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Abstract

Two identical discrete time cellular neural networks are coupled and sharp
conditions are found so that some or all neural units will eventually synchronize.
In deriving these criteria, we make use of symmetry (invariance) principles, Ba-
nach contraction technique and spectral properties of several band matrices with
block components.

1 Introduction

The fact that various parts of a biological system operate in harmony is taken to
be an important indication of normal functioning of the system. One concept that
is essential in describing such harmonious operations is ‘synchronization’. In order
to design computing machines that simulate harmonious operations, it is therefore
necessary to find mathematical models that are capable of generating synchronized
outputs. Synchronization can occur in a number of continuous dynamical systems.
Synchronization can also occur in artificial neural network models where time and
space are both assumed to be discrete. Such an example is studied in [1, 2]. For
the sake of convenience, we briefly recall this network model here. Let x4, ...,x, be

n (n > 2) neuron units placed at the vertices of a regular polygon. Let xl(t) be the
state values of the neuron unit z; in the time period ¢. During the time period ¢,

if the state value xgt) is larger than xgt), information will “flow” from the unit z; to

the unit 2. The subsequent change of state value of x5 is xgﬂ) — xgt) and under a
first order approximation assumption, it is reasonable that it is proportional to the

) _ .(0)
1

difference x7”’ — x5, say, v (xgt) - xgt)) , where 7y is a positive rate constant. Similarly,

information will flow from the point x3 to the point z if xgt) > xgt). Thus, it is

reasonable that the total effect is
xgﬂ) — xg) =7 (xgt) — xgt)) + v (xgt) — xg)) = (xgt) — ngt) + xgt)) .

By similar considerations, we may then obtain the following dynamic system of equa-
tions
x(tD = (1- 27)x(t) +y4,xM, +=0,1,2, ...,
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T
where x(*) = (azgt), e ng )) and A, is the circulant matrix defined by

010 --- 0 1
10 1 00
010 00

A, = , (1)
000 0 1
100 10

nxn

when n > 2.
Now suppose there is another identical neural network with neuron units denoted by

Y1y -+, Yn- Suppose further that the neuron pairs x; and y;, ¢ = 1,2, ...,n, are “strongly
connected” so that the change, say, azgtﬂ) — xgt) is also proportional to 2+ (ygt) — xgt))

(note the factor 2 here), then the subsequent equation for the neuron x5 is

A~ a9 = (29— a) oy (o) = af0) 42y (440 - o).

The complete set of equations for the neurons z1, ..., x, and yi, ..., Y, is of the form

xtHD = (1= 47,)x® 4 4, 4, x O + 29,y

O = (1= dy)y® +pAny® + 29x®,
which describes the evolution process of the state values as ¢ tends to infinity. In
Fig. 1, we illustrate a coupled network with 6 neuron units zi, ...,z and 6 neuron

units y1, ..., Y6 in two manners. The one on the right is a planar graph, which is more
convenient for illustrating later results.

ys ye

Figure 1

There are many questions of interests which we can raise regarding the above evolu-
tionary system. An interesting one is whether some or all neuron units are ultimately
in synchronization, so that, as time evolves, they differ from each other only by in-
finitesimal values.
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In this paper, we will consider such a problem for a slightly more general nonlinear
system of equations of the form

x(H) = (1 — 47)F (xB) + 5,4, F (xV) + 29, F (y®), @)
y = (1 —47)F (y®) + 3 AuF (y©) + 29 F (xV),

fort =0,1,2,..., where {v;} is a real sequence, F(u) = (f(u1), f(u2), ..., f(un))Jr for
u = (uq,..., un)Jf and f : R — R is a Lipschitz function' which satisfies

|f(x)—f(y)|§F|3:—y|, T, yER,

for some fixed positive constant I'.
(t)
x

Note that if we denote the vector ( y(®

T
) by 2z, where x(*) = (azgt), s xg)) and

T
y® = (ygt), s y,(lt)) , then our system can be written in the form z(*+1) = F (¢,2()).

Thus, given an initial distribution z(®) = z, it is easily seen that we can calcu-
late z(M), 2 .. successively and in a unique manner from (2). Such a sequence
{2,212} is said to be a solution of (2).

An important property of our system (2) is its ‘invariance’ under ‘rotations’. To be

more precise, let us call the vector (w,,us,us, ..., u,_1)" the (forward) rotation of the

()
vector u = (uq, ug, ..., u,)t and denote it by 6(u). If ( ;(t) ) is a solution of (2), then

9(()

t
it is easily checked that ( 0 (;(t); ) is also a solution since we are simply rearranging

the equations in (2).

Let {z(®) }toio be a solution sequence of (2). Given any two distinct neuron units u, v
in{z1,...,Tn, Y15, Ynt, let {u(t)}toio and {v(® }toio be the corresponding component
sequences in the solution sequence {z(t)}toio. We say that the solution {z(t)}toio is
{u, v} synchronized if

lim |u® — p®
t—o0

=0.

More generally, let 2 be a subset of {z1,...,Zn,y1,...,Yn}, if {z(t)}toio is {u, v} syn-
chronized for each pair of distinct neuron units in €2, then we say that {z(t)}toio is Q
(partially) synchronized. In case Q@ = {x1,...,Zn, Y1, -, Yn}, then it is natural to say
that {z(t)}toio is (fully) synchronized. In Fig. 12, a fully synchronized neural network
(n = 5) can be found in which any two (distinct) units are connected with a dash line
to show synchronization.

Two neuron units from {z1,..,z,} or from {y1,...,y,} are said to be of the same
type, while a neuron unit w from {z1,...,z,} and v from {yi,...,y,} are said to be
of different type. In this paper, we are interested in finding various synchronization
phenomena that involves neuron units of the same or different types.

1For example, the tent map g defined by g(x) = 2z for 0 < = < 1/2,2(1 —z) for 1/2 < x < 1, and
0 elsewhere is a Lipschitz function with Lipschitz constant 2.
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To motivate the main results that follow, let us consider the case where n = 2. For
the sake of convenience, we use p (W) to denote the spectral radius of a square matrix
w.

When n = 2, our system is

A = (=) £ (27) + 20 (o87) + 2908 (1),
2 = 2y, (2) 4+ (1= dy0) £ (a) + 298 (057)

(3)
y =2y f (2) (=) £ (087) + 29 f (45
ygtﬂ) =2vf xg) + 2y f (ygt)) T —dv) f ygt)
We assert that if 1
limsup |1 — 4] < =, @)
t—oo F

then every solution of (3) is {x2,y1} synchronized. Indeed, note that

T = =) (1 (o) = 1 (7)) - (5)

If (4) holds, then there exist constant d € (0,1) and positive integer 7" such that (cf.
Banach contraction principle)

PIl—4yn|<d<1, t>T,

so that by (5),

’xét“) — y?“” = |1 — 4| ’f (xét)) —f (y?))’ <T[1— 4yl ’xg) —y

3

and hence

’$§T+n) _ yngLn)

<d ’xéﬂ"’” = ;A”"*”] <ooe<dn

49 -7

forn=1,2,.... If we now let n — oo, we see that

=0.

t—o0

lim ’xg) — ygt)

This shows that {xz2,y1} are synchronized. By considering the absolute difference
=0.

