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Abstract

The asymptotic stability of the difference equation fk = afk−m+bfk−n, where

a, b are real numbers and n and m are fixed positive integers, has been examined

by several authors recently, and stability conditions are derived by studying its

associated characteristic polynomial. In this paper, we provide an alternate but

elementary approach to this problem and hope that our method will lead us to

new tools for dealing with stability of other difference equations.

1 Introduction

The asymptotic stability of the difference equation

fk = afk−m + bfk−n, k = n, n + 1, ..., (1)

where a, b are real numbers and n and m are positive integers, has been considered
by several authors recently (see e.g. [1-16] in which reasons for studying such a prob-
lem are also provided). In particular, in Dannan [12] and in Kipnis and Nigmatullin
[15,16], necessary and sufficient conditions for the asymptotic stability are asserted.
Unfortunately, as pointed out by Ren in [13], Dannan’s results are based on a state-
ment (Lemma 6 in [1]: If f(t) = sin mt/ sin nt where m, n are positive integers such
that sinnt 6= 0, then f(t)f ′(t) > 0 for m < n and f(t)f ′(t) < 0 for m > n), which
is wrong (e.g. by considering the function f(t) = sin 2t/ sin t, or sin t/ sin 2t). In [16],
the stability conditions are correct and their derivations are based on the principle of
arguments applied to the associated characteristic polynomial

P (λ|a, b) ≡ λn − aλn−m − b (2)

together with tedious analysis of the winding numbers of the hodograph of P (eiω|a, b).
In view of the importance of equation (1) and other similar equations, it is of in-

terest to approach the same problem by different means. In this paper, we will obtain
the same stability conditions1, but our proofs will be based on considering the prop-
erties of the parametric functions a = a(r, ω), b = b(r, ω) solved from P (reiω|a, b) = 0.

∗Mathematics Subject Classifications: 92D25, 39A11.
†Department of Mathematics, Tsing Hua University, Hsinchu, Taiwan 30043, R. O. China
1These conditions and synopsis of their proofs were also announced in the Sixth International

Conference on Difference Equations held in Augsburg, 2001.
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226 Stability Region of a Difference Equation

This approach uses the continuity of the maximal magnitude of roots of polynomials
with respect to their coefficients and other elementary properties of the sine and cosine
functions and hence is accessible to the audience not equipped with the tools in com-
plex analysis. Furthermore, since our approach is different, we will be able to obtain
additional information on the stability regions not provided in [15,16].

To this end, let us first mention the fact that our stability question is easily trans-
formed to when does the characteristic polynomial has only subnormal roots (a root is
subnormal if its modulus is less than 1). Since P (λ|a, b) = 0 can be written as

aλ−m + bλ−n = 1, (3)

we may assume without loss of generality that 1 ≤ m ≤ n. If n = m, then (3) can be
written as

λm = a + b,

thus its roots are subnormal if, and only if, |a + b| < 1. Furthermore, if n and m have
a common factor µ, then m = µτ, n = µσ and

P (λ|a, b) = (λµ)σ − a(λµ)σ−τ − b = 0. (4)

Since every root of (4) is subnormal if, and only if, every root of the following equation

ξσ − aξσ−τ − b = 0

is subnormal, we may assume further that m and n do not have any common fac-
tors other than one. For these reasons, we will assume throughout the rest of our
investigations that

(H1) the positive integers n and m do not have any common factors other than 1, and
1 ≤ m < n.

For each pair (n, m) that satisfies (H1), we will determine the set Ω(n, m) of real
number pairs of the form (a, b) such that every root of (2) is subnormal. The set
Ω(n, m) is a subset of the x, y-plane and is naturally called the region of (asymptotic)
stability of (1).

The parity of the integers n and m will play important roles in the sequel. For
this reason, we will find the stability regions for the following mutually exclusive and
exhaustive cases:

(H2) n is even, m is odd;

(H3) n is odd, m is odd;

(H4) n is odd, m is even.

For the sake of convenience, the maximum of the absolute values of the roots of (2)
is denoted by

ρ(a, b) = max{|λ| : P (λ|a, b) = 0} .

It is well known that, for fixed n and m, ρ(a, b) (as the spectral radius of a real matrix)
is a continuous function with respect to (a, b).
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2 Partitions

We say that {x0, x1, ..., xn} is a partition of the closed interval [a, b] if a = x0 < x1 <
· · · < xn = b. If xi+1 − xi = (b − a)/n for any i ∈ {0, 1, ..., n − 1}, the partition
{x0, x1, ..., xn} is then said to be uniform.

Let P = {p0, p1, ..., pn}, Q = {q0, q1, ..., qm} and W = {w0, w1, ..., wn−m} be
uniform partitions of [0, π]; and let P ′ = {p′0, p

′

1, ..., p
′

2n}, Q′ = {q′0, q
′

1, ..., q
′

2m} and
W ′ = {w′

0, w
′

1, ..., w
′

2(n−m)} be uniform partitions of [0, 2π]. Clearly, p′i = pi = iπ
n for

i ∈ {0, 1, ..., n}, q′j = qj = jπ
m for j ∈ {0, 1, ...,m} and w′

v = wv for v ∈ {0, 1, ..., n−m}.
We will also let

Iv = (w′

v, w′

v+1) for v ∈ {0, 1, ..., 2(n− m) − 1}.

Note that for v ∈ {0, 1, ..., n−m−1}, the interval Iv can also be written as (wv, wv+1).
The reason for considering the partitions P, Q and W is that the set of roots of

sin nθ = 0 in [0, π] is P , the set of roots of sin mθ = 0 in [0, π] is Q, and the set of
roots of sin(n−m)θ = 0 in [0, π] is W. These facts will be useful when we consider the
parametric function defined by (13) in a later section.

The partitions P, Q and W are clearly related. For example, let n = 8 and m = 5,
then we may easily check that

0 = p0 = q0 = w0,

w3 = q5 = p8 = π,

I0 = (w0, w1) = (0, π/3),

I1 = (w1, w2) = (π/3, 2π/3),

I2 = (w2, w3) = (2π/3, π),

and

w0 < p1 < q1 < p2 < w1 < p3 < q2 < p4 < q3 < p5 < w2 < p6 < q4 < p7 < w3. (5)

As another example, let n = 8 and m = 1, then

0 = p0 = q0 = w0,

w7 = p8 = q1 = π,

and

w0 < p1 < w1 < p2 < w2 < p3 < w3 < p4 < w4 < p5 < w5 < p6 < w6 < p7 < w7.

LEMMA 1. Suppose (H1) holds. Then
(1) For any i in {1, 2, ..., n− 2}, qj ∈ (pi, pi+1) for some j ∈ {1, 2, ...,m− 1}, or

wv ∈ (pi, pi+1) for some v ∈ {1, 2, ..., n− m − 1}; and
(2) wv /∈ (p0, p1) ∪ (pn−1, pn) for any v ∈ {0, 1, ..., n − m}, and, qj /∈ (p0, p1) ∪

(pn−1, pn) for any j ∈ {0, 1, ...,m}.

PROOF. Let f be the continuous function

f(t) = sin(mt) sin(nt − mt), t ∈ [0, π]. (6)
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For any i ∈ {1, 2, ..., n− 1}, since

f (pi) f (pi+1) = sin (mpi) sin (iπ − mpi) sin (mpi+1) sin ((i + 1)π − mpi+1) < 0,

by the intermediate value theorem, we have f(x∗) = 0, that is, sin(mx∗) = 0 or
sin(n − m)x∗ = 0 for some x∗ ∈ (pi, pi+1) . Since i ∈ {1, 2, ..., n − 2}, we see that 0
and π are not in the interval (pi, pi+1) . Hence x∗ = qj for some j ∈ {1, 2, ...m− 1} or
x∗ = wv for some v ∈ {1, 2, ...n− m− 1}. The proof of our first assertion is complete.

Since
p1 − p0 = pn − pn−1 =

π

n
<

π

n − m
= wv − wv−1

for all v ∈ {1, 2, ..., n−m}, we see that wv /∈ (p0, p1)∪ (pn−1, pn) for all v ∈ {0, 1, ..., n−
m}. Similarly, qj /∈ (p0, p1) ∪ (pn−1, pn) for all j ∈ {0, 1, ...,m}. The proof is complete.

