Stability Of Periodic Solutions In Extended Gierer-Meinhardt Model*

Jin-Guo Lian ${ }^{\dagger}$

24 September 2007

Abstract

We employ coincidence degree method to prove existence of T-periodic solutions in \mathcal{D} for extended Gierer-Meinhardt (EG-M) model, where \mathcal{D} is a strictly positively invariant region. Furthermore, Floquet theory is provided to analyze uniqueness of a T-periodic solution $x_{0}(t)$ in \mathcal{D} and stability of $x_{0}(t)$ is presented.

1 Introduction

Gierer-Meinhardt model [6, p. 376-380] is of form:

$$
\left\{\begin{array}{l}
\dot{u}=a\left(1-b u+c \frac{u^{2}}{v}\right) \\
\dot{v}=d\left(u^{2}-e v\right) .
\end{array}\right.
$$

If we set the constants a, b, c, d and e to be positive continuous T-periodic functions of t with period $T>0$, then the corresponding model is called the extended GiererMeinhardt (EG-M) model.

We focus on the dynamics of periodic solutions of EG-M model. Let

$$
x(t)=\binom{u(t)}{v(t)} \quad \text { and } \quad F(t, x(t))=\binom{a(t)\left(1-b(t) u(t)+c(t) \frac{u^{2}(t)}{v(t)}\right)}{d(t)\left(u^{2}(t)-e(t) v(t)\right)} .
$$

Then EG-M model is defined by

$$
\begin{equation*}
\dot{x}(t)=F(t, x(t)) \tag{1}
\end{equation*}
$$

with conditions

$$
\begin{equation*}
a(t)>0, \quad 1.8<b(t)<2, \quad 0.01<c(t)<0.1, \quad d(t)>0, \quad \frac{1}{2}<e(t)<1 \tag{2}
\end{equation*}
$$

LEMMA 1 . There exists a strictly positively invariant region

$$
\mathcal{D}=\left\{(u, v) \in \mathbb{R}^{2}: \frac{1}{2} \leq u \leq 0.7, \frac{1}{4} \leq v \leq 1\right\}
$$

[^0]for EG-M model given by (1) with conditions (2).
PROOF. Clearly \mathcal{D} is a closed convex subset of \mathbb{R}^{2}. We only need to check whether $n(u, v) \cdot F(t,(u, v))<0$ along the boundaries of \mathcal{D}, where $n(u, v)$ is the unit normal vector field along the boundary of \mathcal{D} and $F(t,(u, v))$ is defined in (1). Notice that for any $(u, v) \in \mathcal{D}$,
\[

$$
\begin{equation*}
\frac{1}{2} \leq u \leq 0.7, \quad \frac{1}{4} \leq v \leq 1 . \tag{3}
\end{equation*}
$$

\]

Let $l_{1}=\left\{(u, v) \in \mathbb{R}^{2}: u=\frac{1}{2}\right\}$, for any $(u, v) \in l_{1} \cap \partial \mathcal{D}, n(u, v)=(-1,0)$ and

$$
F(t,(u, v))=\left(a(t)\left(1-b(t) u(t)+c(t) \frac{u^{2}(t)}{v(t)}\right), d(t)\left(u^{2}(t)-e(t) v(t)\right)\right),
$$

by (2) and (3),

$$
n(u, v) \cdot F(t,(u, v))=-a(t)\left(1-\frac{1}{2} b(t)+c(t) \frac{\frac{1}{4}}{v(t)}\right)<0 .
$$

Let $l_{2}=\left\{(u, v) \in \mathbb{R}^{2}: u=0.7\right\}$, for any $(u, v) \in l_{2} \cap \partial \mathcal{D}, n(u, v)=(1,0)$. It follows from (2) and (3) that

$$
n(u, v) \cdot F(t,(u, v))=a(t)\left(1-0.7 b(t)+c(t) \frac{0.49}{v(t)}\right)<0 .
$$

