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Abstract

Let t(G) denote the number of spanning trees of a graph G. A chain of two
connected vertices u, v(dG(u), dG(v) ≥ 3) in G, denoted by Lk, is defined as a
path of G and dG(p) = 2 for all p ∈ V (Lk) − {u, v}, where k is the length of the
path. In this paper, we investigate the relationship between t(G) and Lk of a
graph G. In particular, the relationship between t(G) and Lk of τ -optimal graph
G is considered.

1 Introduction

We use Bondy and Murty [2] for terminology and notations not defined here and
consider finite connected graphs only. A spanning subgraph of a graph G = (V, E) is a
subgraph with vertex set V . A spanning tree is a spanning subgraph that is a tree. Let
Γ(n, m) denote the collection of all n vertices m edges graphs with no loops. Let t(G)
denote the number of spanning trees of a graph G. Spanning trees have been found
to be structures of paramount importance in both theoretical and practical problems.
As a result the number of spanning trees of a connected graph has been the focus for
extensive attention in graph theoretical research.

A graph G ∈ Γ(n, m) is called τ -optimal if t(G) ≥ t(H) for all H ∈ Γ(n, m). An
open extremal problem, with applications to the synthesis of reliable networks, is the
characterization of τ -optimal graphs [1, 3, 4, 5, 6, 7]. In [5], authors introduced a lower
bound for the trace of the k-th power of the Laplacian matrix of a graph in terms
of its degree sequence. Using this inequality they developed an upper bound for the
number of spanning trees of a graph in terms of the degree sequence of its completment
that is sharp for, and only for, complete multipartite graphs. In [6], authors develop a
powerful refinement of the upper bounding technique for the number of spanning trees.
The improved bound yields a new technique to characterize many hitherto unknown
types of τ -optimal graphs.
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We consider the reliability of graphs for which edges fail independently of each other
with a constant probability q. A standard formula for the reliability of a graph G is

R(G, q) =

m∑

i=n−1

Ni(G)qm−i(1 − q)i,

where Ni(G) denotes the number of connected spanning subgraphs of G with i edges.
Clearly Nn−1(G) = t(G). Suppose that G, H ∈ Γ(n, m). We have

R(G, q) − R(H, q) = qn−m−1(1 − q)1−n

×

[
t(G) − t(H) +

m∑

i=n

(Ni(G) − Ni(H))qn−i−1(1 − q)i−n+1

]
.

If t(G) > t(H), then R(G, q) > R(H, q) for q → 1. Thus τ -optimal graphs are uniformly
most reliable in Γ(n, m) for q → 1.

In this paper, we investigate the relationship between the number of spanning trees
and chains of a graph. In particular, the relationship between the number of spanning
trees and chains of τ -optimal graphs is considered.

2 Number of Spanning Trees and Chains of Graphs

A chain of two connected vertices u, v (dG(u), dG(v) ≥ 3) in G, denoted by Lk, is defined
as a path of G and dG(p) = 2 for all p ∈ V (Lk)−{u, v}, where k is the length of the path.
If k = 1, then L1 is trivial, i.e., an edge. Two chains Lk1

, Lk2
are said to be parallel if

Lk1
, Lk2

meet only in two common endpoints. Let G−Lk = G[V (G)−V (Lk)+{u, v}]
and G/Lk = ((G − Lk) + uv)/uv, where u, v are two endpoints of Lk.

THEOREM 1. Let Lk(k ≥ 1) be a chain of a graph G. Then t(G−Lk) ≤ t(G) and
t(G/Lk) ≤ t(G).

PROOF. We prove t(G) = kt(G−Lk) + t(G/Lk) first. Let u and v be end vertices
of Lk and G∗ = G− Lk + uv. Then

t(G∗) = t(G∗ − uv) + t(G∗/uv).

Since every spanning tree of G∗ that does not contain uv yields k spanning trees of
G, each of which does not contain Lk, and conversely, kt(G − Lk) is the number of
spanning trees of G that does not contain Lk.

Now to each spanning tree T of G∗ that contains uv, there corresponds a spanning
tree T/Lk of G/Lk. This correspondence is clearly a bijection. Therefore t(G/Lk) is
precisely the number of spanning trees of G that contain Lk. It follows that

t(G) = kt(G − Lk) + t(G/Lk).

Since t(G − Lk) ≥ 0 and t(G/Lk) ≥ 0, it is easy to have t(G − Lk) ≤ t(G) and
t(G/Lk) ≤ t(G).