LEMMA 2. Suppose (H1) holds. Then
(1) W ∩ P = {0, π}, W ∩ Q = {0, π}, P ∩ Q = {0, π}, W ′ ∩ P ′ = {0, π, 2π},

W ′ ∩ Q′ = {0, π, 2π} and P ′ ∩ Q′ = {0, π, 2π}.
(2) For any (wv, wv+1) where v ∈ {0, 1, ..., n−m− 1}, there are pi+1, pi+2, ..., pi+k

in P such that wv < pi+1 < pi+2 < ... < pi+k < wv+1 and pi ≤ wv, pi+k+1 ≥ wv+1.
Furthermore, when k = 1, (wv, wv+1) ∩ Q = ∅ and when k ≥ 2, there are qj+1,
qj+2, ..., qj+k−1 in Q such that

wv < pi+1 < qj+1 < pi+2 < ... < qj+k−1 < pi+k < wv+1, (7)

and qj ≤ wv as well as qj+k ≥ wv+1.

PROOF. Clearly, 0 and π are inside W ∩ P, W ∩ Q and Q ∩ P. Suppose (W ∩
P )\{0, π} 6= ∅. Then wv = pi for some v ∈ {1, 2, ..., n−m− 1} and i ∈ {1, 2, ..., n− 1}.
So v

i
= n−m

n
. But gcd(n, n−m) = 1, i < n and v < n−m are contradictory statements.

Hence W ∩ P = {0, π}. By similar arguments, we see that the rest of the assertions in
(1) hold.

To show (2), let xv be the number of elements of the set P ∩ Iv and yv be the
number of the element of the set Q ∩ Iv. Since π/(n − m) > π/n, we see that xv > 0
for v ∈ {0, 1..., n− m − 1}. By Lemma 1, xv − 1 ≤ yv for v ∈ {0, 1..., n− m − 1}. We
assert that xv − 1 = yv. Suppose to the contrary that xv − 1 < yv for some v. Then

m − 1 =

n−m−1∑

v=0

yv >

n−m−1∑

v=0

(xv − 1) = n − 1 − (n − m) = m − 1,

which is a contradiction. Hence xv − 1 = yv for all v. By Lemma 1, the condition (7)
holds. The proof is complete.

By Lemma 1 and Lemma 2, P ∩Q∩W = {0, π}, the set (wv, wv+1)∩P is not empty
for any v ∈ {0, 1, ..., n− m − 1}, (qj, qj+1) ∩ P is not empty for any j ∈ {0, 1, ...,m−
1}, and one of the sets (pi, pi+1) ∩ W and (pi, pi+1) ∩ Q is also nonempty for any
i ∈ {0, 1, ..., n− 1}. Therefore P ∪ Q ∪ W is a partition of [0, π] and is of the form
{ξ0, ξ1, ..., ξ2n−2}; furthermore, each interval (ξk, ξk+1), where k ∈ {0, 1, ..., 2n − 3},
must satisfy one of the following four conditions:

(C1) (ξk, ξk+1) = (wv, pi) for some wv ∈ W and pi ∈ P \{π}.
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(C2) (ξk, ξk+1) = (pi, qj) for some pi ∈ P and qj ∈ Q\{π}.
(C3) (ξk, ξk+1) = (qj , pi) for some qj ∈ Q\{0} and pi ∈ P \{π}.
(C4) (ξk, ξk+1) = (pi, wv) for some pi ∈ P \{0} and wv ∈ W.

For example, in view of (5), we see that for n = 8 and n = 5,

ξ0 = w0 < ξ1 = p1 < ξ2 = q1 < ξ3 = p2,

p2 < ξ4 = w1 < ξ5 = p3 < ξ6 = q2 < ξ7 = p4 < ξ8 = q3,

q3 < ξ9 = p5 < ξ10 = w2 < ξ11 = p6 < ξ12 = q4 < ξ13 = p7 < ξ14 = w3.

3 Normal Root Curves

We first find necessary and/or sufficient conditions for a and b such that P (λ|a, b) has
certain types of roots: we will treat the pair (a, b) as a point in the x, y-plane, then we
will see that it lies on certain curves in the plane.

For this purpose, we consider roots of the form reiθ, where r > 0 and θ ∈ [0, 2π]. If
reiθ, where r > 0 and θ ∈ [0, 2π], is a root of P (λ|a, b), then

rn cos(nθ) − arn−m cos(n − m)θ − b = 0, (8)

rn sin(nθ) − arn−m sin(n − m)θ = 0. (9)

The system (8)-(9) can be treated as a pair of linear equations in a and b. Let us
therefore consider the coefficient matrix

A(r, θ) =

(
rn−m cos(nθ − mθ) 1
rn−m sin(nθ − mθ) 0

)
, r > 0, θ ∈ [0, 2π].

Note that detA(r, θ) = −rn−m sin(nθ−mθ) = 0 if, and only if, θ ∈ W ′. If detA(r, θ) =
0, then by (9), sin(nθ) = 0 as well. So θ ∈ W ′ ∩ P ′. Thus, θ ∈ {0, π, 2π} by Lemma 2.
If θ = 0 or 2π, then (8) and (9) can be written as

rn − arn−m − b = 0,

and if θ = π, then (8) and (9) can be written as

rn cos(nπ) − arn−m cos(n − m)π − b = 0.

Let
L

(r)
1 = {(x, y) ∈ R2 : rn − xrn−m − y = 0}, r > 0 (10)

and

L
(r)
2 = {(x, y) ∈ R2 : rn cos(nπ) − xrn−m cos(n − m)π − y = 0}, r > 0. (11)

We see that if θ = 0 or 2π, then (a, b) ∈ L
(r)
1 ; while if θ = π, then (a, b) ∈ L

(r)
2 .

On the other hand, suppose det A(r, θ) 6= 0. Then from (8) and (9), we may solve
for a and b:

a =
sin(nθ)

sin(n − m)θ
rm, b =

− sin(mθ)

sin(n − m)θ
rn, θ ∈ [0, 2π]\W ′, (12)
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where we recall that Iv = (w′

v, w′

v+1) and
{

w′

0, w
′

1, ..., w
′

2(n−m)−1

}
is a partition of

[0, 2π]. If we let (xr(θ), yr(θ)) be the parametric function defined by

xr(θ) =
sin(nθ)

sin(n − m)θ
rm, yr(θ) =

− sin(mθ)

sin(n − m)θ
rn, θ ∈ [0, 2π]\W ′, (13)

then the above condition is equivalent to (a, b) lying on one of the curves

S(r)
v =

{
(xr(θ), yr(θ)) : xr(θ) =

sin(nθ)

sin(n − m)θ
rm, yr(θ) =

− sin(mθ)

sin(n − m)θ
rn, θ ∈ Iv

}
,

(14)
where v ∈ {0, 1, ..., 2(n− m) − 1}. Fix r > 0. Since for t ∈ (0, π),

xr(π + t) = xr(π − t) and yr(π + t) = yr(π − t),

hence S
(r)
0 = S

(r)
2(n−m)−1, S

(r)
1 = S

(r)
2(n−m)−2, ..., so that the condition (12) is equivalent

to (a, b) lying on one of the curves S
(r)
v where v = 0, 1, ..., n− m− 1.

We summarize the above discussions as follows.

LEMMA 3. Suppose (H1) holds. If reiθ, where r > 0 and θ ∈ [0, 2π], is a root

of P (λ|a, b) = λn − aλn−m − b, then (a, b) lies on the curves L
(r)
1 , L

(r)
2 , S

(r)
0 , S

(r)
1 , ...,

S
(r)
n−m−2 or S

(r)
n−m−1.
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Figure 1: n = 8, m = 5

As an example, consider the case where n = 8 and m = 5. For r = 1, the function
(x1(θ), y1(θ)) from θ = 0+ to θ = π− is traced and the resulting (directed) curves are
depicted in Figure 1.

Roughly, we see that S
(1)
0 over the interval (w0, w1) is composed of directed segments

marked by 1, 2, 3 and 4; S
(1)
1 over the interval (w1, w2) is composed of directed segments
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marked by 5, 6, 7, 8, 9 and 10; and S
(1)
2 over the interval (w2, w3) is composed of directed

segments marked by 11, 12, 13 and 14. Note that as we traced the curve S
(1)
0 , we pass

through the point (0,−1) which takes place at θ = p1, then the point (−1, 0) at θ = q1,
and then the point (0, 1) at θ = p2. Similar assertions can also be made for the other

two curves S
(1)
1 and S

(1)
2 . Such assertions should not be surprising since sin(npi) = 0

for i = 0, ..., 8, and sin(mqj) = 0 for j = 0, ..., 5. Furthermore, we see that all the pi

with even i are placed by the side of (0, 1), while those with odd i by the side of (0,−1);
and all the qj with even j by the side of (1, 0) and those with odd j by the side of
(−1, 0).