’xgt) - ygt)’ , we may proceed in a similar manner to show that lim;_, ’xgt) — ygt)

That is, every solution of (3) is {z1,y2} synchronized.
Similarly, note that

xgwi) _ ng) B ( 1—6v, 2, ) f (xgt) —f xgt)) ©)
t t - '
yg +1) yg +1) 2y 1 -6y f (ygt) - f ygt))

If

. 1-—- 6% 2% 1
1 < =, 7
Husepe ( 2t 1—6v% ) r (™)
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there exist constant d € (0, 1) and positive integer T such that
H ( 2D _ (D) ) F(287) =1 (28
t+1 t+1
( ) _ ( ) ) ¥ ygt) —f ygt)

2,% t (t)

27 1— 6% (t) (t)
Igt) (t)
ygt) (t)

L t>T.
:EngLn) (T+n) :EgT) (T)
T4n T4n T T
yg +n) _ ( +n) yg ) _ ( )
forn=1,2,.... As n — oo, we see that

0 _ 40
. 3:1 o
ﬂ};( NO <t> ) =0.

That is, every solution of (3) is {z1,z2} and {y1,y2} synchronized. Similarly, we may
show that every solution of (2) is {z1,y1} and {z2,y2} synchronized.

We remark that when ~; =« for all ¢t and T’ = 1, condition (4) holds if, and only if,
|1 — 44| <1or0<~v< 1/2. Note that the eigenvalues of

1— 6y 2y
27 1— 6y

are 1 — 8y and 1 — 4~. Thus, condition (7) becomes

INA
7N
—_
ro |
2 o
2
—_
| o
o3
2
~~_

2 2

IN
=
AS)
A~
—_
|
<)
2

2

IN

d

2
so that

<o d”
2

2

max {|1 =8|, [1 =41} <1,

or 0 < v < 1/4. Note that this condition is sharp. Indeed, when v = 1/4 and f is the
identity function, (6) becomes

D _ ) 1/ -1 1 MONINC)
YD <t+1> =301 -1 <t> <t> :

(0)

ry =-—1

If we let
SO =1, 49 = 4 —o

9 ,$2

G) (05 ()= (),
1 nor {Juf? - 18"

then since

we see that neither {’xgt) — xgt)

o0
} converge to zero.
t=0
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The condition (4) is also sharp since when f is the identity function,

eyt oyt = (Ig) — ygt)) = (-1,

we see that {’xg) — ygt)

where n = 2, is synchronized when 0 < v < 1/4 and this condition is sharp.
To facilitate later discussions, we need to introduce some simple notations. The n
by n identity matrix is denoted by I,,. We let J, U and V be respectively the matrices

J-(?é),U—(_ll8>andv_<8_11>. (8)

Note that the matrix J has eigenvalues —1 and 1 with the corresponding eigenvectors
% = (-1,1)" and & = (1,1)" respectively. Note further that @ and © are linearly
independent. The matrix U has eigenvalues 0 and 1 with corresponding eigenvectors
(0,1)" and @ respectively. The matrix V has eigenvalues 0 and —1 with eigenvectors
(1,0)" and @ respectively. The matrix U has eigenvalues 0 and 1 with corresponding
eigenvectors ¥ and (1,0)" respectively. The matrix VT has eigenvalues 0 and —1 with

corresponding eigenvectors ¥ and (0, 1)T respectively.

o0
} does not converge to zero. Thus every solution of (2),
=0

2 The Case where n =3

From (2), we see that

®Y _ (t)
3:%”1) _ ngi) 1—6v Ve Ve d xzt) ! yzt)
x%H ; B y%t"r ; _ - 1— 67, Ve flzs’ ) —flys ;
t+1 t+1 -
2D L Ve Vi 1 — 6 F(e) 7 (4

and

xng) _ xgtﬂ) [ 1-5y 27 f (ﬂcgt) —f xgt)) (10)
(t+1) _ (+1) ] = 1= 5%

NS, 27, () =1 ()
as well as
(t)) _ (t)
xgHi) B ygwi) | — 4y, v % / x(lt) / y?t)
PR s I (RN S TR Pl ) = =) |
xgtﬂ) B y§t+1) Ve v 1—=6y f xgt) —f ygt)

and by the rotational invariance of (2), we also have

t t
wé”i) —wgt? _ ( 1—5% 2% ) £as”) = 1 (o (12)
t t - )
ys =yt Zn 1-5m F(087) = r (o8
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( 2D _ gD ) B ( 1-5y 2y ) f(‘rgt) f s’ (13)
t+1 t+1 - — ’
yg ) _ g ) 2 1 =5 f (ygt) S ygt))
and
®\ (t)
ySu T AR Y (4
S §,+) = Ve -4y % flyi?) = flas )
(t+1) (t+1) — 1-6
v " WO (@) - ()
(t)) ()
1 1
(t+1) (t+1) 4y % f : f y?t)
D D) | o v 1—dy, -y flwe”) = f (s
(t+1) (t+1) Ve v 1—6y

t t
(@) = (o
For the same reason as used in the case where n = 2, we may now see that if

1=5u 2y ) _ L
2")/15 1—5")/15 F,

then every solution of (2) is {z1, z2}, {z2, 23}, {z1, 25}, {y1, y2}, {v2, ys}, and {y1, ys}
synchronized. Moreover, every solution of (2) is {z1, z2, x3} and {y1,y2,y3} synchro-
nized. If

limsup p

t—o0o

(14)

1—6v Ve Ve 1
lim sup p Ve 1—6v% Ve <, (15)
t—oo F
Yt Yt 1- 6%

then every solution of (2) is {x1,v1}, {2, y2} and {z3,ys} synchronized; and that if

1— 4y VYt Ve 1
lim sup p Ve 1— 4y —Mt <=, (16)
t—o0 F
Yt "t 1 — 6

then every solution of (2) is {xlayQ}a {'IQayl}a {x?ny?)}a {$25y3}5 {333,92}a {xlayl}a
{z1,y3}, {z3, 11} and {x2,y2} synchronized.
We remark that when «; =« for all ¢ and I = 1, the condition (14) becomes

max {|1 = 79[, [1 =3} <1,

or 0 <~y <2/7. When v =2/7 and f is the identity function, (10) becomes
t4+1 t4+1 ¢ ¢
o A NTE A E
1 — Y 7 4 =3 1

O 49 <1, o) =0 =0

Ty

If we let

then since
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we see that there is a solution of (2) which is not {z1,z2} nor {y1,y2} synchronized.
Next, the matrix

1- 6% Yt Yt
Yt 1- 6% Yt
Yt Yt 1- 6%

has the eigenvalues 1 — 7, 1 — 7y and 1 — 4~. The condition (15) becomes
max {|1 — 79[, [1 —4y]} <1,

or 0 <~y <2/7. When v =2/7 and f is the identity function, (9) becomes

xgtJri) _ ygwi) . _5 9 9 xgt) o ygt)
t t t t
e |2 (2 ) (e
T3 = Y3 2 2 T3’ — Y3
If we let
20 = g0 _ O g 0 _ 0 0
then since
N2 2\ /1 e
2 2 =5 1 1

we see that {’xl(-t) — ygt)
Finally, the matrix

o0
} does not converge to zero for ¢ = 1,2, 3.
t=0

1- 4% Yt Yt
Yt 1- 4% —t
Yt —t 1- 6%

has the eigenvalues 1 — 7, 1 — 4y and 1 — 3~. By similar reasonings, we see that the
condition (16) is equivalent to 0 < v < 2/7 which is also sharp. When v =2/7 and f
is the identity function, (11) becomes

e N A R T N A
N R (PR
OB G 2 -2 -5 MONNQ
Since
N AV v
(?> 2 -1 -2 -1 _(7> -1 |,
2 -2 -5 1 1

we see that there is a solution of (2) which is not {z1,y2}, {®2,y1} nor {zs,ys} syn-
chronized. Thus every solution of (2), where n = 3, is synchronized when 0 < v < 2/7
and the condition is sharp.
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3 The Case where n =4