THEOREM 2. Let Lk(k > 3) be a chain of a graph G and u, v are two endpoints
of Lk. Suppose that Lk does not contain and cut edges of G and w ∈ V (G) − V (Lk)
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with wu, wv 6∈ E(G). We construct two chains Lk1
(k1 = bk/2c), Lk2

(k2 = k−k1), such
that w, u and w, v are two endpoints of Lk1

, Lk2
, respectively. Then we have

t(G) < t(G − Lk + {Lk1
, Lk2

}).

PROOF. Let G∗ = G − Lk + {Lk1
, Lk2

}. By the proof of Theorem 1, we have
t(G) = kt(G − Lk) + t(G/Lk). Similarly, we have

t(G∗) = t(G∗ − Lk1
− Lk2

)k1k2 + k1t((G
∗/Lk2

) − Lk1
)

+k2t((G
∗/Lk1

) − Lk2
) + t(G∗/Lk1

/Lk2
).

Since k1 = bk/2c, k2 = k − k1 and k > 3, we have k1k2 ≥ k. Let G̃ = G − Lk + uv

and G = G∗ −Lk1
−Lk2

+ uw. Let T be a spanning tree of G̃ which contains uv, then
T − uv + uw is a spanning tree of G which does not contain vw, which implies

t(G/Lk) = t((G∗/Lk1
) − Lk2

).

Combined with t(G− Lk) = t(G∗ − Lk1
− Lk2

), t(G∗/Lk1
/Lk2

) > 0 and t((G∗/Lk2
) −

Lk1
) > 0, we have t(G) < t(G∗).

Let G̃ = G−Lk +uv, G1 = G∗−Lk1
−Lk2

+uw and G2 = G∗−Lk1
−Lk2

+vw. Let
T be a spanning tree of G which contains uv, then one of the following results holds:

(1) T − uv + uw is a spanning tree of G1 which does not contain vw, which implies
t(G/Lk) = t((G∗/Lk1

) − Lk2
);

(2) T − uv + vw is a spanning tree of G2 which does not contain uw, which implies
t(G/Lk) = t((G∗/Lk2

) − Lk1
).

Combined with t(G−Lk) = t(G∗−Lk1
−Lk2

), t((G∗/Lk1
)−Lk2

) > 0, t((G∗/Lk2
)−

Lk1
) > 0 and t(G∗/Lk1

/Lk2
) > 0, we have t(G) < t(G∗).

3 Number Of Spanning Trees and Chains of τ-Optimal

Graphs

We have the following result.

THEOREM 3. Let G be a τ− optimal graph and Lk1
(k1 > 0), Lk2

(k2 > 0) are two
chains of G. Then

(a) t((G − Lk1
)/Lk2

) ≤ t(G − Lk2
), and

(b) t((G − Lk1
)/Lk2

) ≤ t(G/Lk1
).

PROOF of (a). We prove by contradiction. Let G be a τ -optimal graph, and assume
that there are two chains Lk1

and Lk2
of G with

t((G − Lk1
)/Lk2

) > t(G − Lk2
).

Let u and v be end vertices of Lk1
. We construct a new graph G∗ from (G−Lk1

)/Lk2

by adding a chain Lk in (G−Lk1
)/Lk2

, with u, v as end vertices and k = k1 +k2. Then
we have |V (G∗)| = |V (G)| and |E(G∗)| = |E(G)|. Since G is a τ -optimal graph, we
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have t(G) ≥ t(G∗). Since k = k1 + k2 > k2, we may select a chain Lp from Lk in G∗

with p = k2, starting from u, and so

t(G∗) = t(G∗ − Lp)p + t(G∗/Lp).

Note that k − p = k1, which implies that G∗/Lp = G/Lk2
and (G∗ − Lp)/Lq =

(G − Lk1
)/Lk2

, where Lq = Lk − Lp. By Theorem 1, we have

t((G∗ − Lp)/Lq) ≤ t(G∗ − Lp),

so
t(G∗ − Lp) ≥ t((G − Lk1

)/Lk2
).

Therefore, we have

t(G) ≥ t(G∗)

= t(G∗ − Lp)p + t(G∗/Lp)

≥ t((G − Lk1
)/Lk2

)p + t(G/Lk2
)

> t(G − Lk2
)p + t(G/Lk2

)

= t(G),

a contradiction.

PROOF of (b). We prove by contradiction. Let G be a τ -optimal graph, and
assume that there are two chains Lk1

and Lk2
of G with

t(G − Lk1
) > t(G/Lk1

).

Let u and v be end vertices of Lk2
. We construct a new graph G∗ from G − Lk1

by
adding a chain Lk in (G−Lk1

)/Lk2
, with u, v as end vertices and k = k1. Then we have

|V (G∗)| = |V (G)| and |E(G∗)| = |E(G)|. Since G is a τ -optimal graph, we have t(G) ≥
t(G∗) and t(G∗) = t(G∗ − Lk)k + t(G∗/Lk). Note that G∗/Lk/Lk2

= (G − Lk1
)/Lk2

and G∗ − Lk = G − Lk1
. By Theorem 1, we have

t(G∗/Lk/Lk2
) ≤ t(G∗/Lk),

so
t(G∗/Lk) ≥ t((G − Lk1

)/Lk2
).