The above example provides clues to several general facts. First of all, it is easy to
see that for i ∈ {1, 2, ..., n−1}, (x1(pi), y1(pi)) = (0,−1) if i is odd and (x1(pi), y1(pi)) =
(0, +1) if i is even; and for j ∈ {1, ..., m− 1}, (x1(qj), y1(qj)) = (1, 0) if j is even and
(x1(qj), y1(qj)) = (−1, 0) if j is odd. Next, we consider the location of the root curves.
This is accomplished by considering the roots of P (λ|a, b) when (a, b) lies in one of the
four open quadrants. We will discuss the case where a > 0 and b < 0, the other three
cases being similar. Let a > 0 and b < 0. Suppose reiθ, where r ≥ 0 and θ ∈ [0, π], is a
root of the polynomial P (λ|a, b). Since P (0|a, b) = b 6= 0, we see that r > 0. Next, we
consider four mutually disjoint and exhaustive cases for θ: (A) θ ∈ W ; (B) θ ∈ P \W ;
(C) θ ∈ Q\W ; and (D) θ ∈ [0, π]\{ξ0, ξ1, ..., ξ2n−2}.

(A) If θ ∈ W, then sin(n−m)θ = 0, and thus by (9), sin(nθ) = 0 as well. So θ ∈ P.
By Lemma 2, θ = 0 or π.

(B) If θ ∈ P \W, then by (12), a = x(r)(θ) = 0, which is contrary to a > 0.
(C) If θ ∈ Q\W, then by (12), b = y(r)(θ) = 0, which is contrary to b < 0.
(D) If θ ∈ [0, π]\{ξ0, ξ1, ..., ξ2n−2}, then θ ∈ (ξk, ξk+1) for some k ∈ {0, 1, ..., 2n−

3}. Hence we need to consider the following subcases (C1)-(C4) in the previous section:
(a) In case (C1), θ ∈ (ξk, ξk+1) = (wv, pi) for some wv ∈ W and pi ∈ P \{pn}. By

Lemma 2, qj ≤ pi−1 ≤ wv < pi < qj+1 for some qj, qj+1 ∈ Q and pi−1 ∈ P. Since
a > 0, b < 0 and sin(nθ), sin(mθ) and sin(n − m)θ have the same sign by (12), we see
that if i is even, then j < m and v are odd. Since

(xr(pi), yr(pi)) = (0, rn) and (xr(w
+
v ), yr(w

+
v )) = (−∞,∞),

we see that xr(θ) < 0 and yr(θ) > 0 for θ ∈ (wv, pi) . On the other hand, by Lemma

3, (a, b) must lie on S
(r)
v , which is a contradiction since (a, b) is in the fourth quadrant

of the plane while S
(r)
v is in the second. Hence θ may belong to (ξk, ξk+1) = (wv, pi) ⊂

(qj, qj+1) only when i is odd, v, j are even and i < n, j < m.
(b) In case (C2), θ ∈ (ξk, ξk+1) = (pi, qj) for some pi ∈ P \{p0} and qj ∈ Q\{qm}.

By Lemma 2,
qj−1 < pi < qj < pi+1,

and
wv < pi < qj < wv+1

for some wv, wv+1 ∈ W. Since a > 0, b < 0 and sin(nθ), sin(mθ) and sin(n − m)θ have
the same sign by (12), we see that if i is even, then j is odd and v is even. In this case,
since

(xr(pi), yr(pi)) = (0, rn) and (xr(qj), yr(qj)) = (−rm, 0),
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we see that xr(θ) < 0 and yr(θ) > 0 for θ ∈ (pi, qj). On the other hand, by Lemma 3,

(a, b) must lie on the curve S
(r)
v , which is a contradiction since (a, b) is in the fourth

quadrant while S
(r)
v is in the second. Hence θ may belong to the interval (ξk, ξk+1) =

(pi, qj) ⊂ Iv only when i > 0 is odd, v < n − m is odd and j is even.
(c) In case (C3), we may similarly show that θ may belong to (ξk, ξk+1) = (qj, pi) ⊂

Iv only when i < n is odd, j > 0 is even and v < n − m is even.
(d) In case (C4), we may similarly show that θ may belong to (ξk, ξk+1) = (pi, wv) ⊂

(qj, qj+1) only when i and j are odd, v is even and i > 0, j < m.

We summarize the above discussions as follows.

LEMMA 4. Assume (H1) holds. If reiθ, where r ≥ 0 and θ ∈ [0, π], is a root of the
polynomial P (λ|a, b) with a > 0 and b < 0, then r > 0 and θ must satisfy either one of
the following conditions:

(i) θ ∈ {0, π}.
(ii) θ ∈ (ξk, ξk+1) = (wv, pi) ⊂ (qj, qj+1) for some odd i, even j, even v, and i < n,

j < m.
(iii) θ ∈ (ξk, ξk+1) = (pi, qj) ⊂ Iv for some odd i, even j, even v, and j < m.
(iv) θ ∈ (ξk, ξk+1) = (qj , pi) ⊂ Iv for some odd i, even j, even v, and i < n, j > 0.
(v) θ ∈ (ξk, ξk+1) = (pi, wv) ⊂ (qj, qj+1) for some odd i, odd j, even v, and i > 0,

j < m.

If the conditions a > 0 and b < 0 are changed to a < 0 and b > 0, then symmetric
arguments will lead us to the following result which is needed in the last Section.

LEMMA 4’. Assume (H1) holds. If reiθ, where r ≥ 0 and θ ∈ [0, π], is a root of the
polynomial P (λ|a, b) with a < 0 and b > 0, then r > 0 and θ must satisfy either one of
the following conditions:

(i) θ ∈ {0, π}.
(ii) θ ∈ (ξk, ξk+1) = (wv, pi) ⊂ (qj, qj+1) for some even i, odd j, even v, and i < n,

j < m.
(iii) θ ∈ (ξk, ξk+1) = (pi, qj) ⊂ Iv for some even i, odd j, odd v, and i > 0, j < m.
(iv) θ ∈ (ξk, ξk+1) = (qj , pi) ⊂ Iv for some even i, odd j, even v, and i < n.
(v) θ ∈ (ξk, ξk+1) = (pi, wv) ⊂ (qj, qj+1) for some even i, odd j, even v, and i > 0,

j < m.

The next result shows that the curves S
(1)
0 , S

(1)
1 , ..., S

(1)
n−m−1 defined by (14) may

intersect with each other only at four specific places and they do not have self inter-
sections.

LEMMA 5. Assume (H1) holds. Let (x1(θ), y1(θ)) be defined by (13), that is,

x1(θ) =
sin(nθ)

sin(n − m)θ
, y1(θ) =

− sin(mθ)

sin(n − m)θ
, θ ∈ [0, π]\W. (15)

If α = x1(θ1) = x1(θ2) and β = y1(θ1) = y1(θ2) where θ1 > θ2, θ1 ∈ Iv1
and θ2 ∈ Iv2

for some v1, v2 ∈ {0, 1, ..., n− m − 1} (v1 and v2 may be the same). Then (α, β) ∈
{(0, 1), (0,−1), (1, 0), (−1, 0)}.

PROOF. Assume θ1 ∈ Iv1
∩ P , then x1(θ1) = 0 and |y1(θ1)| = 1. Since x1(θ2) =

x1(θ1) = 0 and |y1(θ2)| = |y1(θ1)| = 1, then θ2 ∈ Iv2
∩P. Similarly, assume θ2 ∈ Iv2

∩P,
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then θ1 ∈ Iv1
∩P. So (α, β) ∈ {(0, 1), (0,−1), (1, 0), (−1, 0)}. Assume θ1 ∈ Iv1

∩Q, then
y1(θ1) = 0 and |x1(θ1)| = 1. Since y1(θ2) = y1(θ1) = 0 and |x1(θ2)| = |x1(θ1)| = 1,
then θ2 ∈ Iv2

∩ Q. Similarly, assume θ2 ∈ Iv2
∩ Q, then θ1 ∈ Iv2

∩ Q. So (α, β) ∈
{(0, 1), (0,−1), (1, 0), (−1, 0)}.

Assume θ1 ∈ Iv1
\{P ∪ Q} and θ2 ∈ Iv2

\{P ∪ Q}. Then

sin(nθ1) sin(nθ2) sin(mθ1) sin(mθ2) 6= 0.

