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Abstract

The Uzawa equivalence theorem ([3]) showed that the existence of Walrasian
equilibrium in an economy with continuous excess demand functions is equivalent
to Brouwer’s fixed point theorem, that is, the existence of a fixed point for any
continuous function from an n-dimensional simplex to itself. But the existence of
an equilibrium price vector may be undecidable. We will show this undecidability
using an extended version of Cantor’s diagonal argument presented by Yanofsky
[5] which is based on Lawvere [2].

1 Introduction

The existence of Walrasian equilibrium in an economy with continuous excess demand
functions is proved by Brouwer’s fixed point theorem. It is widely recognized that
Brouwer’s fixed point theorem is not a constructively proved theorem. The so-called
Uzawa equivalence theorem ([3]) showed that the existence of Walrasian equilibrium
is equivalent to Brouwer’s fixed point theorem, that is, the existence of a fixed point
for any continuous function from an n-dimensional simplex to itself. The existence of
an equilibrium price vector, however, may be undecidable, and in [4] Velupillai said
that the Uzawa equivalence theorem implies decidability of the halting problem of the
Turing machine. In this paper we examine the decidability problem of the Uzawa
equivalence theorem, properly speaking, the decidability problem of the existence of a
Walrasian equilibrium price vector which is assumed in the Uzawa equivalence theorem,
and show that the existence of an equilibrium price vector is not decidable using an
extended version of Cantor’s diagonal argument presented by Yanofsky [5] which is
based on Lawvere [2].

According to [5] an extended version of Cantor’s theorem is stated as follows.

Let Y be a set, and α : Y → Y a function without a fixed point (for all
y ∈ Y, α(y) 6= y), T and S sets and β : T → S a function that is onto (i.e.,
has a right inverse β̄ : S → T ), then for all functions f : T × S → Y the
function g : T → Y constructed as represented by the following diagram is
not representable by f . Where Id is the identity mapping on T .
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T × S
f // Y

α

��
T

<Id,β>

OO

g
// Y

It is an extension of the famous Cantor’s theorem that the cardinality of the power
set P(N) of the set N of positive integers is larger than the cardinality of N, or in other
words, there is no onto map N → P(N). In the proof of our main result we will use
similar arguments to those in the proof of this theorem.

In the next section we present the theorem of the existence of Walrasian equilibrium
and the Uzawa equivalence theorem. In Section 3 we present an extended version of
Cantor’s theorem and its proof, and prove the undecidability of the existence of an
equilibrium price vector assumed in the Uzawa equivalence theorem.

2 Existence of Walrasian Equilibrium and Uzawa Equiv-

alence Theorem

First we present the theorem of the existence of Walrasian equilibrium in an economy
with continuous excess demand functions. Let ∆ be an n-dimensional simplex (n ≥ 2),
and p = (p0, p1, · · · , pn) be a point on ∆. pi ≥ 0 for each i and

∑n

i=0 pi = 1. The
prices of at least two goods are not zero. Thus, pi 6= 1 for all i. Then, the theorem of
the existence of Walrasian equilibrium is stated as follows.

THEOREM 1. (Existence of Walrasian equilibrium, for example, [1]) Consider an
economy with n + 1 goods X0, X1, ..., Xn with a price vector p = (p0, p1, ..., pn).
Assume that an excess demand function for each good fi(p0, p1, .., pn), i = 0, 1, ..., n,
is continuous and satisfies the following condition.

p0f0 + p1f1 + · · ·+ pnfn = 0 (Walras Law).

Then, there exists an equilibrium price vector (p∗0, p
∗

1, ..., p
∗

n) which satisfies

fi(p0, p1, ..., pn) ≤ 0

for all i (i = 0, 1, ..., n). And when pi > 0 we have fi(p
∗

0, p
∗

1, ..., p
∗

n) = 0.

PROOF. See Appendix A.

Next we present the Uzawa equivalence theorem ([3]) which states that the existence
of Walrasian equilibrium is equivalent to Brouwer’s fixed point theorem, that is, the
existence of a fixed point for any continuous function from an n-dimensional simplex
to itself.
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THEOREM 2. (Uzawa equivalence theorem) The existence of Walrasian equilib-
rium is equivalent to Brouwer’s fixed point theorem.