Let $l_{3}=\left\{(u, v) \in \mathbb{R}^{2}: v=\frac{1}{4}\right\}$, for any $(u, v) \in l_{3} \cap \partial \mathcal{D}, n(u, v)=(0,-1)$. From (2) and (3), we get

$$
n(u, v) \cdot F(t,(u, v))=-d(t)\left(u^{2}(t)-\frac{1}{4} e(t)\right)<0 .
$$

Let $l_{4}=\left\{(u, v) \in \mathbb{R}^{2}: v=1\right\}$, for any $(u, v) \in l_{4} \cap \partial \mathcal{D}, n(u, v)=(0,1)$. It follows from (2) and (3),

$$
n(u, v) \cdot F(t,(u, v))=d(t)\left(u^{2}(t)-e(t)\right)<0 .
$$

Since $n(u, v) \cdot F(t,(u, v))<0$ for all $(u, v) \in \partial \mathcal{D}, \mathcal{D}$ is a strictly positively invariant region.

Linearize the system (1) with respect to its a T-periodic solution $x(t)=(u(t), v(t))^{T} \in$ \mathcal{D} for any $t \in \mathbb{R}$ (if such a T-periodic solution exists), then we get

$$
\begin{equation*}
\dot{W}(t)=A(t) W(t) \tag{4}
\end{equation*}
$$

where

$$
A(t)=F_{x(t)}^{\prime}=\left(\begin{array}{cc}
-a(t) b(t)+\frac{2 a(t) c(t) u(t)}{v(t)} & -\frac{a(t) c(t) u^{2}(t)}{v^{2}(t)} \\
2 d(t) u(t) & -d(t) e(t)
\end{array}\right) .
$$

PROPOSITION 2. Linear system (4) satisfies $\operatorname{tr}(A(t))<0$ and $\operatorname{det}(A(t))>0$ for any $t \in \mathbb{R}$.

PROOF. By (2) and (3),

$$
\operatorname{tr}(A(t))=-a(t) b(t)+\frac{2 a(t) c(t) u(t)}{v(t)}-d(t) e(t)<0
$$

Furthermore,

$$
\begin{aligned}
\operatorname{det}(A(t)) & =a(t) b(t) d(t) e(t)-\frac{2 a(t) c(t) d(t) e(t) u(t)}{v(t)}+\frac{2 a(t) c(t) d(t) u^{3}(t)}{v^{2}(t)} \\
& >a(t) d(t)\left(b(t) e(t)-\frac{2 c(t) e(t) u(t)}{v(t)}\right)>0
\end{aligned}
$$

Now, let us state the main result:
THEOREM 3. For EG-M model with conditions (2), there exists only one T periodic solution $x_{0}(t)$ in \mathcal{D}, and $x_{0}(t)$ is locally uniformly asymptotically stable.

2 Preliminary

Consider the nonlinear system

$$
\begin{equation*}
\dot{x}(t)=V(t, x(t)), x\left(t_{0}\right)=x_{0}, x(t) \in \mathbb{R}^{2} \tag{5}
\end{equation*}
$$

LEMMA 4. If $x^{*}(t)$ is an exponentially stable solution of (5), then it is also a uniformly asymptotically stable solution of (5).

For proof, see [3, p. 178-179].
Let $\mathcal{X}=\{x \in C([0, T]) \mid x(0)=x(T)\}$. Clearly \mathcal{X} is a Banach space with the supremum norm. Define $L x(t)=\dot{x}(t)$ with domain

$$
\operatorname{Dom}(L)=\left\{x \in C^{1}([0, T]) \mid x(0)=x(T)\right\}
$$

It is easy to verify that $\operatorname{Dom}(L)$ is contained in \mathcal{X}, the range of L is $\operatorname{Im}(L)=\{z(t) \in$ $\left.\mathcal{X} \mid \int_{0}^{T} z(t) d t=0\right\}$ and L is a Fredholm mapping of index 0 . Let

$$
\begin{equation*}
\Theta=\{x \in \operatorname{Dom}(L) \mid x(t) \in \mathcal{D}, \quad \forall t \in[0, T]\} \tag{6}
\end{equation*}
$$