Since
x1(θ) = cos(mθ) − (cos(n − m)θ) y1(θ)

and
y1(θ) = cos(nθ) − (cos(n − m)θ) x1(θ),

so our assumptions on θ1 and θ2 imply

cos(mθ1) − cos(mθ2) = β (cos(n − m)θ1 − cos(n − m)θ2) (16)

and
cos(nθ1) − cos(nθ2) = α (cos(n − m)θ1 − cos(n − m)θ2) . (17)

We need to consider two cases: (A) cos(n − m)θ1 6= cos(n − m)θ2 and (B) cos(n −
m)θ1 = cos(n − m)θ2 .

(A) Consider first the case where cos(n − m)θ1 6= cos(n − m)θ2. There are three
subcases: (I) sin(mθ1) = sin(mθ2); (II) sin(mθ1) = − sin(mθ2) 6= 0; (III) sin2(mθ1) 6=
sin2(mθ2).

(I) Assume sin(mθ1) = sin(mθ2). Since x1(θ1) = x1(θ2) and y1(θ1) = y1(θ2), we see
that sin(n − m)θ1 = sin(n − m)θ2 and sin(nθ1) = sin(nθ2). Since

sin(nθ1) cos(mθ1) − cos(nθ1) sin(mθ1) = sin(n − m)θ1

= sin(n − m)θ2

= sin(nθ2) cos(mθ2) − cos(nθ2) sin(mθ2)

and
sin(nθ1) = sin(nθ2),

we see that

sin(nθ1)[cos(mθ1) − cos(mθ2)] = sin(mθ1)[cos(nθ1) − cos(nθ2)].

By (16) and (17), we have
β sin(nθ1) = α sin(mθ1),

thus by substituting β = − sin(mθ1)/ sin(n−m)θ1 and α = sin(nθ1)/ sin(n−m)θ1 into
the above equation, we obtain 2 sin(nθ1) sin(mθ1) = 0. Thus θ1 ∈ P or θ1 ∈ Q. It is a
contradiction.

(II) Assume sin(mθ1) = − sin(mθ2). Since x1(θ1) = x1(θ2) and y1(θ1) = y1(θ2), we
have sin(n − m)θ1 = − sin(n − m)θ2 and sin(nθ1) = − sin(nθ2). Since sin(n − m)θ1 =
− sin(n − m)θ2 and sin(nθ1) = − sin(nθ2), we have

sin(nθ1)[cos(mθ1) − cos(mθ2)] = sin(mθ1)[cos(nθ1) − cos(nθ2)].
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Similar to Case 1, we may easily see that θ1 ∈ P or θ1 ∈ Q. It is a contradiction.
(III) Assume sin2(mθ1) 6= sin2(mθ2). By (16) and (17), we have

(
cos(mθ1) − cos(mθ2)

cos(nθ1 − mθ1) − cos(nθ2 − mθ2)

)2

= β2 =

(
sin(mθ1)

sin(n − m)θ1

)2

=

(
sin(mθ2)

sin(n − m)θ2

)2

(18)
and

(
cos(nθ1) − cos(nθ2)

cos(n − m)θ1 − cos(n − m)θ2

)2

= α2 =

(
sin(nθ1)

sin(n − m)θ1

)2

=

(
sin(nθ2)

sin(n − m)θ2

)2

.

(19)
Since sin2(mθ1) 6= sin2(mθ2), by (18) and (19), we have sin2(nθ1) 6= sin2(nθ2), sin2(n−
m)θ1 6= sin2(n − m)θ1 ,

(
cos(mθ1) − cos(mθ2)

cos(nθ1 − mθ1) − cos(nθ2 − mθ2)

)2

=
sin2(mθ1) − sin2(mθ2)

sin2(n − m)θ1 − sin2(n − m)θ2

=
cos2(mθ1) − cos2(mθ2)

cos2(n − m)θ1 − cos2(n − m)θ2

=
cos(mθ1) + cos(mθ2)

cos(n − m)θ1 + cos(n − m)θ2

cos(mθ1) − cos(mθ2)

cos(n − m)θ1 − cos(n − m)θ2
(20)

and

(
cos(nθ1) − cos(nθ2)

cos(nθ1 − mθ1) − cos(nθ2 − mθ2)

)2

=
sin2(nθ1) − sin2(nθ2)

sin2(n − m)θ1 − sin2(n − m)θ2

=
cos2(nθ1) − cos2(nθ2)

cos2(n − m)θ1 − cos2(n − m)θ2

=
cos(nθ1) + cos(nθ2)

cos(n − m)θ1 + cos(n − m)θ2

cos(nθ1) − cos(nθ2)

cos(n − m)θ1 − cos(n − m)θ2
(21)

If cos(mθ1) − cos(mθ2) = 0, then by (16), β = 0. So θ1 ∈ Q, which is a contradiction.
If cos(nθ1) − cos(nθ2) = 0, by (17), α = 0. So θ1 ∈ P, which is a contradiction. Thus
we may assume (cos(mθ1) − cos(mθ2))(cos(nθ1) − cos(nθ2)) 6= 0. By (20) and (21), we
see that

cos(mθ1) − cos(mθ2)

cos(nθ1 − mθ1) − cos(nθ2 − mθ2)
=

cos(mθ1) + cos(mθ2)

cos(nθ1 − mθ1) + cos(nθ2 − mθ2)
, (22)

and

cos(nθ1) − cos(nθ2)

cos(nθ1 − mθ1) − cos(nθ2 − mθ2)
=

cos(nθ1) + cos(nθ2)

cos(nθ1 − mθ1) + cos(nθ2 − mθ2)
. (23)
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There are now three cases: (i) cos(mθ1) − cos(mθ2) = cos(mθ1) + cos(mθ2); (ii)
cos(nθ1)− cos(nθ2) = cos(nθ1)+ cos(nθ2); and (iii) cos(mθ1)− cos(mθ2) 6= cos(mθ1)+
cos(mθ2) and cos(nθ1) − cos(nθ2) 6= cos(nθ1) + cos(nθ2). We assert that none of the
three cases can be true:

(i) Assume cos(mθ1) − cos(mθ2) = cos(mθ1) + cos(mθ2). Then cos(mθ2) = 0. Fur-
thermore, by (22), we have

cos(nθ1 − mθ1) − cos(nθ2 − mθ2) = cos(nθ1 − mθ1) + cos(nθ2 − mθ2),

so that
cos(nθ2 − mθ2) = 0.

But then 0 = cos(nθ2−mθ2) = cos(nθ2) cos(mθ2)+sin(nθ2) sin(mθ2) = sin(nθ2) sin(mθ2)..
This is a contradiction.

(ii) Assume cos(nθ1)− cos(nθ2) = cos(nθ1)+cos(nθ2). Then cos(nθ2) = 0. Further-
more, by (23), we have

cos(nθ1 − mθ1) − cos(nθ2 − mθ2) = cos(nθ1 − mθ1) + cos(nθ2 − mθ2),

so that
cos(nθ2 − mθ2) = 0.

But then 0 = cos(nθ2−mθ2) = cos(nθ2) cos(mθ2)+sin(nθ2) sin(mθ2) = sin(nθ2) sin(mθ2).
This is a contradiction.

(iii) Assume cos(mθ1)−cos(mθ2) 6= cos(mθ1)+cos(mθ2) and cos(nθ1)−cos(nθ2) 6=
cos(nθ1) + cos(nθ2). By (22) and (23), then

cos(mθ2)

cos(n − m)θ2
= β =

− sin(mθ2)

sin(n − m)θ2
,

so that
sin(n − m)θ2 cos(mθ2) + sin(mθ2) cos(n − m)θ2 = 0.

Then sin(nθ2) = 0, which is a contradiction.

(B) Next we consider the case cos(n − m)θ1 = cos(n − m)θ2 . By (16) and (17),
cos(mθ1) = cos(mθ2) and cos(nθ1) = cos(nθ2). Thus,

sin2(mθ1) = 1 − cos2(mθ1) = 1 − cos2(mθ2) = sin2(mθ2).

There are two cases: (a) sin(mθ1) = sin(mθ2); and (b) sin(mθ1) = − sin(mθ2). Neither
cases can be true:

(a) Assume sin(mθ1) = sin(mθ2). Since x1(θ1) = x1(θ2) and y1(θ1) = y1(θ2), we
have sin(nθ1) = sin(nθ2). Since cos(mθ1) = cos(mθ2), sin(mθ1) = sin(mθ2), cos(nθ1) =
cos(nθ2), and sin(nθ1) = sin(nθ2), we see that

sin(mθ1 − mθ2) = sin(mθ1) cos(mθ2) − cos(mθ1) sin(mθ2) = 0

and
sin(nθ1 − nθ2) = sin(nθ1) cos(nθ2) − cos(nθ1) sin(nθ2) = 0.
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So θ1 − θ2 = qj = pi for some j = 1, ..., m− 1 and j = 1, ..., n− 1. It is a contradiction
since qj 6= pi for any j = 1, ..., m− 1 and j = 1, ..., n− 1.