PROOF. We will show the converse of the previous theorem. Let ψ = {ψ0, ψ1, . . . , ψn}
be an arbitrary continuous function from ∆ to ∆, and construct excess demand func-
tions as follows.

zi(p) = ψi(p) − piµ(p), i = 0, 1, . . . , n. (1)

where p = {p0, p1, . . . , pn}, and µ(p) is defined by

µ(p) =

∑n

i=0 piψi(p)
∑n

i=0 p
2
i

.

Each zi for i = 0, 1, . . . is continuous, and as we will show below, they satisfy the
Walras Law. Let multiply pi to each zi in (1), and summing up them from 0 to n, we
obtain

n
∑

i=0

pizi =

n
∑

i=0

piψi(p) − µ(p)

n
∑

i=0

p2
i =

n
∑

i=0

piψi(p) −

∑n

i=0 piψi(p)
∑n

i=0 p
2
i

n
∑

i=0

p2
i

=

n
∑

i=0

piψi(p) −

n
∑

i=0

piψi(p) = 0.

Thus, zi for all i satisfy the conditions of excess demand functions, and from Theorem
1 there exists an equilibrium price vector. Let p∗ = {p∗0, p

∗

1, . . . , p
∗

n} be an equilibrium
price vector. Then we have

ψi(p
∗) ≤ µ(p∗)p∗i , (2)

and if p∗i 6= 0, ψi(p
∗) = µ(p∗)p∗i . But since ψi(p

∗) must be non-negative by its definition
(a function from ∆ to ∆), we have ψi(p

∗) = 0 when p∗i = 0. Therefore, for all i we
obtain ψi(p

∗) = µ(p∗)p∗i . Summing up them from i = 0 to n, we get

n
∑

i=0

ψi(p
∗) = µ(p∗)

n
∑

i=0

p∗i .

Because
∑n

i=0 ψi(p
∗) = 1,

∑n

i=0 p
∗

i = 1, we have µ(p∗) = 1, and so we obtain

ψi(p
∗) = p∗i .

3 Uzawa Equivalence Theorem and an Extended Ver-

sion of Cantor’s Diagonal Argument

3.1 An extended Version of Cantor’s Theorem

According to [5] we present an extended version of Cantor’s theorem and its proof.

THEOREM 3. Let Y be a set, and α : Y → Y a function without a fixed point
(for all y ∈ Y, α(y) 6= y), T and S sets and β : T → S a function that is onto (i.e.,
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has a right inverse β̄ : S → T ), then for all functions f : T × S → Y the function
g : T → Y constructed as represented by the following diagram is not representable
by f . Where Id is the identity mapping on T .

T × S
f // Y

α

��
T

<Id,β>

OO

g
// Y

PROOF. See Appendix B.

The famous Cantor’s theorem is derived as a corollary of this theorem.

THEOREM 4. The cardinality of the power set P(N) of N is larger than the
cardinality of N, or in other words, there is no onto map N → P(N).

PROOF. See Appendix C.

3.2 Uzawa Equivalence Theorem and Cantor’s Diagonal Argu-

ment

First in this section we show that for a real number b whether it satisfies b ≥ 0 or
b ≤ 0 is not decidable. This undecidability means that for any real number b we can
not decide b ≥ 0 or b ≤ 0 in finite steps by some procedure.

LEMMA 1. Whether a real number b satisfies b ≥ 0 or b ≤ 0 is not decidable. And
this undecidability is proved using Cantor’s diagonal argument.

PROOF. Consider a decimal expansion of b, b =
∑M

i=1 di × 10−i ± r × 10−M−1,
where all di are integers such that 0 ≤ |di| ≤ 9 and all di ≥ 0 or all di ≤ 0, M is
a sufficiently large positive integer, and a positive integer r (0 ≤ r ≤ 9) is an error
bound. Let X be the set of decimal expansions of real numbers, N be the set of positive
integers, Id be the identity mapping on X × N, and β : X × N → X is a projection
function, that is, β(b, N) = b. X×N is the product set of X and N. Assume that there
exists some procedure by which we can decide whether (a decimal expansion of) every

real number x ∈ X satisfies x ≥ 0 or x ≤ 0 in finite steps. We decide x ≥ 0 or x ≤ 0
reading each digit of a decimal expansion of x step by step in at most N ∈ N steps,
where N ≤ M , that is, within N digits of the decimal expansion of x. Let b and x be
two real numbers and Y = {−10−N , 10−N}. Denote the output of this procedure by a
function f : X × N ×X → Y . f is defined as follows.

{

f(b, N, x) = 10−N if we decide x ≥ 0.

f(b, N, x) = −10−N if we decide x ≤ 0.
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Define α as follows.