In view of our previous discussions for the cases n = 2 and n = 3, it is reasonable to
proceed to the general case. However, there are enough difference in the case n = 4
from the general case to warrant a sketch of the various synchronization phenomena.

o If

t—oo

lim sup p ((1 — 674 + Ve ( j j )) < 1T, (17)

then every solution of (2) is {x;,y;} synchronized for i = 1,2, 3,4. Indeed, from
(2), we see that

LD y(t+1) f xgt) - f ygt)
1 1

xng) — ngl) —((1—6vI J J f xgt) - f ygt)

xgtJrl) B y§t+1) = (1 =6v)Is+ J J f xgt) iy yét)
(t+1) (t+1)

Ty —Ys f xff) —f yit)

(18)
Then by the Banach contraction technique described previously, the condition

lim sup p ((1—6%)14 +”yt< j j )) <1/T

t—oo

will imply
lim ’x?“) - ygt“)’ —0Ofori=1,2,34.
o If
1iltmsupp((1 —dy) 2 +2vJ) < 1T, (19)

then every solution of (2) is {x1, z3} and {y1, y3} synchronized. Indeed, from (2),
we may show that

(t+1) _(t+1) f (x(t) —f x(t))
xy Ty - 1 3
t+1 t+1 = (1 —=dv) Iz +2vJ) . (20)
( Y -y ) f (y§t) —f yét))

Then the same argument which we used before leads to the desired conclusion.
Furthermore, by the rotation invariance of our system (2), we may also conclude
that every solution is {z2,z4} and {y2,ys} synchronized.

o If

. 2J Iy —J
i p (- aom o (2 BT )) <o (21)
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then every solution of (2) is {z1,y3}, {3, y1}, {z2, ya} and {4, y2} synchronized.
Indeed, from (2), we may show that

(t+1) y(t+1)

““’ zdt 2 IL—J
<t+1> y<t+1> = ((1 — Al + ( Li—J 2J ))

(t+1) (t+1)
Ty

F(27) = £ (8"
£ (o) = (2
x 0 0 (22)
f Lo - f Yy
F(u?) = £ (=
o If
. 20 I

then every solution of (2) is {z1, x2}, {®4, z3}, {v1, y2} and {y4, y3 } synchronized.
Indeed, from (2), we may show that

£ED) D) F () = 1 (o2

1 t t

(1) _ (t+1) _ ((1—5%)12—1—%( 200 I )) F(u?) = f (0"

xitJrl) (t+1) I 2J f xff) —f xgt)

(t+1) (t+1)

Ya () = 1 ()
(24)

Then the same argument which we used before leads to the desired conclusion.
Furthermore, by the rotation invariance of our system (2), we may also conclude
that every solution is {x1, x4}, {x2, 23}, {y1,v4} and {y2,ys} synchronized.

o If
. J I
lim p | (1 —4v)I + v < 1/T, (25)
t—o0 IQ J
then every solution of (2) is {z1,y2}, {2, y1}, {z4, ys} and {3, y4 } synchronized.
Indeed, from (2), we may show that

(t+1) y(t+1) xgt) - f ygt)

(t+1) (t+1)
N J I
(t+1) y(t+1) = ((1 —dy) 2 + v ( L J ))

(t+1) (t+1)
T3

u) = f (a8

:Eglt) _ f y:(),t)

u?) = 1 (2
(26)

Then the same argument which we used before leads to the desired conclusion.

Furthermore, by the rotation invariance of our system (2), we may also conclude
that every solution is {z1,ys}, {z4, 11}, {%2,ys} and {z3, y2} synchronized.

- S
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The conditions derived above are sharp. To see this, we assume that v, = v for all

t, f is the identity functio

e Then the matrix

nand I'=1.

J J
(1_67)144‘%(J J)

has eigenvalues 1 — 8y, 1 — 67, 1 — 6 and 1 — 4~. The condition (17) becomes

max{[1 =8|, [1 =67, [1 =4[} <1

or 0 <~y < 1/4. When v = 1/4, (18) becomes

t+1
Dy

1 Y
i AN |
Ty X — Y3 i 2 4\ J J zy) — g
t t t t
{0 oo 4l
If we let
e R R )
then since
. -1 -1
-1 1 1 B ¢ 1
(714 + 1A4> 1 1= (-1) 1
1 1

we see that {’xl(-t)

—y"

(t+1) xg) _

()

o0
} does not converge to zero for i = 1,2, 3, 4.
t=0

e Next, the condition (19) becomes max{|l —6v|,|1 —2y|]} < 1or 0 <~y < 1/3.

When v = 1/3, (20)

xgtﬂ) B xgtJrl)
ygtﬂ) B y§t+1)

If we let

then since

(

becomes

0 =4

Fue37) (7)o ()

=1, xgo) = yéo) =0,

1 9 NONENG!
=(=L+zJ) " "3
)= (G5 (3

) |

we see that there is a solution of (2) which is not {123} nor {y1, y3} synchronized.

e Next, the matrix

20 L—J
(1—4%)12+%<I2_J o] )
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has eigenvalues 1 — 8y, 1 — 4~ and 1 — 27, 1 — 2. The condition (21) becomes
max{[1 =8|, [1 =49, [1 =29(} <1
or 0 <~y < 1/4. When v = 1/4, (22) becomes

xgtJrl) _ y:(),tJrl) xgt) _ y(t)
N A ((1 —4y) Iz + v ( 2/ L-J )) y) -y
R nos 2 )) |y
t+1 t+1 t t
e -
If we let
SOOI O N O B O O O O J)
then since
1 1
N 20 L-J\| -1]|_ Co | !
4 I —J 2J -1 | -1 |’
1 1

we see that there is a solution of (2) which is not {z1,ys}, {zs,v1}, {2, ya} nor
{4, y2} synchronized.

Next, the matrix
2J I
(1 =5%)l2 + 7 ( I 27 )
has eigenvalues 1 —8v, 1 — 6+, 1 —4v and 1—2~. The condition (23) then becomes
max{|1 —87],[1=67],[1 - 49|, [1 - 27} <1

or 0 <~y <1/4. When v = 1/4, then (24) becomes

xgtJrl) _ xgtJrl) xgt) _ xgt)
A ((1 —57) Iz + ( 2/ b )) y” =)
xitﬂ) B xgtﬂ) I, 2J xit) B xgt)
y§t+1) _ ygtJrl) yit) _ ygt)
If we let
xgo) _ xgo) _ yéo) _ 94(10) —1, xgo) _ 30510) _ y§o) _ ygo) —0,
then since
) 1 1
-1 172 Ly -1 | e —1
(TL” 1 ( L 2J )) I e I R
1 1

we see that there is a solution of (2) which is not {1, z2}, {z4, 23}, {y1,y2} nor
{y4,y3} synchronized.
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e Finally, the matrix
(L —dy)l+ 7 Sk
L J
has eigenvalues 1 —6v, 1 —4~, 1 —4v and 1—2~. The condition (25) then becomes
max{[l — 67|, [1 —47[,[1-29]} <1

or 0 <~y < 1/3. When v = 1/3, then (26) becomes

x§t+1) - ygtﬂ) MONS y(t)
t+1 t+1 t t

yg(:rl)) o x%:rl; = ((1 — Ay + v ( J b )) yg(t)) a x%t;

Ty B b NOIEL

Yy — T3 Yo ™' — T3
If we let

KO =) = =0 =1, 0 =) =l = 0 =0
then since
1 1

-1 1/ J L\\'| -1 | _ , .« —1
(?I‘”E ( Lo J >> Sl R N
1 1

we see that there is a solution of (2) which is not {z1,vy4}, {z4, 11}, {22, y3} nor
{3, y2} synchronized.