Define $\mathcal{F}_{1}: \Theta \rightarrow \mathcal{X}$ by $\mathcal{F}_{1}(x)=F(\cdot, x(\cdot))$ and $H_{1}(x)(t)=\mathcal{F}_{1}(x)(t)-L x(t)$.
Now, construct a homotopy family

$$
H_{\lambda}:(\operatorname{Dom}(L) \cap \Theta) \times[0,1] \rightarrow \mathcal{X}
$$

to be of the form

$$
\begin{equation*}
H_{\lambda}(x)(t)=\mathcal{F}_{\lambda}(x)(t)-L x(t) \tag{7}
\end{equation*}
$$

where $\mathcal{F}_{\lambda}: \Theta \times[0,1] \rightarrow \mathcal{X}$ with

$$
\begin{equation*}
\mathcal{F}_{\lambda}(x)(t)=\binom{a(t)\left(1-\widetilde{b}(t) u(t)+\widetilde{c}(t) \frac{u^{2}(t)}{v(t)}\right)}{d(t)\left(u^{2}(t)-\widetilde{e}(t) v(t)\right)} \tag{8}
\end{equation*}
$$

Here $\tilde{b}(t)=1.9(1-\lambda)+\lambda b(t), \quad \tilde{c}(t)=0.05(1-\lambda)+\lambda c(t) \quad$ and $\quad \tilde{e}(t)=0.8(1-\lambda)+\lambda e(t)$ with $\lambda \in[0,1]$. It is easy to verify that $\mathcal{F}_{\lambda}: \bar{\Theta} \times[0,1] \rightarrow \mathcal{X}$ is L-compact. For more details of degree theory, see $[5, \mathrm{Ch}$. I-IV].

LEMMA 5. Given $\lambda \in[0,1]$, if $x_{\lambda}(t) \in \Theta$ is a T-periodic solution of the system

$$
\begin{equation*}
\dot{x}(t)=\mathcal{F}_{\lambda}(x)(t), \tag{9}
\end{equation*}
$$

then $\partial \mathcal{D}$ is an a priori bound of $x_{\lambda}(t)$.
PROOF. Clearly, $\tilde{b}(t), \tilde{c}(t)$ and $\tilde{e}(t)$ satisfy conditions (2). System (9) is an EG-M model. By Lemma $1, \mathcal{D}$ is still a strictly positively invariant region of system (9). None of T-periodic solutions of (9) in Θ can touch the boundary of \mathcal{D}.

COROLLARY 6. $0<\in H_{\lambda}((\operatorname{Dom}(L) \cap \partial \mathcal{D}) \times[0,1])$.
LEMMA 7. $D_{L}\left(H_{0}(x)(t), \Theta\right)=D_{B}\left(H_{0}(x)(t), \mathcal{D}\right)=1$, where D_{L} denote LeraySchauder degree and D_{B} denote Brouwer degree.

PROOF. For the system $H_{0}(x)(t)=0$, there is only one steady-state

$$
p=\left(\frac{1.04}{1.9},\left(\frac{1.04}{1.9}\right)^{2} \frac{1}{0.8}\right)
$$

in the strictly positively invariant region \mathcal{D}, which is a trivial T-periodic solution. Since $H_{0}(x)(t)=0$ is an autonomous system, Proposition 2 and Bendixson's Criteria guarantee that p is only one T-periodic solution in \mathcal{D}.

For the system $H_{0}(x)(t)=0$, Leray-Schauder degree of H_{0} in \mathcal{D} is in fact reduced into Brouwer degree. Therefore, by Proposition 2,

$$
D_{L}\left(H_{0}(x)(t), \Theta\right)=D_{B}\left(H_{0}(x)(t), \mathcal{D}\right)=D_{B}\left(\mathcal{F}_{0}(x)(t), \mathcal{D}\right)=\operatorname{sign}\left(\operatorname{det} A_{1}(t)\right)=1
$$

where

$$
A_{1}(t)=\left(\begin{array}{cc}
-1.9 a+\frac{0.1 a u(t)}{v(t)} & -\frac{0.05 a u^{2}(t)}{v^{2}(t)} \\
2 d u(t) & -0.8 d
\end{array}\right)
$$

For more details, see the similar proof in [4].
LEMMA 8. For system (4) with conditions (2), zero is the only T-periodic solution.
PROOF. Suppose (4) has a non-trivial T-periodic solution called $W_{1}(t)$. By Proposition 2 and Floquet theory [2, p. 93-105], its orbit Γ is an orbitally asymptotically stable. For $s \in \mathbb{R}, s W_{1}(t)$ is also a T-periodic solution of (4). Then orbit of $s W_{1}(t)$ can not be attracted to Γ for any $s \in \mathbb{R}$. This leads a contradiction to the orbital asymptotic stability of Γ.

