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Abstract

We give a discrete measure for some Hq-classical forms and some consequent

summation formulas.

1 Introduction and Preliminaries

In [4], Hq-classical orthogonal polynomials are exhaustively described and integral or
discrete representations of corresponding regular forms are given, except in some cases
where the problem remains open (see also [3] for the Hq-semiclassical case). So, the aim
of this contribution is to establish discrete representations of two canonical situations
in [4] which are the q-analogous of Hermite (for 0 < q < 1, q > 1) and the q-analogous
of Laguerre (for q > 1).

Let P be the vector space of polynomials with coefficients in C and let P ′ be its
dual. We denote by 〈u, f〉 the action of u ∈ P ′ on f ∈ P. In particular, for any f ∈ P,
we let fu , be the form defined by duality 〈fu, p〉 := 〈u, fp〉, p ∈ P.
Let 〈δc, p〉 = p(c), c ∈ C, p ∈ P.

The form u is called regular if we can associate with it a sequence {Pn}n≥0 of monic
polynomials, deg Pn = n , n ≥ 0 such that

〈u, PmPn〉 = rnδn,m , n,m ≥ 0 ; rn 6= 0 , n ≥ 0.

The sequence {Pn}n≥0 is orthogonal with respect to u and fulfils the standard recur-
rence relation:

{
P0(x) = 1 , P1(x) = x− β0,

Pn+2(x) = (x− βn+1)Pn+1(x) − γn+1Pn(x), n ≥ 0
(1)
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with γn+1 6= 0, n ≥ 0.

The form u is said to be normalized if (u)0 = 1 where in general (u)n = 〈u, xn〉, n ≥
0, are the moments of u. In this paper we suppose that any form will be normalized.

Let us introduce the Hahn’s operator

(Hqf)(x) :=
f(qx) − f(x)

(q − 1)x
, f ∈ P , q ∈ C̃,

where C̃ := C−
(
{0} ∪

(
∪

n≥0
{z ∈ C, zn = 1}

))
.

By duality we have

〈Hqu, f〉 = −〈u,Hqf〉, u ∈ P ′, f ∈ P.

DEFINITION. A form u is called Hq- classical when it is regular and there exists
two polynomials φ (monic) and ψ with deg(φ) ≤ 2, deg(ψ) = 1 such that

Hq(φu) + ψu = 0. (2)

The corresponding orthogonal sequence {Pn}n≥0 is called Hq-classical.

We are going to use the following notations and results [1,2,5]

(a; q)n =






1, n = 0,

n−1∏
k=0

(1 − aqk), n ≥ 1.
(3)

(a; q)n = (−1)nanq
n(n−1)

2 (a−1; q−1)n, n ≥ 0, a, q 6= 0. (4)

(a; q)∞ =
+∞∏

k=0

(1 − aqk), | q |< 1. (5)

(a; q)n =






(a; q)∞
(aqn; q)∞

, | q |< 1,

(aq−1qn; q−1)∞
(aq−1; q−1)∞

, | q |> 1.

(6)

(z; q)∞ =

+∞∑

k=0

(−1)kq
k(k−1)

2

(q; q)k
zk, | q |< 1. (7)

1

(z, q)∞
=

+∞∑

k=0

1

(q; q)k
zk, | q |< 1 , | z |< 1. (8)
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2 Discrete measure for some Hq-classical forms

2.1

Consider the symmetric Hq-classical linear form u which is the q-analog of Hermite
functional. We have [4]






βn = 0, n ≥ 0,

γn+1 =
1 − qn+1

2(1 − q)
qn, n ≥ 0,

Hq(u) + 2xu = 0.

(9)

〈u, f〉 =





√
2

π
(q − 1)1/2 (q−2; q−2)∞

(q−1; q−2)∞

∫ +∞

−∞

f(x)(
−2(q − 1)x2; q−2

)
∞
dx, f ∈ P, q > 1,

K1

∫ + 1

q
√

2(1−q)

− 1

q
√

2(1−q)

(
2q2(1 − q)x2; q2

)
∞f(x)dx, f ∈ P, 0 < q < 1,

(10)
with

K1 =
1

2

(∫ + 1

q
√

2(1−q)

0

(
2q2(1 − q)x2; q2

)
∞dx

)−1

. (11)

(u)2n =
1

2n

(q; q2)n

(1 − q)n
, (u)2n+1 = 0, n ≥ 0. (12)

PROPOSITION 1. We have the following discrete representations:
For f ∈ P, q > 1

〈u, f〉 =
1

2(q−1; q−2)∞

+∞∑

k=0

(−1)kq−k2

(q−2; q−2)k

{
f
( −iqk

√
2(q − 1)

)
+ f

( iqk

√
2(q − 1)

)}
. (13)

For f ∈ P, 0 < q < 1

〈u, f〉 = 2−1(q; q2)∞

+∞∑

k=0

qk

(q2; q2)k

{
f
( −qk

√
2(1 − q)

)
+ f

( qk

√
2(1 − q)

)}
. (14)

PROOF. Let q > 1 by (6), equation (12) becomes

(u)2n =
1

2n(1 − q)n

(q2n−1; q−2)∞
(q−1; q−2)∞

, n ≥ 0.