(b) Assume sin(mθ1) = − sin(mθ1). Since x1(θ1) = x1(θ2) and y1(θ1) = y1(θ2), we
see that sin(nθ1) = − sin(nθ2). Since cos(mθ1) = cos(mθ2), sin(mθ1) = − sin(mθ2),
cos(nθ1) = cos(nθ2), and sin(nθ1) = − sin(nθ2), we see that

sin(mθ1 + mθ2) = sin(mθ1) cos(mθ2) + cos(mθ1) sin(mθ2) = 0.

and
sin(nθ1 + nθ2) = sin(nθ1) cos(nθ2) + cos(nθ1) sin(nθ2) = 0.

Thus θ1 + θ2 = qj = pi for some j = 1, ..., m and i = 1, ..., n. Since qj 6= pi for any
j = 1, ..., m− 1 and j = 1, ..., n− 1, then θ1 + θ2 = π. Since sin(mθ2) = sin(−mθ1) =
sin(mθ2 − mπ) 6= 0 and sin(nθ2) = sin(−nθ1) = sin(nθ2 − nπ) 6= 0, then n and m are
even. It is a contradiction since gcd(n, m) = 1. The proof is complete.

The next result shows that S
(1)
0 , S

(1)
1 , ..., S

(1)
n−m−2 and L

(1)
1 , L

(1)
2 can intersect at

specific places only.

LEMMA 6. Assume (H1) holds. Let L
(1)
1 and L

(1)
2 be the straight lines defined by

(10) and (11) respectively, that is,

L
(1)
1 = {(x, y) ∈ R2 : 1 − x − y = 0},

and
L

(1)
2 = {(x, y) ∈ R2 : cos(nπ) − x cos(n − m)π − y = 0},

and let the curves S
(r)
0 , S

(r)
1 , ..., S

(r)
n−m−2 be defined by (14). Then S

(1)
v ∩ L

(1)
1 ⊆

{(0, 1), (1, 0)} and (I) S
(1)
v ∩ L

(1)
2 ⊆ {(0, 1), (−1, 0)} for any v ∈ {0, 1, ..., n − m − 1}

under (H2), (II) S
(1)
v ∩ L

(1)
2 ⊆ {(−1, 0), (0,−1)} for any v ∈ {0, 1, ..., n− m − 1} under

(H3), and (III) S
(1)
v ∩ L

(1)
2 ⊆ {(1, 0), (0,−1)} for any v ∈ {0, 1, ..., n− m − 1} under

(H4)..

PROOF. We first show that S
(1)
v ∩L

(1)
1 ⊆ {(0, 1), (1, 0)} for v ∈ {0, 1, ..., n−m−1}.

If there is θ ∈ [0, π]\W such that

1 = x1(θ) + y1(θ) =
sin nθ

sin(n − m)θ
−

sin mθ

sin(n − m)θ
.

Then

sin(nθ) − sin(mθ) = sin(n − m)θ = sin(nθ) cos(mθ) − cos(nθ) sin(mθ), (24)

so that
sin(nθ) (1− cos(mθ)) = sin(mθ) (1 − cos(nθ)) . (25)

In case θ /∈ P ∪ Q, then 1 − cosmθ 6= 0, 1 − cos nθ 6= 0, and

(
1 − cos(nθ)

1 − cos(mθ)

)2

=

(
sin(nθ)

sin(mθ)

)2

=

(
1 − cos(nθ)

1 − cos(mθ)

) (
1 + cos(nθ)

1 + cos(mθ)

)
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so that
1 − cos(nθ)

1 − cos(mθ)
=

1 + cos(nθ)

1 + cos(mθ)
. (26)

We consider three cases: (i) 1− cos(nθ) = 1 + cos(nθ); (ii) 1− cos(mθ) = 1 + cos(mθ);
and (iii) 1 − cos(nθ) 6= 1 + cos(nθ).

(i) Assume 1− cos(nθ) = 1 +cos(nθ). Then 1 +cos(mθ) = 1− cos(mθ) by (26) and
cos(nθ) = cos(mθ) = 0. By (24), we see that sin(n − m)θ = 0, which is contrary to
θ ∈ [0, π]\W.

(ii) is similar to the previous case.
(iii) Assume 1 − cos(nθ) 6= 1 + cos(nθ), then 1 − cos(mθ) 6= 1 + cos(mθ) by (26).

Since 1 − cos(nθ) 6= −(1 + cos(nθ)) and 1 − cos(mθ) 6= −(1 + cos(mθ)), thus

1 =
cos(nθ)

cos(mθ)

by (26). By (25), we have sin(nθ) = sin(mθ). So sin(n − m)θ = 0 by (24), which is
contrary to θ ∈ [0, π]\W.

We may now see that θ ∈ P ∪ Q\W. If θ = pi for some i ∈ {1, 2, ..., n− 1}, since
x1(θ) + y1(θ) = 1, then i is even. Thus x1(θ) = 0 and y1(θ) = 1. If θ = qj for some
j ∈ {1, 2, ...,m− 1}, then since x1(θ) + y1(θ) = 1, we see that j is odd. Thus x1(θ) = 1

and y1(θ) = 0. So S
(1)
v ∩ L

(1)
1 ⊆ {(0, 1), (−1, 0)} for any v ∈ {0, 1, ..., n− m − 1}.

Now, we prove S
(1)
v ∩L

(1)
2 ⊆ {(0,−1), (1, 0), (0, 1), (−1, 0)} for any v ∈ {0, 1, ..., n−

m− 1}. It turns out that the parities of n and m matter. For this reason, we consider
three cases: (a) (H2) holds; (b) (H3) holds; and (c) (H4) holds.

(a) Suppose n is even and m is odd. Then

L
(1)
2 = {(x, y) ∈ R2 : 1 + x − y = 0}.

If there is θ ∈ [0, π]\W such that x1(θ) − y1(θ) = −1, then

sin(nθ) + sin(mθ) = − sin(n − m)θ = − sin(nθ) cos(mθ) + cos(nθ) sin(mθ), (27)

so that
sin(nθ) (1 + cos(mθ)) = sin(mθ) (cos(nθ) − 1) . (28)

If θ /∈ P ∪Q, then

(
1 − cos(nθ)

1 + cos(mθ)

)2

=

(
sin(nθ)

sin(mθ)

)2

=

(
1 + cos(nθ)

1 − cos(mθ)

) (
1 − cos(nθ)

1 + cos(mθ)

)

and
1 − cos(nθ)

1 + cos(mθ)
=

1 + cos(nθ)

1 − cos(mθ)
. (29)

We consider three cases: (i) 1− cos(nθ) = 1 + cos(nθ); (ii) 1− cos(mθ) = 1 + cos(mθ);
and (iii) 1 − cos(nθ) 6= 1 + cos(nθ).

(i) Assume 1− cos(nθ) = 1 +cos(nθ). Then 1 +cos(mθ) = 1− cos(mθ) by (29) and
cos(nθ) = cos(mθ) = 0. By (27), sin(n − m)θ = 0, which is a contradiction.
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(ii) is similar to the previous case.
(iii) Assume 1 − cos(nθ) 6= 1 + cos(nθ). Then 1 − cos(mθ) 6= 1 + cos(mθ) by (29).

Since 1 − cos(nθ) 6= −(1 + cos(nθ)) and 1 + cos(mθ) 6= −(1 − cos mθ), then

1 = −
cos(nθ)

cos(mθ)

by (29). Then cos(nθ) = − cos(mθ). By (28), sin(nθ) = − sin(mθ). So sin(n−m)θ = 0
by (27), which is a contradiction.

By the previous discussions, we see that θ ∈ (P ∪ Q)\W. If θ = pi for some i ∈
{1, 2, ..., n− 1}, then since x1(θ) − y1(θ) = −1, we see that i is even. Thus x1(θ) = 0
and y1(θ) = 1. If θ = qj for some j ∈ {1, 2, ...,m− 1}, then since x1(θ) − y1(θ) = −1,

we see that j is odd. Thus x1(θ) = 1 and y1(θ) = 0. So S
(1)
v ∩ L

(1)
2 ⊆ {(0, 1), (−1, 0)},

for any v ∈ {0, 1, ..., n− m − 1}.
The proof of the other two cases (H3) and (H4) are similar and hence omitted. The

proof is complete.

