Some Discrete Representations Of q-Classical Linear Forms*

Olfa Fériel Kamech ${ }^{\dagger}$, Manoubi Mejri ${ }^{\ddagger}$

Received 25 September 2007

Abstract

We give a discrete measure for some H_{q}-classical forms and some consequent summation formulas.

1 Introduction and Preliminaries

In [4], H_{q}-classical orthogonal polynomials are exhaustively described and integral or discrete representations of corresponding regular forms are given, except in some cases where the problem remains open (see also [3] for the H_{q}-semiclassical case). So, the aim of this contribution is to establish discrete representations of two canonical situations in [4] which are the q-analogous of Hermite (for $0<q<1, q>1$) and the q-analogous of Laguerre (for $q>1$).

Let \mathcal{P} be the vector space of polynomials with coefficients in \mathbb{C} and let \mathcal{P}^{\prime} be its dual. We denote by $\langle u, f\rangle$ the action of $u \in \mathcal{P}^{\prime}$ on $f \in \mathcal{P}$. In particular, for any $f \in \mathcal{P}$, we let $f u$, be the form defined by duality $\langle f u, p\rangle:=\langle u, f p\rangle, p \in \mathcal{P}$. Let $\left\langle\delta_{c}, p\right\rangle=p(c), c \in \mathbb{C}, p \in \mathcal{P}$.

The form u is called regular if we can associate with it a sequence $\left\{P_{n}\right\}_{n \geq 0}$ of monic polynomials, $\operatorname{deg} P_{n}=n, n \geq 0$ such that

$$
\left\langle u, P_{m} P_{n}\right\rangle=r_{n} \delta_{n, m}, n, m \geq 0 ; r_{n} \neq 0, n \geq 0
$$

The sequence $\left\{P_{n}\right\}_{n \geq 0}$ is orthogonal with respect to u and fulfils the standard recurrence relation:

$$
\left\{\begin{array}{l}
P_{0}(x)=1, P_{1}(x)=x-\beta_{0} \tag{1}\\
P_{n+2}(x)=\left(x-\beta_{n+1}\right) P_{n+1}(x)-\gamma_{n+1} P_{n}(x), n \geq 0
\end{array}\right.
$$

[^0]with $\gamma_{n+1} \neq 0, n \geq 0$.
The form u is said to be normalized if $(u)_{0}=1$ where in general $(u)_{n}=\left\langle u, x^{n}\right\rangle, n \geq$ 0 , are the moments of u. In this paper we suppose that any form will be normalized.

Let us introduce the Hahn's operator

$$
\left(H_{q} f\right)(x):=\frac{f(q x)-f(x)}{(q-1) x}, f \in \mathcal{P}, q \in \widetilde{\mathbb{C}}
$$

where $\widetilde{\mathbb{C}}:=\mathbb{C}-\left(\{0\} \cup\left(\bigcup_{n \geq 0}\left\{z \in \mathbb{C}, z^{n}=1\right\}\right)\right)$.
By duality we have

$$
\left\langle H_{q} u, f\right\rangle=-\left\langle u, H_{q} f\right\rangle, u \in \mathcal{P}^{\prime}, f \in \mathcal{P} .
$$

DEFINITION. A form u is called $H_{q^{-}}$classical when it is regular and there exists two polynomials ϕ (monic) and ψ with $\operatorname{deg}(\phi) \leq 2, \operatorname{deg}(\psi)=1$ such that

$$
\begin{equation*}
H_{q}(\phi u)+\psi u=0 \tag{2}
\end{equation*}
$$

The corresponding orthogonal sequence $\left\{P_{n}\right\}_{n \geq 0}$ is called H_{q}-classical.

We are going to use the following notations and results $[1,2,5]$

$$
\begin{gather*}
(a ; q)_{n}=\left\{\begin{array}{l}
1, \quad n=0, \\
\prod_{k=0}^{n-1}\left(1-a q^{k}\right), n \geq 1 .
\end{array}\right. \tag{3}\\
(a ; q)_{n}=(-1)^{n} a^{n} q^{\frac{n(n-1)}{2}}\left(a^{-1} ; q^{-1}\right)_{n}, n \geq 0, a, q \neq 0 . \tag{4}\\
(a ; q)_{\infty}=\prod_{k=0}^{+\infty}\left(1-a q^{k}\right),|q|<1 . \tag{5}\\
(a ; q)_{n}=\left\{\begin{array}{l}
\frac{(a ; q)_{\infty}}{\left(a q^{n} ; q\right)_{\infty}},|q|<1, \\
\frac{\left(a q^{-1} q^{n} ; q^{-1}\right)_{\infty}}{\left(a q^{-1} ; q^{-1}\right)_{\infty}},|q|>1 . \\
(z ; q)_{\infty}= \\
\frac{\sum_{k=0}^{+\infty} \frac{(-1)^{k} q^{\frac{k(k-1)}{2}}}{(q ; q)_{k}} z^{k},|q|<1 .}{(z, q)_{\infty}}=\sum_{k=0}^{+\infty} \frac{1}{(q ; q)_{k}} z^{k},|q|<1,|z|<1 .
\end{array}\right. \tag{6}\\
1 \tag{7}
\end{gather*}
$$