REMARK 9. For the linear system (4), if $\operatorname{tr}(A(t))$ does not change sign in some simply connected region $E \subset \mathbb{R}^{2}$, then (4) has no non-trivial periodic solution in E; since the system (4) is a linearization of an non-autonomous system, Bendixson's Criteria can not be used to prove Lemma 8.

LEMMA 10. Suppose $\mathcal{F}: \mathcal{X} \rightarrow \mathcal{X}$ is a completely continuous map of a Banach space such that $\mathcal{F}(0)=0$ and \mathcal{F} is Frechet differentiable at 0 with Frechet derivative $T \in K(\mathcal{X})$, where $K(\mathcal{X})$ is a set of all compact operators defined on \mathcal{X}. If $I-T \in L(\mathcal{X})$
is regular (invertible), then there exists $\eta>0$ such that, for $B=\left\{x \in \mathcal{X}:\|x\|_{\infty}<\eta\right\}$, we have

$$
D(\mathcal{F}-I, B)=D(T-I, B)
$$

For proof, see [1, Ch. 14].
Assume system (4) is the linearization of system (1) with respect to $x_{0}(t)$, by Theorem 2.10 of [2, p.97], system (4) can be transformed into an autonomous system

$$
\begin{equation*}
\dot{Z}(t)=R Z(t) \tag{10}
\end{equation*}
$$

where R is called a Monodromy matrix of $A(t)$.
LEMMA 11. Let $A(t)$ and $W(t)$ be defined in (4), $L W(t)=\dot{W}(t) ; B\left(x_{0}(t), \epsilon\right) \subset \Theta$ denote a small neighborhood of $x_{0}(t), B(0, \epsilon) \subset \Theta \backslash\left\{x_{0}(t)\right\}$ denote a small neighborhood of 0 . Set

$$
Q(W(t), \lambda)=(\lambda R+(1-\lambda) A(t)) W(t)-L W(t)
$$

then

$$
D_{B}\left(Q(\cdot, 1), B(0, \epsilon) \cap \mathbb{R}^{2}\right)=1
$$

PROOF. Clearly, $\operatorname{tr}(R)=\rho_{1}+\rho_{2}=\frac{1}{T} \int_{0}^{T} \operatorname{tr}(A(s)) d s\left(\bmod \frac{2 \pi i}{T}\right)<0$, where ρ_{1} and ρ_{2} are eigenvalues of R. By Proposition 2 , for any $\lambda \in[0,1]$,

$$
\operatorname{tr}(\lambda R+(1-\lambda) A(t))=\lambda \operatorname{tr}(R)+(1-\lambda) \operatorname{tr}(A(t))<0
$$

and Remark 9 implies that $Q(W(t), \lambda)=0$ has only one trivial T-periodic solution in $B(0, \epsilon)$. By degree invariance with respect to homotopy family,

$$
D_{L}(Q(\cdot, 0), B(0, \epsilon))=D_{L}(Q(\cdot, 1), B(0, \epsilon))=D_{B}\left(Q(\cdot, 1), B(0, \epsilon) \cap \mathbb{R}^{2}\right)
$$