In view of Figure 1, we may observe that the parametric function (x1(t), y1(t)),
when used to describe a moving particle, will trace out trajectories in definite patterns.
Such behaviors will be useful for our future discussions. We will base our description
of the corresponding behaviors on Lemmas 4 and 4’.

LEMMA 7. Assume (H1) holds. Let F (t) = (x1(t), y1(t)) be the parametric func-
tion defined by (15). Let I = (ξk, ξk+1) be one of the constituent open intervals of
[0, π]\W.

(i) If I = (p0, p1) = (0, π/n), then the restriction F |I traces out a (directed) curve in
the interior of the fourth quadrant with initial point ( n

n−m , −m
n−m) and endpoint (0,−1).

(ii) If I = (wv, pi), where i is odd, v is even, i < n and v > 0, then the restriction
F |I traces out a (directed) curve in the interior of the fourth quadrant with ‘initial
point (∞,−∞)’ and endpoint (0,−1).

(iii) If I = (pi, wv), where i is odd, v is even, i > 0 and v < n − m, then the
restriction F |I traces out a (directed) curve in the interior of the fourth quadrant with
‘initial point (0,−1) and ‘endpoint (∞,−∞)’.

(iv) If I = (pi, qj), where i is odd, j is even, i > 0 and j < m, then the restriction
F |I traces out a (directed) curve in the interior of the fourth quadrant with initial
point (0,−1) and endpoint (1, 0).

(v) If I = (qj, pi), where i is odd, j is even, i < n and j > 0, then the restriction F |I
traces out a (directed) curve in the interior of the fourth quadrant with initial point
(1, 0) and endpoint (0,−1).

(vi) If I = (pn−1, π), then (a) the restriction F |I traces out a (directed) curve in
the interior of the third quadrant with initial point (0,−1) and endpoint ( −n

n−m , −m
n−m)

under (H2); (b) then the restriction F |I traces out a (directed) curve in the interior of
the second quadrant with initial point (0, 1) and endpoint ( −n

n−m , m
n−m) under (H3).

PROOF. First note that x1(t)y1(t) 6= 0 for t ∈ I. Thus the directed path traced
out by each F |Iv

lies in one of the first, second, third or fourth quadrant of the plane.
Since

lim
t→0+

x1(t) =
n

n − m
> 0, lim

t→0+
y1(t) = −

m

n − m
< 0, (30)
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and
(x1(p1), y1(p1)) =

(
x1

(π

n

)
, y1

(π

n

))
= (0,−1), (31)

we see that x1(t) > 0 and y1(t) < 0 for t ∈ (p0, p1). That is, F |(p0,p1) traces out a path
in the fourth quadrant with initial point ( n

n−m , −m
n−m) and endpoint (0,−1).

The case (vi) is similarly proved.
Since (x(pi), y(pi)) = (0,−1) and (x(qj), y(qj)) = (1, 0) for every odd i and even j,

the proofs of (i), (iv) and (v) follow from the same reason shown above.
If I = (wv, pi) for some odd i and even v, then

lim
θ→w+

v

x1(θ) = ∞ and lim
θ→w+

v

y1(θ) = −∞.

If I = (pi, wv) for some odd i and even v, then

lim
θ→w−

v

x1(θ) = ∞ and lim
θ→w−

v

y1(θ) = −∞.

By reasoning similar to that used in the first case, the proofs of (ii) and (iii) follows.
The proof is complete.

4 Additional Properties of Normal Root Curves un-

der (H2)

Under the assumption that n is even and m is odd, we will be concerned with several

additional properties of the curves L
(r)
1 , L

(r)
2 , S

(r)
0 , S

(r)
1 , ..., S

(r)
n−m−2 or S

(r)
n−m−1 when

r = 1. First, note that under the assumption (H2), L
(1)
2 is now of the form

L
(1)
2 = {(x, y) ∈ R2 : 1 + x − y = 0}.

Assume (H1) holds. Since (30) and (31) hold, and since

lim
t→0+

x1(t) + lim
t→0+

y1(t) =
n

n − m
−

m

n − m
= 1,

we see that the parametric function (x1(t), y1(t)) when restricted to the interval (0, π/n)

traces out a (directed) curve S
(1)
0 |(0,π/n) in the fourth quadrant with initial point

( n
n−m

,− m
n−m

) ∈ L
(1)
1 and end point (0,−1). We let Ω0 be the set of points strictly

inside the fourth quadrant bounded by the x-axis, y-axis, L1 and the curve S
(1)
0 |(0,π/n).

For example, the case where n = 8 and m = 1 is depicted in Figure 2.

LEMMA 8. Assume (H1) and (H2) hold and m = 1. Let Ω0 be the set of points in

the interior of the fourth quadrant bounded by the x-axis, y-axis, L
(1)
1 and S

(1)
0 |(0,π/n).

Then Ω0 does not intersect with the curves L
(1)
1 , L

(1)
2 , S

(1)
0 , S

(1)
1 , ..., S

(1)
n−m−2 and

S
(1)
n−m−1.

PROOF. The definitions of Ω0 and L
(1)
2 show that no part of L

(1)
2 lies inside Ω0.

Since L
(1)
1 and S

(1)
0 does not intersect by Lemma 6, no points of L

(1)
1 can lie inside Ω0
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Figure 2: n = 8, m = 1

neither. If there is a point (a, b) ∈ S
(1)
v′ , where v′ ∈ {0, 1, ..., n−m−1} and (a, b) ∈ Ω0,

then a = x1(t
′) and b = y1(t

′) for some t′ ∈ Iv′ . Under the condition m = 1, we must
have Q = {0, π}. By Lemma 4, t′ must satisfy either (1) t′ ∈ (ξk, ξk+1) = (wv, pi) for
some odd i < n and some even v, or (2) t′ ∈ (ξk, ξk+1) = (pi, wv) for some odd i > 0
and even v < n − m, or (3) t′ ∈ (ξk, ξk+1) = (pn−1, π).

If t′ satisfies the first condition, by Lemma 7, the curve S
(1)
v′ over the interval

(ξk, ξk+1) = (wv, pi) and the curve S
(1)
0 over the interval (0, p1) intersect with each

other at (a, b) which is in the interior of the fourth quadrant. This is a contradiction
by Lemma 5. Similarly, the other two conditions will also lead to a contradiction. The
proof is complete.

Assume (H1) and (H2) hold. Suppose m ≥ 3 (see for example Figure 1). Then
for each qj where j ∈ {2, 4, ...,m− 1}, by Lemma 2, there is v ∈ {0, 1, ..., n− m − 1}
such that qj ∈ Iv. We consider the slopes of the graphs of the parametric function
(x1(t), y1(t)) at t = qj. First note that

dy1

dx1
(t) =

n sin(mt) cos(nt − mt) − m sin(nt)

m sin(nt) cos(nt − mt) + n sin(mt)
.

Since gcd(n, m) = 1 and m is odd, we see that sin(nqj) cos(nqj) 6= 0 for j ∈ {2, 4, ...,m−
1} and

dy1

dx1
(qj) = −

1

cos(nqj)
for j = 2, 4, ...,m− 1.

We assert that cos(nq2), ..., cos(nqm−1) are mutually distinct. Indeed, if there are
distinct j1 and j2 in {2, 4, ...,m − 1} such that cos(nqj1) = cos(nqj2), then nj1 =
±nj2 mod m. Since gcd(n, m) = 1, then j1 = ±j2 mod m. If j1 = j2 mod m, then
since 0 < j1, j2 < m, we have j1 = j2, which is a contradiction. If j1 = −j2 mod m,
then since 0 < j1, j2 < m, we have j1 = m − j2, which is contrary to the fact that
j1 + j2 is even and m is odd.
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Among the derivatives dy1

dx1
(q2),

dy1

dx1
(q4), ...,

dy1

dx1
(qm−1), let us collect those which are

positive and place them in a set Γ. Next, we let qj∗ ∈ Q where j∗ ∈ {2, 4, ..., m− 1}
such that

dy1

dx1
(qj∗) =

{
minΓ if Γ 6= ∅

min
{

dy1

dx1
(qj) : j = 2, 4, ...,m− 1

}
if Γ = ∅

. (32)

Since qj∗ = ξk for some ξk ∈ P ∪ Q∪ W and j∗ ∈ {2, 4, ..., m− 1}, by Lemma 2, there
are pi∗ and pi∗+1 in P which are closest to qj∗ and pi∗ = ξk−1 < ξk < ξk+1 = pi∗+1.
If i∗ is odd, by Lemma 7(iv), the parametric function (x1(t), y1(t)) over the interval
(ξk−1, ξk) = (pi∗ , qj∗) traces out a (directed) curve in the interior of the fourth quadrant
with initial point (0,−1) and endpoint (1, 0). Similarly, if i∗ is even, then by Lemma
7(v), the parametric function (x1(t), y1(t)) over the interval (ξk, ξk+1) = (qj∗, pi∗+1)
traces out a (directed) curve in the interior of the fourth quadrant of the plane with
initial point (1, 0) and endpoint (0,−1). We will now let J be either (ξk−1, ξk) or
(ξk, ξk+1) defined above. We will also let Ω∗ be the set of points strictly inside the fourth
quadrant and bounded by the x-axis, y-axis and the curve traced out by (x1(t), y1(t))
over the interval J.