Hence we concluded that every solution of (2), where n = 4, is synchronized when
0 < v < 1/4 and the condition is sharp.

4 Synchronization Criteria for n > 5

The same principles used in the previous discussions can be used again for the case
where n > 2, although there are some other details.

THEOREM 4.1. Suppose n > 5. Let
A= (1= 69) I + 7 An (27)

where A,, is defined by (1). If limsup, . p (A\t) < 1/T, then every solution of (2) is
{z;,y;} synchronized for i = 1,2,...,n.
Indeed, from (2), we see that

S D S (A) (£ (o) < £ (57)) ori =12 (29

k=1
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Then by the same arguments used in the derivations in the last section, the condition
lim sup,_, o, p (A\t) < 1/T will imply

tlim xEtH) - ygtﬂ) =0fori=1,2,...,n
THEOREM 4.2. Suppose n = 2m, where m > 3. For t > 0, let
2J I 0
= I 2J
Bi=(—d4y)lamoa+| (29)
A
0 I, 2J

(2m—2)x(2m—2)

Iflimsup,_, . p (Et) < 1/T, then every solution of (2) is {x1, x3, . . ., Tom-1}, {T2, T4, - . .,

me}a {yla Yss - y2m—1} and {yQa Yas- -, me} synchronized.
Indeed, from (2) we have

®Y _ ()
m_ey ()
(t+1> (t+1> f(yl —flws )
e oo ()~ 1 ()
(t+1> (t+1> - B
om Ui =Bl (i) -1 (w”)
(t+1) (t+1)
m m (t) )
y(ti% _ y(till) f (‘Tm+3 —f T
m—+3 m—+1 t t
f (yfn)+3 —f yfn)H)
Then by reasonings we have explained before, we see that
Jim () eV Jeler? <o) e ) 0 o
and 1 1 1 1 1 1
t t t t t t
hm (’y(+) (+)’ (+) (+)’,...,’yfnig)—yfnil)):O. (31)

By the rotational invariance of (2), we see further that every solution of (2) is
{an $4} ) {y2a y4} ) {xla $5} ) {yla y5} ) {$2m+67ja xj} , and {y2m+6*j’ yj} synchronized
for j =6,7,...,m+ 2 as well. To complete our explanation, let us consider a neural
network in which n = 6. To illustrate (30) and (31), we draw dash lines connecting x;
and z3, x4 and e, y1 and ys, as well as y4 and yg to show synchronization. Then we
add new dash lines to connect x5 and x4, y2 and y4, etc. These are illustrated in Fig.
2. From this Figure, we may easily see that every solution is {x1,z3, x5}, {y1,Ys, Us },
{z2, 4,26} and {y2,y4,ys} synchronized (See Fig. 3). The same reasoning shows
that every solution of the general system (2) is {z1,3,..., Tom-1}, {2, %4, ..., Tom},
{Y1,93, -+, Y2m—1}, and {Y2, Y4, . - ., Y2m } synchronized?.

2The formal approach is to consider a graph with vertices {21, ...,%n, y1, .., Yn} and synchronized
vertices as edges. Then the proof reduces to finding the connected components which is an easy matter.
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Figure 2

123

Figure 3

In the above result, we see that there are four groups of synchronized units. These

groups may or may not be distinct. For example, consider a neural network where n =
6. We consider the special case where v, =« for all ¢, f is the tent map function, and the

Lipschitz constant I' = 2. From the Appendix, the condition lim sup,_, . p (Et) <1/T

in Theorem 4.2 can be replaced by 1/6 < v < 3/14. Then choosing v = 0.2 and

3

(xgo), xgo), xgo)

0 0 0 0 0 0
'IEL )axé ),xé )ayg )ayg )ayg )ay4 ay5 ay6

1
= _(35153515351525552555255)5

10

we may compute azgoo) = 2

3
3:5100) = xéoo) = ygoo) = ygoo) = yéoo) = 0.4747.

_ (00 (00) _ (o0)

5 — Y2 T =Y

(0) (0 <0>)

=™ = 0.3323 and 21 =

THEOREM 4.3. Suppose n = 2m, where m > 3. For t > 0, let

2J I U
L 27 . 0 0
ét =1 —4v)Lom + %
0 I 0
I, 2J 14
uro - 0 VI -2

2mx2m
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If imsup,_, . p (6}) < 1/T, then every solution of (2) is {z1, %3, ..., Tom—1,Y1, Y3, - - -

y2m71} and {'IQ; Tas ooy T2my Y2, Y4y - - me} synchronized.
As in the proof of Theorem 4.2, we may first show that

(t+1) _ (t+1) f xgt)) -/ gy?
t+1 t+1
T -y Y _ Q]
y§t+1) B xztﬂ) f y}t) f x?t)
2+ _y(t+1) F@om) = f (314
(QﬁH) %t+1) f (t)) —f (x(t)
Yom = — T4 R Yom 4
DTy pu— t
t+1 t+1
fn+3) - 7(71+1) f 3357? 3) - f (97(7?“
y(t+1) _ D) @ ©
x?ﬁ) B yggill) f ym+3) - f ($m+1
2D () f (ﬂﬁg) —f ygt))
m—+2 m—+2 (t) (t)
f ($m+2 - f ym+2)
Ys ye
Ya ¥a

Figure 4

Figure 5

Then the condition lim sup,_, . p (ét) < 1/T shows that every solution is {z1, ys},

{23, 91} {m2, 92} {Tma2s Yma2} s {T2mera—j, 95}, and {2}, y2mia—;} synchronized for



S. S. Cheng and Y. F. Wu 125

j=4,5,...,m+1. Then the rotation invariance of (2) shows further that every solution
of (2) is {'rQa y4} ) {ZE4, y2} ) {xla y5} ) {ZE5, yl} ) {:Eg, y3} ) {IEerg, ym+3} ) {$2m+67j; yj} )
and {z;, Yam+t6—;} synchronized for j = 6,7,...,m + 2. By carefully inspecting the
connections, we may then conclude the proof of our theorem. These are illustrated in
Figures 4 and 5.

THEOREM 4.4. Suppose n = 2m, where m > 3. For t > 0, let

—L+2J I
Dt = (1 — 4’715)]2771 + Yt (32)

Iy, —Ih+2J

2mx2m

If limsup,_, .. p (ﬁt) < 1/T, then every solution of (2) is {z1,...,z2m,} and {y1,...,
Yam } synchronized.