Consider the Taylor expansion of $H_{1}(x)(t)$ at $x_{0}(t) \in B\left(x_{0}(t), \epsilon\right)$, where $H_{1}(x)(t)$ is defined in (7) as $\lambda=1$. Then we have

$$
H_{1}(x)(t)=H_{1}\left(x_{0}\right)(t)+M(t)\left(x(t)-x_{0}(t)\right)+h\left(t, x(t)-x_{0}(t)\right)
$$

where $M=\mathcal{F}_{1}^{\prime}-L$ is $\left(H_{1}\right)_{x}^{\prime}$ and $h\left(t, x(t)-x_{0}(t)\right)$ is a function of $o\left(\left\|x(t)-x_{0}(t)\right\|_{\infty}\right)$. Since $x_{0}(t)$ is the unique solution of $H_{1}(x)(t)=0$ in \mathcal{D}, by excision property of the degree, $D_{L}\left(H_{1}(x)(t), \Theta\right)=D_{L}\left(H_{1}(x)(t), B\left(x_{0}(t), \epsilon\right)\right)$ and by Lemma 10,

$$
D_{L}\left(H_{1}(x)(t), B\left(x_{0}(t), \epsilon\right)\right)=D_{L}\left(M(t)\left(x(t)-x_{0}(t)\right), B\left(x_{0}(t), \epsilon\right)\right)
$$

Let $W(t)=x(t)-x_{0}(t)$, then by Lemma 7,

$$
\begin{aligned}
D_{L}\left(H_{0}(x)(t), \Theta\right) & =D_{L}\left(H_{1}(x)(t), \Theta\right) \\
& =D_{L}(M(t) W(t), B(0, \epsilon))=D_{L}(Q(\cdot, 0), B(0, \epsilon)) \\
& =D_{L}(Q(\cdot, 1), B(0, \epsilon))=D_{B}\left(Q(\cdot, 1), B(0, \epsilon) \cap \mathbb{R}^{2}\right)=1
\end{aligned}
$$

3 Proof of Theorem 3

PROOF. (Existence) Combine Lemma 5, Corollary 6 and Lemma 7, by a general existence theorem of the Leray-Schauder type, we get

$$
D_{L}\left(H_{1}(x)(t), \Theta\right)=D_{L}\left(H_{0}(x)(t), \Theta\right)=D_{B}\left(\mathcal{F}_{0}(x)(t), \mathcal{D}\right)=1
$$

which implies that there at least exists one T-periodic solution $x_{0}(t)=\left(u_{0}(t), v_{0}(t)\right)^{T}$ of EG-M model in \mathcal{D}. If a, b, c, d and e are constants, it is easy to show that there is only one trivial T-periodic solution $x_{0} \in \operatorname{int}(\mathcal{D})$, otherwise, we can easily verify that $x_{0}(t)$ is a nontrivial T-periodic solution of EG-M model in \mathcal{D} by substituting $x_{0}(t)$ into EG-M model.
(Uniqueness) Define $C_{T}=\{x(t) \in \Theta \mid x(t)$ satisfies (1) with conditions (2) $\}$. Since $x_{0}(t) \in C_{T}, C_{T}$ is not an empty set. If a, b, c, d and e are constants, there is only one constant solution in C_{T}.

If one of $a(t), b(t), c(t), d(t)$ and $e(t)$ is a non-trivial T-periodic function, then $x_{0}(t) \in$ C_{T} is a non-trivial T-periodic solution. Assume C_{T} is not a singleton; we pick

$$
x_{1}(t)=\binom{u_{1}(t)}{v_{1}(t)}, x_{2}(t)=\binom{u_{2}(t)}{v_{2}(t)}
$$

in C_{T} and substitute them into (1) to get

$$
\begin{equation*}
\dot{x_{i}}(t)=F\left(t, x_{i}(t)\right), \quad i=1,2 . \tag{11}
\end{equation*}
$$

Define $z(t)=x_{1}(t)-x_{2}(t)$. By the mean value theorem, we get

$$
\begin{equation*}
\dot{z}(t)=z(t) \int_{0}^{1} F_{x}^{\prime}\left[t, x_{2}(t)+\theta\left(x_{1}(t)-x_{2}(t)\right)\right] d \theta \tag{12}
\end{equation*}
$$

and

$$
\int_{0}^{1} F_{x}^{\prime}\left[t, x_{2}(t)+\theta\left(x_{1}(t)-x_{2}(t)\right)\right] d \theta=\left(\begin{array}{cc}
-a(t) b(t)+2 a(t) c(t) m(t) & -a(t) c(t) n(t) \\
2 u(t) d(t) & -d(t) e(t)
\end{array}\right)
$$

