.

THEOREM 5. Assume that (A3) and (A4) hold. Then the system (1) has at least
one positive solution.

PROOF. By (A3), there exists Ĥ1 ∈ (0, 1) such that for any (t, u) ∈ [0, 1]× [0, Ĥ1],
f(t, u) ≥ bu and g(t, u) ≥ bu. In view of g(t, 0) ≡ 0 and the continuity of g(t, u), we

can choose H3 ∈ (0, Ĥ1) sufficiently small such that

g(t, u) ≤
Ĥ1∫ 1

0
G(r, r)dr

, (t, u) ∈ [0, 1]× [0, H3].

Thus, if u ∈ P and ‖u‖ = H3, then

∫ 1

0

G(s, r)g(r, u(r))dr ≤
Ĥ1∫ 1

0
G(r, r)dr

∫ 1

0

G(s, r)dr ≤ Ĥ1, s ∈ [0, 1] ,

and so

Tu

(
η + 1

2

)
=

∫ 1

0

G

(
η + 1

2
, s

)
f

(
s,

∫ 1

0

G(s, r)g(r, u(r))dr

)
ds

≥ b2
∫ 1

η

G

(
η + 1

2
, s

)∫ 1

η

G(s, r)u(r)drds

≥ b2γ2 ‖u‖

∫ 1

η

G(r, r)dr

∫ 1

η

G(
η + 1

2
, s)ds

≥ ‖u‖ .

If we let Ω3 = {u ∈ E : ‖u‖ < H3}, then we have shown that

‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω3. (7)

On the other hand, in view of (A4), there exist two positive numbers C4 and C5

such that for any (t, u) ∈ [0, 1]× R+, f(t, u) ≤ λu+ C4 and g(t, u) ≤ λu + C5, where

λ > 0 satisfies λ
∫ 1

0
G(r, r)dr ≤ 1

2 . Then for u ∈ P , we have

Tu(t) =

∫ 1

0

G(t, s)f

(
s,

∫ 1

0

G(s, r)g(r, u(r))dr

)
ds

≤

∫ 1

0

G(s, s)

[
λ

∫ 1

0

G(r, r)g(r, u(r))dr+ C4

]
ds

≤ λ

∫ 1

0

G(s, s)ds

∫ 1

0

G(r, r) [λu(r) + C5]dr + C4

∫ 1

0

G(s, s)ds

≤
1

4
‖u‖ + C6, t ∈ [0, 1],

where C6 =
(
λC5

∫ 1

0
G(r, r)dr+ C4

) ∫ 1

0
G(s, s)ds. Consequently, ‖Tu‖ ≤ ‖u‖ as ‖u‖ →

∞. Thus, for H4 > 0 large enough, if we let Ω4 = {u ∈ E : ‖u‖ < H4}, then we have

‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω4. (8)
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Therefore, it follows from (7), (8) and Theorem 1 that T has a fixed point in P ∩
(Ω4\Ω3), which implies that the system (1) has at least one positive solution.

THEOREM 6. Assume that (A2), (A3) and (A5) hold. Then the system (1) has at
least two positive solutions.

PROOF. Let BN = {u ∈ E : ‖u‖ < N}. Then by Lemma 2 and (A5), for any
u ∈ P ∩ ∂BN , we have

Tu(t) ≤ ξ

∫ 1

0

f

(
s,

∫ 1

0

ξg(r, N)dr

)
ds < ξ

N

ξ
= N, t ∈ [0, 1],

which shows that

‖Tu‖ < ‖u‖ for u ∈ P ∩ ∂BN . (9)

In view of (A2), (A3) and the proof of Theorem 4 and Theorem 5, we can choose
H3 < N < H2 such that

‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2 (10)

and

‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω3. (11)

Therefore, it follows from (9)-(11) and Theorem 2 that T has a fixed point in P ∩
(Ω2\BN) and a fixed point in P ∩ (BN\Ω3), which implies that the system (1) has at
least two positive solutions.

THEOREM 7. Assume that (A1), (A4) and (A6) hold. Then the system (1) has at
least two positive solutions.

PROOF. Let BM = {u ∈ E : ‖u‖ < M}. Then by Lemma 2 and (A6), for any
u ∈ P ∩ ∂BM , we have

Tu(η) =

∫ 1

0

G(η, s)f

(
s,

∫ 1

0

G(s, r)g(r, u(r))dr

)
ds

≥

∫ 1+η

2

η

G(η, s)f

(
s,

∫ 1

0

G(r, r)g(r,M)dr

)
ds

≥
ξη (1 − η)

2

∫ 1+η

2

η

f

(
s,

∫ 1

0

G(r, r)g(r,M)dr

)
ds

>
ξη (1 − η)

2

∫ 1+η

2

η

4M

ξη (1 − η)
2 ds = M,

which shows that

‖Tu‖ > ‖u‖ for u ∈ P ∩ ∂BM . (12)

In view of (A1), (A4) and the proof of Theorem 4 and Theorem 5, we can choose
H1 <M < H4 such that

‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1 (13)
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and
‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω4. (14)

Therefore, it follows from (12)-(14) and Theorem 3 that T has a fixed point in P ∩
(Ω4\BM ) and a fixed point in P ∩ (BM\Ω1), which implies that the system (1) has at
least two positive solutions.

THEOREM 8. Assume that (A1), (A4) and (A7) hold. Then the system (1) has at
least two positive solutions.

Since the proof of this theorem is similar to that of Theorem 7, we have omitted it.
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