2 Discrete measure for some H_{q}-classical forms

2.1

Consider the symmetric H_{q}-classical linear form u which is the q-analog of Hermite functional. We have [4]

$$
\begin{gather*}
\left\{\begin{array}{l}
\beta_{n}=0, n \geq 0 \\
\gamma_{n+1}=\frac{1-q^{n+1}}{2(1-q)} q^{n}, n \geq 0 \\
H_{q}(u)+2 x u=0
\end{array}\right. \tag{9}\\
\langle u, f\rangle=\left\{\begin{array}{l}
\frac{\sqrt{2}}{\pi}(q-1)^{1 / 2} \frac{\left(q^{-2} ; q^{-2}\right)_{\infty}}{\left(q^{-1} ; q^{-2}\right)_{\infty}} \int_{-\infty}^{+\infty} \frac{f(x)}{\left(-2(q-1) x^{2} ; q^{-2}\right)_{\infty}} d x, f \in \mathcal{P}, q>1, \\
K_{1} \int_{-\frac{1}{q \sqrt{2(1-q)}}}^{+\frac{1}{q \sqrt{2(1-q)}}}\left(2 q^{2}(1-q) x^{2} ; q^{2}\right)_{\infty} f(x) d x, f \in \mathcal{P}, 0<q<1,
\end{array}\right. \tag{10}
\end{gather*}
$$

with

$$
\begin{gather*}
K_{1}=\frac{1}{2}\left(\int_{0}^{+\frac{1}{q \sqrt{2(1-q)}}}\left(2 q^{2}(1-q) x^{2} ; q^{2}\right)_{\infty} d x\right)^{-1} \tag{11}\\
\quad(u)_{2 n}=\frac{1}{2^{n}} \frac{\left(q ; q^{2}\right)_{n}}{(1-q)^{n}}, \quad(u)_{2 n+1}=0, n \geq 0 \tag{12}
\end{gather*}
$$

PROPOSITION 1. We have the following discrete representations:
For $f \in \mathcal{P}, q>1$

$$
\begin{equation*}
\langle u, f\rangle=\frac{1}{2\left(q^{-1} ; q^{-2}\right)_{\infty}} \sum_{k=0}^{+\infty} \frac{(-1)^{k} q^{-k^{2}}}{\left(q^{-2} ; q^{-2}\right)_{k}}\left\{f\left(\frac{-i q^{k}}{\sqrt{2(q-1)}}\right)+f\left(\frac{i q^{k}}{\sqrt{2(q-1)}}\right)\right\} \tag{13}
\end{equation*}
$$

For $f \in \mathcal{P}, 0<q<1$

$$
\begin{equation*}
\langle u, f\rangle=2^{-1}\left(q ; q^{2}\right)_{\infty} \sum_{k=0}^{+\infty} \frac{q^{k}}{\left(q^{2} ; q^{2}\right)_{k}}\left\{f\left(\frac{-q^{k}}{\sqrt{2(1-q)}}\right)+f\left(\frac{q^{k}}{\sqrt{2(1-q)}}\right)\right\} \tag{14}
\end{equation*}
$$

PROOF. Let $q>1$ by (6), equation (12) becomes

$$
(u)_{2 n}=\frac{1}{2^{n}(1-q)^{n}} \frac{\left(q^{2 n-1} ; q^{-2}\right)_{\infty}}{\left(q^{-1} ; q^{-2}\right)_{\infty}}, n \geq 0
$$

On account of (7), we get

$$
(u)_{2 n}=\frac{1}{\left(q^{-1} ; q^{-2}\right)_{\infty}} \sum_{k=0}^{+\infty} \frac{(-1)^{k} q^{-k^{2}}}{\left(q^{-2} ; q^{-2}\right)_{k}}\left(\frac{i q^{k}}{\sqrt{2(q-1)}}\right)^{2 n}, n \geq 0
$$