On account of (7), we get

(u)2n =
1

(q−1; q−2)∞

+∞∑

k=0

(−1)kq−k2

(q−2; q−2)k

( iqk

√
2(q − 1)

)2n

, n ≥ 0.
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Therefore

(u)2n =
〈 1

(q−1; q−2)∞

+∞∑

k=0

(−1)kq−k2

(q−2; q−2)k
δ iqk√

2(q−1)

, x2n
〉
, n ≥ 0.

But (u)2n+1 = 0, n ≥ 0, yields to

(u)n = 〈u, xn〉 =
〈 1

2(q−1; q−2)∞

+∞∑

k=0

(−1)kq−k2

(q−2; q−2)k

{
δ

−iqk√
2(q−1)

+ δ iqk√
2(q−1)

}
, xn

〉
, n ≥ 0.

Consequently

u =
1

2(q−1; q−2)∞

+∞∑

k=0

(−1)kq−k2

(q−2; q−2)k

{
δ

−iqk√
2(q−1)

+ δ iqk√
2(q−1)

}
.

Then we get the desired result (13).

When 0 < q < 1, by virtue of (6), equation (12) becomes

(u)2n =
(q; q2)∞

2n(1 − q)n(q2n+1; q2)∞
, n ≥ 0,

on account of (8), it follows that

(u)2n = (q; q2)∞

+∞∑

k=0

qk

(q2; q2)k

( qk

√
2(1 − q)

)2n

, n ≥ 0.

Then

(u)n =
〈
2−1(q; q2)∞

+∞∑

k=0

qk

(q2; q2)k

{
δ

−qk√
2(1−q)

+ δ qk√
2(1−q)

}
, xn

〉
, n ≥ 0.

Consequently, we are lead to

u = 2−1(q; q2)∞

+∞∑

k=0

qk

(q2; q2)k

{
δ

−qk√
2(1−q)

+ δ qk√
2(1−q)

}
. (15)

Hence (14).

2.2

Consider the q-analogous of Laguerre linear form u given in [4,pp 68] .We have





βn = {1 − (1 + q)qn}qn−1, n ≥ 0,

γn+1 = (qn+1 − 1)q3n, n ≥ 0,

Hq(xu) − (q − 1)−1(x+ 1)u = 0.

(16)
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For q > 1, we have the following representations [4]:

〈u, f〉 =






(2π ln q)−1/2q−1/8

∫ 0

−∞
| x |−3/2 exp

(
− ln2 | x |

2 ln q

)
f(x)dx, f ∈ P,

+∞∑

k=0

(−1)k q−k2

s(k)

(q−1; q−1)k
f(−qk), f ∈ P,

(17)

where

s(k) =

+∞∑

m=0

q−( 1
2m(m+1)+km)

(q−1; q−1)m
(u)φ

m+k, k ≥ 0, (18)

and (u)φ
2n = (q − 1)n, (u)φ

2n+1 = 0, n ≥ 0.

The moments of u are given by the following formulas:

(u)n = (−1)nq
1
2n(n−1), n ≥ 0. (19)

PROPOSITION 2. The form u possesses the following discrete representation:
For f ∈ P, q > 1

(−1; q−1)∞(−q−1; q−1)∞〈u, f〉 =

+∞∑

k=0

q−
k(k−1)

2

k∑

µ=0

q−µ2+(k−1)µ

(q−1; q−1)µ(q−1; q−1)k−µ
f
(
−q2µ−k

)
, (20)

PROOF. From (4), for (19) we obtain

(u)n = (−1)n (−1; q)n

(−1; q−1)n
, n ≥ 0. (21)

Let q > 1, taking (6) into account, equation (21) can be written in the following way

(u)n =
(−1)n

(−1; q−1)∞(−q−1; q−1)∞
(−qn−1; q−1)∞(−q−n; q−1)∞, n ≥ 0.

In accordance of (7), we get

(u)n =
(−1)n

(−1; q−1)∞(−q−1; q−1)∞

+∞∑

k=0

q−
k(k−1)

2

(q−1; q−1)k
qk(n−1)

+∞∑

k=0

q−
k(k−1)

2

(q−1; q−1)k
q−kn, n ≥ 0.

Using the Cauchy product, the last expression becomes (for n ≥ 0)

(u)n =
1

(−1; q−1)∞(−q−1; q−1)∞

+∞∑

k=0

q−
k(k−1)

2

k∑

µ=0

q−µ2+(k−1)µ

(q−1; q−1)µ(q−1; q−1)k−µ

(
−q2µ−k

)n
.

Then, the discrete measure in (20) is deduced.
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