where

$$
\begin{aligned}
m(t) & =\int_{0}^{1} \frac{u_{2}(t)+\theta\left(u_{1}(t)-u_{2}(t)\right)}{v_{2}(t)+\theta\left(v_{1}(t)-v_{2}(t)\right)} d \theta \\
n(t) & =\int_{0}^{1} \frac{\left[u_{2}(t)+\theta\left(u_{1}(t)-u_{2}(t)\right)\right]^{2}}{\left[v_{2}(t)+\theta\left(v_{1}(t)-v_{2}(t)\right)\right]^{2}} d \theta
\end{aligned}
$$

By (3)

$$
m(t) \leq 2\left(u_{1}(t)+u_{2}(t)\right) \leq 2.8
$$

From (2), it follows

$$
\operatorname{tr}\left(\int_{0}^{1} F_{x}^{\prime}\left[t, x_{2}(t)+\theta\left(x_{1}(t)-x_{2}(t)\right)\right] d \theta\right)=-d(t) e(t)-a(t) b(t)+2 a(t) c(t) m(t)<0
$$

This implies that the zero solution is the only one T-periodic solution for (12) by Remark 9. Hence, $x_{1}(t)=x_{2}(t) . C_{T}$ is a singleton.
(Stability) If $a(t), b(t), c(t), d(t)$ and $e(t)$ are constant functions, then $x_{0} \in \mathcal{D}$ is a constant solution of system (1). By Proposition $2, x_{0}$ is a locally uniformly asymptotically stable solution.

If one of $a(t), b(t), c(t), d(t)$ and $e(t)$ is a non-trivial T-periodic function, $x_{0}(t)$ is a non-trivial T-periodic solution of system (1). By Proposition 2, one Floquet exponent ρ_{1} has negative real part. If $\operatorname{Real}\left(\rho_{2}\right)<0, x_{0}(t)$ is locally uniformly asymptotically stable by Theorem 2.13 of [2, p.101] and Lemma 4.

To show that $\operatorname{Real}\left(\rho_{2}\right)<0$ always holds by treating these two cases: (1) ρ_{2} is a complex number. Notice that ρ_{1} and ρ_{2} are conjugate eigenvalues of R. Thus $\operatorname{Real}\left(\rho_{2}\right)<0 ;(2) \rho_{2}$ is a real number. Clearly ρ_{1} is also a real number and $\rho_{1}<0$ implies that $\rho_{2} \neq 0$ (otherwise, it is a contradicts Lemma 8. If $\rho_{2}>0$, then $\operatorname{det}(R)<0$, $\operatorname{sign}(\operatorname{det}(R))=-1=D_{B}\left(Q(\cdot, 1), B(0, \epsilon) \cap \mathbb{R}^{2}\right)$, which contradicts Lemma 11.

Acknowledgment. This work was supported by Research Fund of North China Electric Power University (93509001).

References

[1] R. F. Brown, A Topological Introduction to Nonlinear Analysis, Birkhäuser, Boston, 1993.
[2] J. Cronin, Differential Equation, Second Edition, Marcel Dekker, New York, 1994.
[3] M. A. Krasnosel'skii, Translation Along Trajectories of Differential Equations, American Mathematical Society, Providence, Rhode Island, Translations of Mathematical Monographs 19, 1968.
[4] J. G. Lian and J. Sun, Degree of steady-state solutions of quadratic CSTR model and SG model, Acta Scientiarum Naturalium Universitatis NeiMongol, 37(5)(2006), 503-507.
[5] J. Mawhin, Topological Degree Method in Nonlinear Boundary Value Problems, American Mathematical Society, Providence, Rhode Island, Regional Conference Series in Mathematics 40, 1979.
[6] J. D. Murray, Mathematical Biology, Second Edition, Springer, New York, 1993.

[^0]: ${ }^{*}$ Mathematics Subject Classifications: 92C15, 34A34.
 \dagger Department of Maths and Physics, North China Electric Power University, Baoding, Hebei 071003, P. R. China