Therefore

$$
(u)_{2 n}=\left\langle\frac{1}{\left(q^{-1} ; q^{-2}\right)_{\infty}} \sum_{k=0}^{+\infty} \frac{(-1)^{k} q^{-k^{2}}}{\left(q^{-2} ; q^{-2}\right)_{k}} \delta_{\frac{i q^{k}}{\sqrt{2(q-1)}}}, x^{2 n}\right\rangle, n \geq 0
$$

But $(u)_{2 n+1}=0, n \geq 0$, yields to

$$
(u)_{n}=\left\langle u, x^{n}\right\rangle=\left\langle\frac{1}{2\left(q^{-1} ; q^{-2}\right)_{\infty}} \sum_{k=0}^{+\infty} \frac{(-1)^{k} q^{-k^{2}}}{\left(q^{-2} ; q^{-2}\right)_{k}}\left\{\delta_{\frac{-i q^{k}}{\sqrt{2(q-1)}}}+\delta_{\frac{i q^{k}}{\sqrt{2(q-1)}}}\right\}, x^{n}\right\rangle, n \geq 0
$$

Consequently

$$
u=\frac{1}{2\left(q^{-1} ; q^{-2}\right)_{\infty}} \sum_{k=0}^{+\infty} \frac{(-1)^{k} q^{-k^{2}}}{\left(q^{-2} ; q^{-2}\right)_{k}}\left\{\delta_{\frac{-i q^{k}}{\sqrt{2(q-1)}}}+\delta_{\frac{i q^{k}}{\sqrt{2(q-1)}}}\right\}
$$

Then we get the desired result (13).

When $0<q<1$, by virtue of (6), equation (12) becomes

$$
(u)_{2 n}=\frac{\left(q ; q^{2}\right)_{\infty}}{2^{n}(1-q)^{n}\left(q^{2 n+1} ; q^{2}\right)_{\infty}}, n \geq 0
$$

on account of (8), it follows that

$$
(u)_{2 n}=\left(q ; q^{2}\right)_{\infty} \sum_{k=0}^{+\infty} \frac{q^{k}}{\left(q^{2} ; q^{2}\right)_{k}}\left(\frac{q^{k}}{\sqrt{2(1-q)}}\right)^{2 n}, n \geq 0
$$

Then

$$
(u)_{n}=\left\langle 2^{-1}\left(q ; q^{2}\right)_{\infty} \sum_{k=0}^{+\infty} \frac{q^{k}}{\left(q^{2} ; q^{2}\right)_{k}}\left\{\delta_{\frac{-q^{k}}{\sqrt{2(1-q)}}}+\delta_{\frac{q^{k}}{\sqrt{2(1-q)}}}\right\}, x^{n}\right\rangle, n \geq 0
$$

Consequently, we are lead to

$$
\begin{equation*}
u=2^{-1}\left(q ; q^{2}\right)_{\infty} \sum_{k=0}^{+\infty} \frac{q^{k}}{\left(q^{2} ; q^{2}\right)_{k}}\left\{\delta_{\frac{-q^{k}}{\sqrt{2(1-q)}}}+\delta_{\frac{q^{k}}{\sqrt{2(1-q)}}}\right\} \tag{15}
\end{equation*}
$$

Hence (14).

2.2

Consider the q-analogous of Laguerre linear form u given in [4,pp 68]. We have

$$
\left\{\begin{array}{l}
\beta_{n}=\left\{1-(1+q) q^{n}\right\} q^{n-1}, n \geq 0 \tag{16}\\
\gamma_{n+1}=\left(q^{n+1}-1\right) q^{3 n}, n \geq 0 \\
H_{q}(x u)-(q-1)^{-1}(x+1) u=0
\end{array}\right.
$$

For $q>1$, we have the following representations [4]:

$$
\langle u, f\rangle=\left\{\begin{array}{l}
(2 \pi \ln q)^{-1 / 2} q^{-1 / 8} \int_{-\infty}^{0}|x|^{-3 / 2} \exp \left(-\frac{\ln ^{2}|x|}{2 \ln q}\right) f(x) d x, f \in \mathcal{P} \tag{17}\\
\sum_{k=0}^{+\infty}(-1)^{k} \frac{q^{-k^{2}} s(k)}{\left(q^{-1} ; q^{-1}\right)_{k}} f\left(-q^{k}\right), f \in \mathcal{P}
\end{array}\right.
$$

where

$$
\begin{equation*}
s(k)=\sum_{m=0}^{+\infty} \frac{q^{-\left(\frac{1}{2} m(m+1)+k m\right)}}{\left(q^{-1} ; q^{-1}\right)_{m}}(u)_{m+k}^{\phi}, k \geq 0 \tag{18}
\end{equation*}
$$

and $(u)_{2 n}^{\phi}=(q-1)^{n},(u)_{2 n+1}^{\phi}=0, n \geq 0$.
The moments of u are given by the following formulas:

$$
\begin{equation*}
(u)_{n}=(-1)^{n} q^{\frac{1}{2} n(n-1)}, n \geq 0 \tag{19}
\end{equation*}
$$