As in the proof of Theorem 4.2, we may first show that

Then the condition limsup,_, ., p (ﬁt)
{v1,v2}, {x2m+t3—j, x;}, and {Yam43—;,y;} synchronized for j = 3,4,...,

)\ _ (t)

(Hl) (Hl) ! (x(t) ! (2t))
(t+1) (t+1) / (y A )
gt+1) (t+1) ¥ (x(t) .y xgt))
- g | =p (v6) = 1 (8”)
<t+1> (t+1)
m+2 — T (t) (t)
(tjg) o (tﬁ) f( Toya ) = f merl)

7 (o) = 1 (v

< 1/T shows that every solution is {1, z2},

m + 1. Then

the rotation invariance of (2) shows further that every solution of (2) is {x2.x3},
{v2.ys}, {wraa}, {yrva}, {7, 22m15-5} and {y;, yams—;} synchronized for j =

5,6,...,

proof of our theorem. These are illustrated in Figure 6.
THEOREM 4.5. Suppose n = 2m, where m > 3. For t > 0, let

J I
L 2J . 0
Et = (1 —4y)Iom + v
0 . 2J I

I J

m + 3. By carefully inspecting the connections, we may then conclude the

2mx2m
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¥e ¥i Yo ¥i ¥e bl
| yz ys % % - ﬁ
¥ s 2 vs ye s

Figure 6

Iflimsup,_, . p (Et) < 1/T, then every solution of (2) is {x1, 3, . . ., Tam—1, Y2, Y4, - - -, Y2m }
and {x2, T4, ..., Tom, Y1, Y3 - - -, Y2m—1} synchronized.
As in the proof of Theorem 4.2, we may first show that

)\ _ (t)

(t+1) y(t+1) f x(lt)) f y?t)
<t+1> 2 v )—f
(<t+1)> y§+; REICHE i
t+1 t+1 _
am s =Bl r(u) = f (a8
(t+1) (t+1)
m (t) (t)
y(tif) _ y(t+1) f ‘Tm+2) - f (ym+l
m+2 m+1

/ yy(i)w) —f (3357?“

Then the condition limsup,_,. p (Et) < 1/T shows that every solution is {z1,y2},

{z2, 1}, {T2m+3—5,9;}, and {z;, yom43—;} synchronized for j = 3,4,...,m + 1. Then
the rotation invariance of (2) shows further that every solution of (2) is {x2,ys},
{zs, 2}, {z1, pa}, {za, 1}, {z2ms—5,95}, and {x;, yam45—;} synchronized for j =
5,6, ..., m+2. By carefully inspecting the connections, we may then conclude the proof
of our theorem. These are illustrated in Figures 7 and 8.

In the above result, we see that there are two groups of synchronized units. These
groups may or may not be distinct. For example, consider a neural network where n =
6. We consider the special case where v, =« for all ¢, f is the tent map function, and the

Lipschitz constant I' = 2. From the Appendix, the condition lim sup,_, . p (Et) <1/T
in Theorem 4.2 can be replaced by 1/6 < v < 3/14. Then choosing v = 0.21 and

—(2,1,2,1,2,1
10( 3 3 3 3 3 ,3, 5, 3, 5, 3, 5),
we may compute 3:( ) = x(oo) (Oo) (Oo) = yioo) = yéoo) = 0.8105 and ‘TgOO) =

xgoo>:xg°°>:y§°°> <°°> <°°> 05167
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Figure 7

Figure 8

THEOREM 4.6. Suppose n = 2m, where m > 3. For t > 0, let

2J I -1
I 2J . 0
Fy=(1—47) lom + % - (33)
0 . 2 Iy
_I2 I2 2J 2mXx2m

If limsup,_,o, p (ﬁt) < 1/T, then every solution of (2) is {x;, m+;} and {y;, Ym+;}
synchronized for j =1,2,...,m.
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¥s ' Yz
Ys ya

Figure 9

As in the proof of Theorem 4.2, we may first show that

Y\ _ (t)

2D _ 4D ( ! ‘Tm“)
m t t

(t+1) y(till) F(7) -1 yfn)Jrl)

t t
ot ||t
t+ t+ —
Yo T Ymgo | T M)~ r yg)w) ’
xﬁ,i“’ (t+1) (I( :p(t) )
(t+1) (t+1) m 2m
Ym (t) )

()~ 1 (o)

and employing the Banach contracting technique to conclude our proof.

In Figure 9, we consider a neural network where n = 6. To illustrate Theorem 4.6,
we draw dash lines connecting =1 and x4, y1 and y4, etc. to show synchronization. The
rotational invariance of (2), however, leads to no new information.

As an example, we consider a neural network where n = 6. We consider the special
case where vy, = «v for all ¢, f is the tent map function, and the Lipschitz constant
I' = 2. From the Appendix, the condition limsup,_, ., p (ﬁt) < 1/T in Theorem 4.6 is
replaced by 1/8 < v < 3/16. By choosing v = 0.16 and

(3350), 20 a0 20 20 g0 (00 L0 000 y(o))

E (2’ ]"6’2’ 1’6’7’4’5’7’4’ 5)’

we may compute 3:( ) = x(oo) = ygoo) = yfloo) = 0.34009, x§°°> = xéoo) = y§°°> = yéoo) =
0.3651, 2> = xg@ = y§°°> y™ = 0.3351.
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THEOREM 4.7. Suppose n = 2m, where m > 3. For t > 0, let

2J I —J
L 2J . 0
ét = (1 —4v)Iom + %
0 . 2J I
—J I, 2J

2mx2m

If limsup,_, . p (ét) < 1/T, then every solution of (2) is {x;, ym+;} and {@m+;,y;}
synchronized for j =1,2,...,m.

This follows easily from the fact that

®Y _ (t)
(tJrl) (t+1) xl f merl
Sy it
Y1 “ T4l
NGRS (2Ey

Gy (D
t+1 t+1
Yo — T2

ygt) - f xS;)Jrl
o)~ £ (4

ygt)) —f (xgm)n

I
&
- = =

(t+1) (t+1)
Tm —Yom (t) (t)
(t41) (D) flam’) = f{Y2m
Ym — Tom

7 () = 1 (250,

In Figure 10, we consider a neural network where n = 6. To illustrate Theorem 4.7,
we draw dash lines connecting =1 and y4, 22 and ys, etc. to show synchronization. The
rotation invariance of (2), however, leads to no new information.

¥ 1

¥s ¥a

ya ¥a

Figure 10
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THEOREM 4.8. Suppose n = 2m + 1, where m > 2. For t > 0, let

20 I,
L 2] . 0
Hy=(1—4v)lom + (34)

I, —Ihb+2J

2mx2m

If 1imsuptﬁoop(ﬁt) < 1/T, then every solution of (2) is {x1,22,...,T2m+1} and
{y1,92,. ..
As in the proof of Theorem 4.2, we may first show that

, Y2m+1} synchronized.

®Yy (t))

2D _ (D) ! (x(lt) ! x(g’t)
(1) (t+1) f(yl —flys )
4 3 (t) (t)
gﬂ& — xffﬂ) f LTom+1) — flzy )
S =Y | = He| (yéfi“ —f yff))
(t+1) _ _(t+1)

Tty — T, () (t)
(tjE) B ({;2) f (merB = [ (e
m m t t

/ (yfn)+3 - f yfnlz)

Then the condition limsup,_, . p (ﬁt) < 1/T implies that every solution is {x1,x3},

{v1,y3}, and {z2mi5—j,x;}, {Tamis5—;,;}, where j = 4,5,...,m + 2, synchronized.
The rotational invariance of (2) shows further that every solution of (2) is {x2,z4},

{y2,yats {z1, 25}, {y1, 95}, {@emi7—j 25}, and {yami7—;,y;} synchronized for j =
6,7,...,m+ 3. Then careful inspection of the connections completes our proof. These

are illustrated in Figure 11.