LEMMA 9. Assume (H1) and (H2) hold and m ≥ 3. Let

J =

{
(pi∗ , qj∗) if i∗ is odd
(qj∗ , pi∗+1) if i∗ is even

,

where j∗ ∈ {2, 4, ...,m−1} is determined by (32) and pi∗ , pi∗+1 are points in P that are
closest to qj∗, and let S be the curve traced out by the parametric function (x1(t), y1(t))
over the interval J. Then the set of points Ω∗ in the interior of the fourth quadrant

bounded by the x-axis, y-axis and the curve S cannot contain any points of L
(1)
1 , L

(1)
2 ,

S
(1)
0 , S

(1)
1 , ..., S

(1)
n−m−2 and S

(1)
n−m−1.

PROOF. The definition of Ω∗ excludes any part of L
(1)
2 . Since L

(1)
1 and S does

not intersect, no points of L
(1)
1 can lie inside Ω∗ neither. Let (a, b) ∈ S

(1)
v′ where

v′ ∈ {0, 1, ..., n− m − 1} and (a, b) ∈ Ω∗. Then a = x1(t
′) and b = y1(t

′) for some
t′ ∈ Iv′ . Since a > 0 and b < 0, by Lemma 4, t′ must satisfy either one of the
following conditions: (1) t′ ∈ (ξk, ξk+1) = (wv, pi) for some odd i < n and even v, (2)
t′ ∈ (ξk, ξk+1) = (pi, wv) for some odd i and even v < n−m, (3) t′ ∈ (ξk, ξk+1) = (pi, qj)
for some odd i > 0 and even j < m, or, (4) t′ ∈ (ξk, ξk+1) = (qj, pi) for some odd i < n
and even j > 0..

If t′ satisfies condition (1), then by Lemma 7, the path traced out by (x1(t), y1(t))
over the interval (ξk, ξk+1) = (wv, pi) and the path over the interval J intersects with
each other at (a, b) which is in the interior of the fourth quadrant. This is a contradic-
tion by Lemma 5. Similarly, the condition (2) leads to a contradiction.

If t′ satisfies the condition (3), then by Lemma 5 and Lemma 7, the parametric
function (x1(t), y1(t)) over the interval (ξk, ξk+1) = (pi, qj) traces out a (directed) path

in the Ω∗ with initial point (0,−1) and endpoint (1, 0). If dy1

dx1
(qj∗) > 0, then

dy1

dx1
(qj∗) >

dy1

dx1
(qj) > 0.



242 Stability Region of a Difference Equation

This is contradictory to the definition of qj∗. If dy1

dx1
(qj∗) < 0, then

dy1

dx1
(qj∗) <

dy1

dx1
(qj) < 0.

This is contrary to the definition of qj∗ again. Similarly, the condition (4) will lead to
a contradiction. The proof is complete.

5 Exact Stability Region under (H2)

By Lemma 3, if eiθ, where θ ∈ [0, 2π] is a (normal) root of P (λ|a, b) = 0, then (a, b)

must lie on the curves L
(1)
1 , L

(1)
2 , S

(1)
0 , S

(1)
1 , ..., S

(1)
n−m−2 or S

(1)
n−m−1. The converse is

also true.

LEMMA 10. Suppose (H1) and (H2) hold. Then the polynomial P (λ|a, b) =
λn − aλn−m − b, where a, b ∈ R, has a normal root if, and only if, (a, b) lies on the

curves L
(1)
1 , L

(1)
2 , S

(1)
0 , S

(1)
1 , ..., S

(1)
n−m−2 or S

(1)
n−m−1.

Indeed, if (a, b) lies on the curve S
(1)
v for some v ∈ {0, 1, ..., n− m− 1}, then there

is a t∗ ∈ Iv such that

a =
sin(nt∗)

sin(n − m)t∗
, b =

− sin(mt∗)

sin(n − m)t∗
.

Since sin(nt∗ − mt∗) 6= 0, it is then easily checked that P (λ|a, b) has the normal root

eit∗ . If (a, b) is a point in L
(1)
1 , then

P (1|a, b) = 1 − a − b = 0.

Hence P (λ|a, b) has the normal root 1. Similarly, if (a, b) lies on L
(1)
2 , then the polyno-

mial P (λ|a, b) has the normal root −1.

Next, we observe that under (H1) and (H2), the stability region Ω(n, m) is sym-
metric with respect to the y-axis in the x, y-plane, that is,

(a, b) ∈ Ω(n, m) ⇔ (−a, b) ∈ Ω(n, m).

Indeed, this follows from the fact that when n is even and m is odd,

P (−λ|a, b) = (−λ)n − a(−λ)n−m − b = λn + aλn−m − b = P (λ| − a, b).

Therefore, we only need to characterize Ω(n, m) in the right half plane. For this
purpose, we break the right half plane into five mutually exclusive and exhaustive
subregions:

A = {(x, y) ∈ R2 : y ≥ 1 − x, x ≥ 0}, (33)

B = {(0, y) ∈ R2 : y < 1}, (34)

C = {(x, 0) ∈ R2 : 0 < x < 1}, (35)
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D = {(x, y) ∈ R2 : y < 1 − x, x > 0, y > 0}, (36)

and

E = {(x, y) ∈ R2 : y < 1 − x, x > 0, y < 0} (37)

We assert that A is in the complement of Ω(n, m). Indeed, if (a, b) ∈ A, then
a + b ≥ 1 so that P (1|a, b) = 1 − (a + b) ≤ 0. But since limλ→+∞,λ∈R P (λ) = +∞, we
see that P (λ|a, b) has a real root with modulus greater than 1.

Let B′ be the subset of B defined by

B′ = {(0, y) ∈ R2 : −1 < y < 1}. (38)

We assert that B′ is part of Ω(n, m). Indeed, if (a, b) ∈ B, then a = 0 and b ∈ R so
that P (λ|a, b) = λn − b. Clearly, every root of P is subnormal if |b| < 1, and every root
of P is normal of supernormal if |b| ≥ 1, that is, (0, b) ∈ B\B′.

We assert that C is part of Ω(n, m). Indeed, if (a, b) ∈ C, then P (λ|a, b) =
λn−m(λm − a). Again all roots of P are subnormal if a ∈ (0, 1).

Next, we assert that D is part of Ω(n, m). Indeed, suppose (a, b) ∈ D, then a >
0, b > 0 and a + b < 1. If λ is a root of P (λ|a, b) = λn − aλn−m − b, then in view of
b > 0, we have λ 6= 0. Hence 1 − aλ−m − bλ−n = 0 which implies

a + b < 1 ≤ a
∣∣λ−m

∣∣ + b
∣∣λ−n

∣∣ .

But then a < a |λ|−m
or b < b |λ|−n

. In either cases, |λ| < 1 as required.
We are now ready for one of our main results.

THEOREM 1. Suppose (H1) and (H2) hold. If m = 1, let S be the curve of the
parametric function (x1(t), y1(t)) over the interval (0, π/n). If m ≥ 3, let

J =

{
(pi∗ , qj∗) if i∗ is odd
(qj∗ , pi∗+1) if i∗ is even

,

where j∗ ∈ {2, 4, ..., m− 1} is determined by (32) and pi∗ , pi∗+1 are points in P that
are closest to qj∗ , and let S be the curve of the parametric function (x1(t), y1(t)) over

the interval J. Let S̃ be the curve which is the symmetric image of S with respect to
the y-axis. Then Ω(n, m) is the set of points in the interior of the (bounded) region

bounded by L
(1)
1 , L

(1)
2 and the curve S ∪ {(0, 0)} ∪ S̃.

PROOF. We will assume that m = 1, since the case where m ≥ 3 is similar. We
have already shown in Lemma 7 that the curve S separates the region E into three
parts Ω0, S and E′ where Ω0 is the set of points in E bounded by the x-axis, y-axis,

L
(1)
1 and S; and E′ is the complement E\(Ω0∪S). We assert that Ω0 is part of Ω(n, 1).