PROPOSITION 2. The form u possesses the following discrete representation: For $f \in \mathcal{P}, q>1$

$$
\begin{gather*}
\left(-1 ; q^{-1}\right)_{\infty}\left(-q^{-1} ; q^{-1}\right)_{\infty}\langle u, f\rangle= \\
\sum_{k=0}^{+\infty} q^{-\frac{k(k-1)}{2}} \sum_{\mu=0}^{k} \frac{q^{-\mu^{2}+(k-1) \mu}}{\left(q^{-1} ; q^{-1}\right)_{\mu}\left(q^{-1} ; q^{-1}\right)_{k-\mu}} f\left(-q^{2 \mu-k}\right) \tag{20}
\end{gather*}
$$

PROOF. From (4), for (19) we obtain

$$
\begin{equation*}
(u)_{n}=(-1)^{n} \frac{(-1 ; q)_{n}}{\left(-1 ; q^{-1}\right)_{n}}, n \geq 0 \tag{21}
\end{equation*}
$$

Let $q>1$, taking (6) into account, equation (21) can be written in the following way

$$
(u)_{n}=\frac{(-1)^{n}}{\left(-1 ; q^{-1}\right)_{\infty}\left(-q^{-1} ; q^{-1}\right)_{\infty}}\left(-q^{n-1} ; q^{-1}\right)_{\infty}\left(-q^{-n} ; q^{-1}\right)_{\infty}, n \geq 0
$$

In accordance of (7), we get

$$
(u)_{n}=\frac{(-1)^{n}}{\left(-1 ; q^{-1}\right)_{\infty}\left(-q^{-1} ; q^{-1}\right)_{\infty}} \sum_{k=0}^{+\infty} \frac{q^{-\frac{k(k-1)}{2}}}{\left(q^{-1} ; q^{-1}\right)_{k}} q^{k(n-1)} \sum_{k=0}^{+\infty} \frac{q^{-\frac{k(k-1)}{2}}}{\left(q^{-1} ; q^{-1}\right)_{k}} q^{-k n}, n \geq 0
$$

Using the Cauchy product, the last expression becomes (for $n \geq 0$)

$$
(u)_{n}=\frac{1}{\left(-1 ; q^{-1}\right)_{\infty}\left(-q^{-1} ; q^{-1}\right)_{\infty}} \sum_{k=0}^{+\infty} q^{-\frac{k(k-1)}{2}} \sum_{\mu=0}^{k} \frac{q^{-\mu^{2}+(k-1) \mu}}{\left(q^{-1} ; q^{-1}\right)_{\mu}\left(q^{-1} ; q^{-1}\right)_{k-\mu}}\left(-q^{2 \mu-k}\right)^{n}
$$

Then, the discrete measure in (20) is deduced.

Acknowledgment. We would like to thank the referee for his valuable review.

References

[1] T. S. Chihara, An introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[2] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
[3] A. Ghressi and L. Khériji, Orthogonal q-polynomials related to perturbed linear form, Appl. Math. E-Notes, 7 (2007) 111-120.
[4] L. Khériji and P. Maroni, The $H_{q^{-}}$-classical orthogonal polynomials, Acta Appl. Math., 71 (2002) 49-115.
[5] R. Koekoek and R. F Swarttow, The ASkey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report 98-17, TU Delft, 1998.

[^0]: ${ }^{*}$ Mathematics Subject Classifications: 42C05, 35C45.
 ${ }^{\dagger}$ Department of Mathematics, Instiut Preparatoire aux Etudes d'Ingenieurs EL Manar 2090 EL Manar, B.P 244 Tunis Tunisia
 \ddagger Department of Mathematics, Institut Superieur Des Sciences Appliquees et de Technologie Rue Omar Ibn EL Khattab Gabes 6072. Tunisia. e-mail: mejri_manoubi@yahoo.fr