¥s ¥s ys
| .y | .y | .y
¥z vz ¥s ¥z Vs ¥2

Figure 11
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THEOREM 4.9. Suppose n = 2m + 1, where m > 2. For t > 0, let

2J I —u
I, 2J . 0 0
K = (1 — 4y ) Iomi1 + 7
0 2] I
Is J 0
g0 .. .. 0 =2

(2m+1)x(2m+1)

If limsup,_, ., p (I/(\'t) < 1/T', then every solution of (2) is (fully) synchronized.
As in the proof of Theorem 4.2, we may first show that

7 (27) = f ("

(t+1) (t+1)
T -y (t) (t)
(1t+1) %t+1) Ty’ ) = flzs
i T (t) (t)
(1) (1) I xzmH) A

2m-+1 4
(t+1) (t+1)
Yom+1 — 4

)

~+

(i) - £ (50
(t+1) _ (t+1) ®) o (t)
Ly, Ym _

a v I i) =1 (ot
m m—+2

(tﬁ’) (tjrrl) / Ym+3 —f Tm+t2
Lo — Y2

7 () = 1 (8)

Then the condition limsup,_,. p (I/(\'t) < 1/T shows that every solution of (2) is

{zrysh {as,u} {z2, 92}, {22m5-5. 95} and {z;, yam5-;} synchronized for j =
4,5,...,m+ 2. The rotation invariance of (2) then shows that every solution of (2) is

{2, yat, {y2, zads {21, 95}, {yn x5}, {23, 43}, {z2msr—s, v} and {z, yom47—;} syn-
chronized for j = 6,7,...,m+ 3. Careful inspection of the connections then completes

our proof. These are illustrated in Figure 12.

ys ¥ ¥s
| .y | .y | .y
Vs ¥2 ¥a v Ya Yz

Figure 12
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5 Sharpness

We will now consider the special case where v, = « for all ¢, f is the identity function,
and the Lipschitz constant I' = 1.

e Since
2km 8 if n is even
max <6 —2cos— =

1<k<n n 6 — 2 cos @ if nisodd ’

the condition limsup,_, . p (A\t) < 1/T in Theorem 4.1 is replaced by

0<y<

2 { 1/4 if n is even

maxi<ken (6 — 2cos 2) 1/(3—cos@) if n is odd

First note that this condition is sharp when n is even. Indeed, take f to be the
identity function. When v = 1/4, (28) becomes

(1) (t41) "1 1
€Z; —Y; = Z (7171 + ZAn>

k=1

(x,(:) — y,(:)) fori =1,2,...,n.
ik

The number —1 is an eigenvalue of %I,ﬁ- %An and the corresponding eigenvector
is = (=1,1,—-1,...,1)". If we let

xg;c) = yg,)c)il =1, xg;c)il = ygi) =0fork=1,2,...,n/2,
then since
xgt) - ygt) 1 1 ¢ ng) - yg())
= (7]71_’_1/1”)
o 40 RO
1 1\
= ( 5 In+1An> u=(-1)"1u,
we see that {’xl(-t) - ygt) } does not converge to zero for i = 1,...,n. Next,
t=0

when n is odd, this condition is also sharp since if v = 1/ (3 — cos @) , the

number —1 is an eigenvalue of the matrix and the corresponding eigenvector is

(n—1)m

T
,...,clcos(n—1)7r+02sin(n—1)7r> ;
n

- ( (n—1)m .

v = | €1 COS ——— + ¢2 SIn
n

where ¢; and co are not both equal to zero. If we take f to be the identity

function and let

-1k -1k
x,(co) :clcosu, y,(co) :—@Sinu, fork=1,...,n,
n n
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then since

(/L)ta: (—1)'7,

we see that {’xl(-t) — ygt) } does not converge to zero for i =1,...,n.
t=0
e Since
(m—-1)m (m—1)m
3 —2cos <6 —2cos ————,
m
we have
k k -1
max {6— 2 cos —7T, 2 — 2cos —W} =6 — 2cos M
1<k<m—1 m m m

Thus, the condition limsup,_,.. p (Et) < 1/T in Theorem 4.2 is replaced by
0<y<1/ (3 — cos %) . This condition is sharp since when ~ is equal to

1/ (3 — CoS %) , the number —1 is an eigenvalue of the matrix B, and the

corresponding eigenvector is

T
~ 7 2(m—1)7 . — 12
_ (Sinuuf,sinuuf,,,_,Smuuf> |
m m m

If we take f to be the identity function and let

-1
ygo) = sin W, xgo) = yéo) = xg;)HAPk = y,(co) =0, k=4,5,....m—1,
k—2 -1
x,(f):sin( ) =D s g m,
m
and ( Dk
0 m — ™
ygﬂ?LJr2 k—SlIl m ’k:2535' am_la
then since
xgt) xgt) xgo) xgo)
y =" y§2) - yé?
t t
e I = N I
Yom — Y4 - (Bt) Yom — Y4 - (Bt) u= (=14,
t t 0 0
Y13 — YUYmt1 Y13 — YUYmi1
we see that neither {’xgt) — xgt) }t:O , {’ygt) — yét) }t:O ; {’xg-t) — xgtglﬂfj }t:O
() (t) o .
nor {’yj — y2m+47j’}t:0 converges to zero for j =4,5,....,m+ 1.
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e Since

2 — 2cos <4< 6—2cos

(m—-—1m (m—-1)m

<8,

we have

max {4 8, 6—2cosk— 2—2cosk—w}—8.
m

1<k<m—1

Thus, the condition limsup,_, ., p (6}) < 1/T in Theorem 4.3 is replaced by
0 < v < 1/4. This condition is sharp since when v = 1/4, the number —1 is an
eigenvalue of the matrix C; and the corresponding eigenvector is

. (—at,af,...,—at,af,ah)’  ifmis odd
(@f, —af,...,af,—af,at,oh) " if m is even

If we take f to be the identity function and let

(0) (0)

xg(;c)il— ) — =1, xg%)—ygi)l—()forkzl,...,m if m is odd
Tor =Yg 1 =1, Top_1="ys, =0fork=1,...,m if m iseven

2
t t 0 0
o0, -2, Toys = Uit

we see that neither {’ © _ (t) } {’ o _ (t) } {’ ) _ (t) }t o’ , nor

t t t t t t
el Wt i et

.,m+1, can converge to zero.

3

e Since . .
max {6 - 2cos— 2 - 2cos—} =max {8,4} =38,
1<k<m m m
Thus, the condition limsup,_,. p (ﬁt) < 1/T in Theorem 4.4 is replaced by
0 < v < 1/4. This condition is sharp since when v = 1/4, the number —1 is an
eigenvalue of the matrix D; and the corresponding eigenvector is
T
7= (af,_af,af,_af,...,(_1)’”*1@*) .
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If we take f to be the identity function and let

xg,? = yéﬁ?fl =1, xg,)c)il = yg(,? =0fork=1,...,m,
then since
O] xgt) x§0> 20
b % %
2m — 23 N\t Lom — T Nt .
o =) | W =)=
0 0
e o o
ym+2 - merl ym+2 - merl
h ith {’ ) _ @ }Oo {’ () _ (@) }Oo { () . }Oo
we see that neither xio Tq o’ Y1 Yo o’ Lomys—j — ; o
nor {’ygzwﬂ- — y§-t) } 0 can converge to zero for j =3,4,...,m+ 1.
t=
e Since
-1
4<6-2c0s U g
m
we have

k-1 k -1

max {6—2cos J, 2 —2cos —W} =6 —2cos u

1<k<m m m m

Thus, the condition limsup,_,. p (Et) < 1/T in Theorem 4.5 is replaced by
0<y<1/ (3 — cos %) . This condition is sharp since when ~ is equal to

1/ (3 — CoS %) , the number —1 is an eigenvalue of the matrix E, and the

corresponding eigenvector is

T

~ - 3(m—-1)7 2m —1 -7

u_(cosuuT,cosMuT,...,cos( m = 1) (m MTu") .
m m m

If we take f to be the identity function and let

—xgo) = y§0> = Ccos M, - xg% = yé?,i = oS M,
m m
(©) (0) (m—1)(2k — 1)