α : Y → Y : α(10−N) = −10−N and α(−10−N) = 10−N .

We construct g : X × N → Y which determines the value of a real number b, that is,
g(b, N) = b as the following composition of three functions, < Id, β >, f and α.

(X × N) × X
f // Y

α

��
(X × N)

<Id,β>

OO

g
// Y

g(b, N) = b = α(f(b, N, β(b, N))) = α(f(b, N, b)).

Since g(b, N) = b is itself a real number, f(x,N, b) must be 10−N when g(b, N) = 10−N

and f(x,N, b) must be −10−N when g(b, N) = −10−N for all x. Thus, g(−, N) must
be representable by f(x,N,−). But, since α has no fixed point, by Theorem 3 g(−, N)
is not representable by f(x,N,−). Therefore, there does not exist any procedure to
decide whether any real number b satisfies b ≥ 0 or b ≤ 0 in finite steps.

For all i other than 0 ψi is assumed to be defined as follows

ψi =
λi(pi)

∑n

j=0 λj(pj)
.

And for i = 0 we assume

ψ0 =
λ0(p0)

∑n

j=0 λj(pj)
.

Then we have

zi(p) =
λi(pi)

∑n

j=0 λj(pj)
− pi

∑n

j=0 pjλj(pj)
∑n

j=0 p
2
j

∑n

j=0 λj(pj)
, for all i 6= 0,

and

z0(p) =
λ0(p0)

∑n

j=0 λj(pj)
− p0

∑n

j=0 pjλj(pj)
∑n

j=0 p
2
j

∑n

j=0 λj(pj)
.

If zi = 0 for all i including i = 0, then we obtain

p0λi(pi) = piλ0(p0), for all i 6= 0. (3)

Now specifically we assume

λi(pi) = pi + 1, i 6= 0, (4)
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and

λ0(p0) =











np0

1−p0

+ 1
4 + b, when p0 <

1
4

np0

1−p0

+ p0 + b, when 1
4 ≤ p0 ≤ 1

2
np0

1−p0

+ 1
2 + b, when 1

2 < p0 < 1

(5)

where b is a real number such that b > −1
4 . From (3) and (4) we have

pi(λ0(p0) − p0) = p0, i 6= 0. (6)

This implies that all pi, i 6= 0, are equal. Since
∑n

j=0 pj = npi + p0 = 1 we have

pi =
1 − p0

n
. (7)

If p0 = 0, we have pi = 1
n

for all i 6= 0. But, then since λ0(p0) = 1
4 +b > 0 it contradicts

(6). Thus p0 6= 0. From (6) and (7)

(1 − p0)(λ0(p0) − p0) = np0. (8)

Therefore, from (5) and (8) we obtain











p0 −
1
4 − b = 0, when p0 <

1
4

b = 0, when 1
4 ≤ p0 ≤ 1

2

p0 −
1
2 − b = 0, when p0 >

1
2

(9)

These are the equilibrium conditions. The assumption of the existence of Walrasian
equilibrium implies the existence of p0 in (0, 1) such that one of these conditions is
satisfied. Which of the conditions is satisfied depends on the value of b.

Now we show the following result.

LEMMA 2. The existence of an equilibrium price vector implies that for a real
number b we can decide b ≥ 0 or b ≤ 0.

PROOF. Let p∗0 be an equilibrium value of p0. If b < 0, we have p∗0 <
1
4 . If b = 0,

p∗0 is any value in
[

1
4 ,

1
2

]

. On the other hand, if b > 0, we have p∗0 >
1
2 . About three

real numbers p∗0,
1
4 and 1

2 we have p∗0 >
1
4 or p∗0 <

1
2 .

Consider a decimal expansion of p∗0, p
∗

0 =
∑M

i=1 ai×10−i±r×10−M−1, where
all ai are non-negative integers such that 0 ≤ ai ≤ 9, M is a sufficiently
large positive integer, and a positive integer r (0 ≤ r ≤ 9) is an error bound.
If a1 ≤ 3, we find p∗0 <

1
2
, on the other hand if a1 ≥ 3, we find p∗0 >

1
4
.

Therefore, we can decide p∗0 >
1
4 or p∗0 <

1
2 in one step.

If p∗0 >
1
4 , then b must satisfy b ≥ 0. And if p∗0 <

1
2 , then b must satisfy b ≤ 0.