Therefore, we have

t(G) ≥ t(G∗)

= t(G∗ − Lk)k + t(G∗/Lk)

≥ t(G − Lk1
)k1 + t((G − Lk1

)/Lk2
)

> t(G − Lk1
)k1 + t(G/Lk1

)

= t(G),

a contradiction.
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The following results may be useful.

LEMMA 1. [1] If 3 ≤ n ≤ e, then τ -optimal graphs in Γ(n, e) are two connected.

LEMMA 2. [1] Let G be a τ− optimal graph and 6 ≤ n + 2 ≤ e. If there exit two
parallel chains Lk1

, Lk2
in G, then k1 = k2 = 1.

LEMMA 3. [4] Let G be a connected graph and u, v ∈ V (G), dG(u) = dG(v) = 2.
If u 6∈ NG(v), then

t(G) ≤ t(G/{u, v})

and the equality holds if and only if NG(u) = NG(v), where G/{u, v} = (G + uv)/uv.

LEMMA 4. [1] Let G be a τ− optimal graph. If there exit two parallel chains
Lk1

, Lk2
in G, then |k1 − k2| ≤ 1.

LEMMA 5. If ε is an edge of G, then t(G) = t(G − ε) + t(G/ε).

THEOREM 4. If 6 ≤ n + 2 < e, 1 < k < 3n − 2e + 2, then

t̂(n, e) > 3t̂(n − k + 1, e − k),

where n, e, k are positive integer numbers and t̂(n, e) denotes the number of spanning
trees of τ -optimal graphs in Γ(n, e).

PROOF. Let G′ ∈ Γ(n − k + 1, e − k) be a τ− optimal graph. By Lemma 1, we
know that G′ is two connected. Since 1 < k < 3n− 2e + 2, we obtain that the number
of degree two vertices in G′ is at least two. Without loss of generality, we assume
u, v ∈ V (G′) and |NG′(u)| = |NG′(v)| = 2.

We distinguish two cases:
Case 1. u 6∈ NG′ (v).

Since 6 ≤ n− k +3 ≤ e− k, by Lemma 2, we have NG′(u) 6= NG′(v). We construct
graph G as follows,

V (G) = V (G′) ∪ {p1, p2, ..., pk−1},

E(G) = E(G′) ∪ {(up1), (p1p2), ..., (pk−1v)},

where u, v are two endpoints of Lk. Clearly G ∈ Γ(n, e). By Lemma 3, we have

t̂(n, e) ≥ t(G)

= t(G − Lk)k + t(G/Lk)

= t(G′)k + t(G′/{u, v})

> 3t(G′)

= 3t̂(n − k + 1, e− k).

Case 2. u ∈ NG′ (v).
Without loss of generality, we assume that the number of degree two vertices in G′

is two. Let a ∈ NG′(u), b ∈ NG′ (v). Since 4 + 3(n − k − 1) − 2e + 2k ≥ 0 and the
equality holds if and only if k = 3n− 2e + 1, we have dG′(a) = dG′(b) = 3. By Lemma
4, we know a 6∈ N(b).

Case 2.1. NG′ (a) − u 6= NG′(b) − v.
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Let G′′ = G′ − {u, v}+ (ab). By Lemma 3, we have

t(G′′ − (ab)) = t(G′ − {u, v}) < t((G′ − {u, v})/{a, b}) = t(G′′/(ab)).

We construct graph G as follows,

V (G) = V (G′) ∪ {p1, p2, ..., pk−1},

E(G) = E(G′) ∪ {(up1), (p1p2), ..., (pk−1b)},

where u, b are two endpoints of Lk. Clearly G ∈ Γ(n, e). Analogously, we have

t̂(n, e) ≥ t(G)

= t(G − Lk)k + t(G/Lk)

= t(G′)k + 2t(G′′)

= t(G′)k + 2t(G′′ − (ab)) + 2t(G′′/(ab))

> t(G′)k + 3t(G′′ − (ab)) + t(G′′/(ab))

≥ 3t(G′)

= 3t̂(n − k + 1, e − k).

Case 2.2. NG′ (a) − u = NG′(b) − v.
In this case, G′ is the graph as follows.

a

u

v

b

a

u

b

G ' H

v

By Lemma 5, we have
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Clearly t(H) > t(G′), a contradiction. This means that this case is impossible.
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