7T, for k=3,4,...,m,

“Tomt2—k = Y2mi2—k — COS m
and

20 =y =0 for k=23,... . m+1,
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then since
2 _ ) xgo) (0)
A ho
t t
Lom — Y3 N Lom — Y3 N .
el | =(B) | in-al | =(B)a-(0'w
0o — Y T
(t) (t) (0) (0)

we see that neither {’xgt) — ygt)

e ) . (t)
}tzo’ {’% Y1

> (t) ®
o Arimrsns =0

o0
Jioo

nor {’xg-t) - ygi)wrgfj’} converges to zero for j = 3,4,....,m+ 1.
t=0
e Since
6—9 2k—-1)m 8 if m is odd
a —2c08 ——— 5 =
1g}chm S m 6 — 2 cos % if m is even
and
9_9 RE-1)m| [ 4 if m is odd
12}2(771 cos m ] 2—2cos w if m is even
we have

max
1<k<m

{6—2COSM, 2_2COSM} —8.
m m

Thus, the condition limsup,_, ., p (ﬁt) < 1/T in Theorem 4.6 is replaced by

0 < v < 1/4. This condition is sharp since when v = 1/4, the number —1 is an
eigenvalue of the matrix F; and the corresponding eigenvector is

i = (—af,af,..., —atat —ah).
If we take f to be the identity function and let

(0) (0) _ (0) (0)

Ty =Yg =1, Ty =Yg, =0, for k=1,2,...,m,
then since
e ARG
t t
by U Moy
Ly A I S A ..
Y2 " = Ymi2 | — Ft) Yo —Ymi2 | T (Ft) u= (-1 4,
al) — xgtgl ) — xgo)
(t)

t
y7(n) — Yom
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o0 o0
we see that neither {’xg-t) — xgl)Jr j ’} nor {’y§-t) — yfﬁr j ’} converges to zero
t=0 t=0
forj=1,2,...,m.

e Since
2km [ 6—2cosm=UT if s odd
max <6 —2cos— ;= m : !
1<k<m m 8 if m is even
and
9_9 RE-1)m| [ 4 if m is odd
12}2(771 cos m Tl 2—2cos % if m is even
we have

max {6—2005%—7T, 2—2cosw} = 8.
m

1<k<m m

Thus, the condition limsup,_,. p (ét) < 1/T in Theorem 4.7 is replaced by

0 < v < 1/4. This condition is sharp since when v = 1/4, the number —1 is an
eigenvalue of the matrix G; and the corresponding eigenvector is

i=(—at,af,. .., —atah’.

If we take f to be the identity function and let

xg;c)il = ygi) =1, xg;c) = ygi)il =0, fork=1,2,...,m,
then since
0 0

o S
ORI Moy
Lo = Ymio ot T2 T Unie PN .
=l | = (@) | =l |- (@) -
A4 o0 2

t t 0 0
A —of] A~

we see that neither {’xg-t) - yfﬁ)ﬂ ’ }t:O nor { ngl)ﬂ — y§-t)

o0
} converges to zero
t=0

forj=1,2,...,m.

e Since
mn < 6 — 2cos 2mm
2m + 1 2m +1’

2 — 2cos

we have

2k
max 6—2c0577r, 2 —2cos
1<k<m 2m+1

}—6—2005 2mm

T
2m + 1 2m +1°



138

Synchronization of Strongly Coupled Dynamical Networks

Thus, the condition limsup,_, ., p (ﬁt) < 1/T in Theorem 4.8 is replaced by 0 <

y<1/ ( — cos 22mf1) . This condition is sharp since when v = 1/ ( — cos 22mmfl)

the number —1 is an eigenvalue of the matrix H ¢+ and the corresponding eigen-
vector is

- . 2mm ~ 4dmm ot o 2m2n ~f t
u = | sin u', sin u', ..., sin u
2m+1 2m+1 2m+ 1
If we take f to be the identity function and let
. 2mm . dmw
L T TR
2mk
x,(COJZQ = sin 27:_;1, for k=1,2,...,m,
and -
(0) o mRm -
Yomis—k = s1n2m+1,fork—3,4,...,m
then since
o A
0 0
=
t t 0 0
NG i) | et x<40> 7)) @ tg
y2m+1 Yy = (Ht) y2m+1 —y4 = (Ht) u=(-1)"u,
t t 0 0
o o o e
Ym+3 = Ym32 Ym43 = Ymi2
we see that neither {’ © _ (t) } {’y(t) (t) }t . { xgtgl% i~ ;t) }t:O
nor {’y2m+5 i Y; )’} converges to zero for j =4,5,...,m+ 2.
Since ) )
mm mm
2—2 4<6-2
c052m+1< < c052m+1,
we have
2km 2k 2
max {6 —2cos ——, 4, 2 —2cos il =6— 2cos mr .
1<k<m 2m+1’ 2m +1 2m+1

Thus, the condition limsup,_, ., p (I/(\'t) < 1/T in Theorem 4.9 is replaced by 0 <

2mm

v<1/ ( — oS 22mmf1) . This condition is sharp since when v = 1/ ( — oS5 +1)

the number —1 is an eigenvalue of the matrix I/(\'t and the corresponding eigen-
vector is

- 2mm ~t 4dmm ~t o2m2 ~f t
u = | —cos u', —cos u',...,—cos u', 1) .
m 2m+1 2m+1
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If we take f to be the identity function and let
©) _ _ (0 _ o 2mT (0 (0) dmr_ ) _ 0 g
Ty =Y —cosm Tom+1 = ~Yo2my1 = COS omi1l Ty =1 Y =0,
2mkm
.Ig:zkH), = ygﬂ?b+3 k*COSm, fork:3,4,...,m,
and
x,(co) :y,(co) =0, fork=3,4,...,m+ 2,
then since
o 00
t t
%A) | xéz ) :(gé)) xg()O)
t t
Sty NG
Yomt1 — Ty - f{t)t Yamt1 — Ty — (f{t)t i=(-1)7,
t t 0 0
Ty — Yppi2 Tipks — Yprra
) . 0 _ (0
RGEN O RGN
Ta 2 T3 Y2
we see that neither {’ ®_ yét) } {’ & _ (t) } {’ (&) _ ygt) } nor
t=0" t=0
{’xgz% J—y§t)} {’ (t)—ygi)l% j’ o , where 7 = 4,5,...,m + 2, can

converge to zero.

We conclude our investigation with the following remark: Suppose n = 2m where
m > 3. When 0 < v < 1/4, every solution of (2) is (fully) synchronized; and when 1/4 <

v < 2/7, every solution of (2) is {x1, x3, . . .

y L2m—1,Y2, Y4, - - -

,Yom } and {xe, x4, . . .,

T2m,

Y1, Y3, - - - Yom—1 t synchronized. But in general, (2) isnot {x1, 23, . .., Tam—1, Y1, Y3, - - - 5
me*I}a {an Tas -5 L2m,y Y2, Y4, - - - me}; {xla T2 .-, x2m}; nor {yla Y2, -+, y2m} syn-
chronized. In general, { :cl(-t) — ygt) } does not converge to 0 for all ¢ = 1,...,n;
{’xg-t) Sl)ﬂ ’} does not converge to 0 forall j = 1,...,m (if mis odd); { (& _ yg)ﬂ ’}
does not converge to zero for all j = 1,2, ..., m (if m is odd); {’ &) _ yg)ﬂ ’} does not
converge to zero for j = 1,2,...,m (if m is even); { ffl)ﬂ §t) } does not converge

to zero for j = 1,2,...

which n = 6:

®

® ®

®

®

®

v =025 | xy Ty Ty T, Ty Tg
t=20 1 3 1 3 1 3
t=1 2 3 2 3 2 3
t=2 2 3 2 3 2 3
t=10 2 3 2 3 2 3
t=100 | 2 3 2 3 2 3

,m (if m is even). We give some data for a neural network in
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=025 [0 10 100 147 [0 [0

Y1 Y Ys Ya Ys Yo
t=20 1 5 1 5 1 5
t=1 3 2 3 2 3 2
t=2 3 2 3 2 3 2
t=10 3 2 3 2 3 2
t=100 | 3 2 3 2 3 2

This is an example for x i =2andz
xfloo) = xéoo) = xgoo) = xgoo) = xéoo) = 3. But xl(-oo) #+ ygoo) for i = 1,2,...,6,
xg-oo) #+ xgofj), and y§-oo) #* ygfj) for j=1,2,3.