Therefore, in order to determine an equilibrium price p∗0 we must know whether b ≥ 0
or b ≤ 0.

From Lemma 1 and 2 we obtain the main result of this paper.

THEOREM 5. The existence of an equilibrium price vector assumed in the Uzawa
equivalence theorem is undecidable.
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4 Final Remark

The Uzawa equivalence theorem in general equilibrium theory demonstrates that the
existence of Walrasian equilibrium in an economy with continuous excess demand func-
tions is equivalent to Brouwer’s fixed point theorem. We have shown that the existence
of a Walrasian equilibrium price vector assumed in the Uzawa’s theorem is undecidable
using an extended version of Cantor’s diagonal argument.

Appendices

A Proof of Theorem 1

Let vi be a function from p = (p0, p1, ..., pn) to v = (v0, v1, ..., vn) as follows,

vi = pi + fi, when fi > 0,

vi = pi, when fi ≤ 0.

We construct a function ϕ = (ϕ0, ϕ1, ..., ϕn) from ∆ to ∆ as follows.

ϕi(p0, p1, ..., pn) =
1

v0 + v1 + · · ·+ vn

vi.

Since we have ϕi ≥ 0, i = 0, 1, ..., n, and

ϕ0 + ϕ1 + · · ·+ ϕn = 1.

(ϕ0, ϕ1, ..., ϕn) is a point on ∆.
Since each fi is continuous, each ϕi is also continuous. Thus, by Brouwer’s fixed

point theorem there exists p∗ = (p∗0, p
∗

1, ..., p
∗

n) that satisfies

(ϕ0(p
∗

0 , p
∗

1, ..., p
∗

n), ϕ1(p
∗

0, p
∗

1, ..., p
∗

n), ..., ϕn(p∗0, p
∗

1, ..., p
∗

n)) = (p∗0, p
∗

1, ..., p
∗

n).

Since vi ≥ pi for all i, we have vi(p
∗

0, p
∗

1, ..., p
∗

n) = λp∗i for all i for some λ ≥ 1. We will
show λ = 1. Now assume λ > 1. Then, if p∗i > 0 we have vi(p

∗

0, p
∗

1, ..., p
∗

n) > p∗i , that
is, fi(p

∗

0, p
∗

1, ..., p
∗

n) > 0. On the other hand, since for all i p∗i ≥ 0 and the sum of them
is one, at least one of them is positive. Then, we have p∗0f0 + p∗1f1 + · · ·+ p∗nfn > 0. It
contradicts the Walras Law. Therefore, we get λ = 1. And we obtain v0 = p∗0, v1 =
p∗1, ..., vn = p∗n and fi(p

∗

0, p
∗

1, ..., p
∗

n) ≤ 0 for all i.

B Proof of Theorem 3

Let Y , α, T and β be given. Let β̄ : S → T be the right inverse of β. By definition

g(t) = α(f(t, β(t))).

We show that for all s ∈ S g(−) 6= f(−, s). If g(−) = f(−, s), then evaluation at β̄(s0)
gives

f(β̄(s0), s0) = g(β̄(s0)) = α(f(β̄(s0), β(β̄(s0)))) = α(f(β̄(s0), s0) .
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where the first equality follows from the representability of g, the second from the
definition of g and the third from the definition of right inverse. This means that α
has a fixed point f(β̄(s0), s0). It is a contradiction.

C Proof of Theorem 4

For T , S, β and α in Theorem 3 we assume that T = S = N, β = Id be the identity
mapping on T , Y = 2 = {0, 1} and α be a function such that α(1) = 0 and α(0) = 1.
Assume that there is an onto map h : N → P(N), and denote h(n) = Sh(n). Sh(n)

is a subset of N. Consider a function f : N × N → 2 such that f(n,m) = 1 when
n ∈ Sh(m) and f(n,m) = 0 when n /∈ Sh(m) for n, m ∈ N. A function g : N → 2 is
constructed as represented by the following diagram

N × N
f // 2

α

��
N

<Id,Id>

OO

g
// 2

g(n) = α(f(n, n)).

g(n) is a characteristic function of the set

G = {n| n /∈ Sh(n)}.

g(n) = 1 when n ∈ G and g(n) = 0 when n /∈ G. Since G is a subset of N, we have
g(−) = f(−, m) for some m ∈ N, that is, g(−) must be representable by f(−, m).
But, since α has no fixed point, by Theorem 3 g(−) is not representable by f(−, m).
Therefore, there does not exist an onto map h : N → P(N).
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