If n = 2m + 1, where m > 2, every solution of (2) is synchronized if 0 < v <

(00) _ 400) _ lo0) _ o0 _ po0) _ p(o0) (o) _

1/ (3 — cos 22mmf1) . If we let mn — o0, then whether 7 is even or odd, when 0 < v < 1/4,

every solution of (2) is (fully) synchronized. Furthermore, the conditions are sharp.

6 Appendix

We collect here the eigenvalues and eigenvectors of matrices used in the previous dis-
cussions. They can be verified in a straightforward manner and details can be found
in [6]. We denote the n by n identity matrix by I,, J, U and V are respectively

0 1 1 0 0 1
(0o (L 0 mave (0 1),

The matrix J has eigenvalues —1 and 1 with the corresponding (independent) eigenvec-
tors i = (—1,1)" and ¥ = (1, 1)" respectively. The matrix U has eigenvalue 0 and 1 with
corresponding eigenvectors (0, 1) and 4 respectively. The matrix V has eigenvalues 0
and —1 with eigenvectors (1,0)" and @ respectively. The matrix UT has eigenvalues 0
and 1 with corresponding eigenvectors o and (1, 0)" respectively. The matrix VT has
eigenvalues 0 and —1 with corresponding eigenvectors ¥ and (0, 1)T respectively.

e First of all, the eigenvalues and the corresponding eigenvectors of the matrix

010 --- 01
101 -+ 00
010 --- 00
An = . . y M= 35
00O 0 1
100 10
nxn
are well known [3, 4, 5] and given respectively by
Me(Ap) =2cos—, k=1,2,....n

T
and u(¥) = (ugk), cee uﬁf’) , 1 <k <n, where

25k 25k
ugk):clcos J 7T+0231nﬂ, 7=12...,n,
n
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where ¢; and ¢y are not both equal to zero.

e The matrix

2J I 0

Lo 2J m >3
R

0 I, 2J

(2m—2)x(2m—2)

has the eigenvalues
k k
—2+2cos—7T and 2+2cos—7r, k=1,....m—1
m m
with the corresponding eigenvectors
T T
u®) = (ugk)z’ﬂ, cee, ugj),lz’ff) and v(*®) = (vgk)iﬁ, cee, vf,]f),lﬁT)

respectively, where

ki
ugk) :v§-k) :sin%, j=1....m—1,
fork=1,...,m—1.
e The matrix
2J I U
L, 2J . 0 0
' m>3,
0o . I 0
Iy 2J 'V
ur0 -0 V2L, )
has the eigenvalues
k k
—2+2cos—7T and 2cos—7r, k=1,...,m
m m
with the corresponding eigenvectors
T
N (ugk)z’ﬁ, s ui’jzlm, ET) if m is odd
uF) = 1<k<m

3 —_ —_ 3

1l
(ugk)m, ceey uf,'f),lﬁ, iﬁ) if m is even

and :
o) = (vgk)ﬁ, . ..,vﬁleﬁT,O@\T) , 1<k<m-1,
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o = (=at,... —at 5")!
respectively, where
NON coskgli_ if m is odd 1 .
i —coskgl—7T ifmiseven > 7 7T
for k=1,2,...,m, and
L
v§-k):sin£, j=1....m—1,
m
fork=1,2,...,m—1.
Then the matrix
—IL+2J I
I 2J .0
) mz 3,
L —-L+2J ), ..

has the eigenvalues

k k
—2+2cos—7T and2+2cos—7r, k=1,....m
m m

with the corresponding eigenvectors
uk) = (ugk)m, ey ugi)ﬂT)T and v(F) = (vgk)ﬁ, ey vgf)ﬁT)T

respectively, where

k(27 —1
ugk):v§.k):sin7( ]2m )W, j=1,...,m,
for k=1,2,...,m.
The matrix
J I
L 2J . 0
,m23,
0 . 2J I
12 J 2mXx2m

has the eigenvalues

(k-1

k
—2+ 2cos 7T3md2—i—2cos—7r,k:l,...,m,
m
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with the corresponding eigenvectors
u®) = (ugk)m, ey ugi)ﬂT)T and v*) = (vgk)iﬁ, ey vgf)i)\T)T ,

where

k—1)(2j — 1
e s B D@I =D o
m

k(2j—1)m

=sin—= 2% i=1....m
m

for k=1,2,...,m.

e The matrix
2J I —1I5

I, 27 . 0

0 . 2J D
-1 I, 2J

2mXx2m
has the eigenvalues
(2k—1) 2k—1)m

T and 242cos———, k=1,...,m
m m

—2 4 2cos

with the corresponding eigenvectors

T T
u) = (ugk)m, ey ugi)ﬂlf) and v®) = (vgk)ﬁ, ey ’U,(jf)ﬁ) ,1<k<m

where
2k —1)j —1)j
u;k):’U§-k)201C057( )]W‘FCQSiH )]Tr, ]:1; U
m m
where ¢; and ¢y are not both equal to zero.
e The matrix
2J I —J
L, 2J 0
) m Z 3,
0 . 2J I
—J I2 2J 2mXx2m
has the eigenvalues
2k 2k —1
—2+2cos—7T and2+2cosg, k=1,....,m
m m

with the corresponding eigenvectors

T T
uk) = (ugk)m, ey ugi)ﬂlf) and v®) = (vgk)ﬁ, ey vfjf)ﬁ) , 1<k<m
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where 9 ik 9k
ugk):clcos J 7T+0231n£, j=1...,m,
m
and 2% — 1) j 2% — 1) j
v§k):clcosﬂ+0281nﬂ,]:1, m,
m

where ¢; and ¢y are not both equal to zero.

The matrix

2J I
I, 2J . 0
,m22,

I, —Ihb+2J

2mx2m

has eigenvalues

2k 2k
—2 4 2cos il and 2 4 2 cos il S k=1,...
2m+1 2m +1

with the corresponding eigenvectors

T
u) = (ugk)m, ey ugi)ﬂlf) and v*®) = (vgk)ﬁ, .

where ok
ugk):v§-k):sin72 ]—;Tl’ ij=1,...,m,
m
for k=1,2,...,m.
e The matrix
2J I —u
L, 2J . 0 0
' m>2,
0 2J I
I J 0
g0 .. .. 0 =2 (2m1)x (2mt1)
has eigenvalues
—2+ 2cos 1,Ic:(),l, .M,
and
2k
2+ 2 cos , k=1,...,m,
2m
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with the corresponding eigenvectors

T
o = (uPal L@ 1) 0 <k <m,

and ;
v(k):(vgk)ﬁ,...,v%)ﬁ,()) , 1<k<m
where ok ok
(k) JT (k) . JT .
’LLJ ——COSmaHd’Uj —smm,]—l,...,m.
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