Indeed, if (a, b) ∈ Ω0 but ρ(a, b) ≥ 1, then since ρ(0, 0) = 0 and since we can joint the
points (0, 0) and (a, b) by means of a continuous curve contained completely in Ω0, by
continuity, there is some point (α, β) ∈ Ω0 such that ρ(α, β) = 1. But then (α, β) must

lie in one of the curves L
(1)
1 , L

(1)
2 , S

(1)
0 , S

(1)
1 , ..., S

(1)
n−m−2 or S

(1)
n−m−1. This is contrary

to the conclusion of Lemma 8.
Next, each point (µ, ν) ∈ S satisfies ρ(µ, ν) ≥ 1, so that S is outside Ω(n, 1).
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Next, we assert that E′ is outside Ω(n, 1). Indeed, let (a, b) ∈ E′. Consider the
parametric curve

x(r) =
a

rm
, y(r) =

b

rn
, r ∈ [1,∞).

Clearly, it traces out a (directed) curve inside the interior of the fourth open quadrant
with ‘initial point’ (a, b) and ‘endpoint’ (0, 0). Hence it intersects either with S or with

L
(1)
1 . Therefore, there exists a r̄ > 1 such that (a/r̄m, b/r̄n) ∈ S or (a/r̄m, b/r̄n) ∈ L

(1)
1 .

In the former case, (a/r̄m, b/r̄n) = (x1(θ), y1(θ)) for some θ ∈ J, so that a = x1(θ)r
m

and b = y1(θ)r
n. Since x1(θ)r

m = xr(θ) and y1(θ)r
n = yr(θ) (see (12)), thus it is easily

seen that P (r̄eiθ|a, b) = 0. That is, P (λ|a, b) has a root with absolute value strictly
greater than 1. In the latter case, a/r̄m + b/r̄n = 1, so that P (r̄|a, b) = 0. Again, P has
a real root with absolute value greater than 1. Our assertion is thus proved.

According to the previous discussions, we see that in the closed right half plane,
every point in the union B′ ∪ D ∪C ∪ Ω0 is stable while every point in the rest of the
closed right half plane is not. Finally, our proof follows from the symmetry of Ω(n, 1)
with respect to the y-axis. The proof is complete.

The case where n = 8 and m = 1 is illustrated in Figure 3.

Figure 3: n = 8, m = 1 Figure 4: n = 8, m = 5

To illustrate Theorem 1 for the case m ≥ 3, let us consider the case where n = 8
and m = 5. Since qj = jπ/5 for j = 0, 1, 2, 3, 4, 5, we see that

−
1

cos(8q2)
= −3.2361...

−
1

cos(8q4)
= 1.2361...

so that j∗ = 2. In view of (5), we see that p3 and p4 are closest to q2 and p3 < q2 < p4.
Since 3 is odd, we see that J = (p3, q2) = (3π/8, 2π/5). Thus

S = {(x1(θ), y1(θ)) : θ ∈ J}

which together with S̃ and the stability region Ω(8, 5) are depicted in Figure 4.
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6 Exact Stability Region under (H3)

Under the assumption that n and m are odd, the preparatory results that lead to the
determination of the corresponding stability region are similar to the previous ones,
and therefore we will be brief in some of the following discussions.

First, under the assumption (H3), L
(1)
2 is now of the form (see Figure 5)

L
(1)
2 = {(x, y) ∈ R2 : −1 − x − y = 0}.

However, Lemmas 7, 8, 9 and 10 are formally unchanged and can be proved in similar
manners.

Next, we observe that the stability region Ω(n, m) is symmetric with respect to the
origin, that is,

(a, b) ∈ Ω(n, m) ⇔ (−a,−b) ∈ Ω(n, m).

Indeed, this follows from the fact that when n and m are odd ,

P (−λ|a, b) = (−λ)n − a(−λ)n−m − b = −(λn − (−a)λn−m − (−b)) = −P (λ| − a,−b).

Therefore, we only need to characterize Ω(n, m) in the right half plane. For this
purpose, we break the right half plane into six mutually exclusive and exhaustive
subregions A, B′, C, D and E respectively by (33), (38), (35), (36) and (37). Then as
in the previous Section, we may show that B′, C and D are parts of Ω(n, m) but A is
not.
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Figure 5: n = 7, m = 1

With these preparatory results, we may then prove our second main Theorem by
means of the same reasoning used in the proof of Theorem 1 (see Figures 5 and 6).

THEOREM 2. Suppose (H1) and (H3) hold. If m = 1, let S be the curve of the
parametric function (x1(t), y1(t)) over the interval (0, π/n). If m ≥ 3, let

J =

{
(pi∗ , qj∗) if i∗ is odd
(qj∗ , pi∗+1) if i∗ is even

,
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Figure 6: n = 9, m = 5

where j∗ ∈ {2, 4, ..., m− 1} is determined by (32) and pi∗ , pi∗+1 are points in P that
are closest to qj∗ , and let S be the curve of the parametric function (x1(t), y1(t)) over

the interval J. Let S̃ be the curve which is the symmetric image of S with respect to
the origin. Then Ω(n, m) is the set of points in the interior of the (bounded) region

bounded by L
(1)
1 , L

(1)
2 , S and S̃.

7 Exact Stability Region under (H4)

In view of (3), it is suspected that the assumption (H4) is ‘symmetric’ to the assumption
(H1) and hence the corresponding stability region can be obtained from Theorem 1.
In spite of this observation, the assumption m ≤ n is not symmetric and hence we are
forced to go through the parallel development briefly.

First note that under the assumption (H4), L
(1)
2 is now of the form (see Figure 7)

L
(1)
2 = {(x, y) ∈ R2 : −1 + x − y = 0}.

Lemma 7 is replaced with the following.

LEMMA 7”. Assume (H1) holds. Let F (t) = (x1(t), y1(t)) be the parametric
function defined by (15). Let I = (ξk, ξk+1) be one of the constituent open intervals of
[0, π]\W.

(i) If I = (wv, pi), where i < n is even and v > 0 is even, then the restriction F |I
traces out a (directed) curve in the interior of the second quadrant with ‘initial point
(−∞, +∞)’ and endpoint (0, 1).

(ii) If I = (pi, wv), where i > 0 is even and v < n − m is even, then the restriction
F |I traces out a (directed) curve in the interior of the second quadrant with ‘initial
point (0, 1) and ‘endpoint (−∞,∞)’.
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(iii) If I = (pi, qj), where i > 0 is even and j < m is odd, then the restriction F |I
traces out a (directed) curve in the interior of the second quadrant with initial point
(0, 1) and endpoint (−1, 0).

(iv) If I = (qj, pi), where i < n is even and j > 0 is odd, then the restriction F |I
traces out a (directed) curve in the interior of the second quadrant with initial point
(−1, 0) and endpoint (0, 1).

(vi) If I = (pn−1, π), then the restriction F |I traces out a (directed) curve in the
interior of the first quadrant with initial point (0, 1) and endpoint ( n

n−m , m
n−m) under

(H4).

An analog of Lemma 8 is not needed since m > 1, but an analog of Lemma 9 is.
Before stating it formally, we need to determine the curve that plays the same role
of S in Lemma 9. To this end, assume (H1) and (H4) hold. Then for each qj where
j ∈ {1, 3, ...,m− 1}, by Lemma 2, there is v ∈ {0, 1, ..., n− m − 1} such that qj ∈ Iv.
We consider the slopes of the graphs of the parametric function (x1(t), y1(t)) at t = qj.
First note that

dx1

dy1
(t) =

m sin(nt) cos(nt − mt) + n sin(mt)

n sin(mt) cos(nt − mt) − m sin(nt)
.

Since gcd(n, m) = 1, we see that sin(nqj) 6= 0 for j ∈ {1, 3, ...,m− 1} and

dx1

dy1
(qj) = cos(nqj) for j = 1, 3, ...,m− 1.

We assert that cos(nq1), ..., cos(nqm−1) are mutually distinct. Indeed, if there are
distinct j1 and j2 in {1, 3, ...,m − 1} such that cos(nqj1) = cos(nqj2), then nj1 =
±nj2 mod m. Since gcd(n, m) = 1, then j1 = ±j2 mod m. If j1 = j2 mod m, then
since 0 < j1, j2 < m, we have j1 = j2, which is a contradiction. If j1 = −j2 mod m,
then since 0 < j1, j2 < m, we have j1 = m − j2, then cos(nqj1) = − cos(nqj2) since
n is odd. So cos(nqj1) = cos(nqj2) = 0. Thus, nqj1 = 2k1+1

2
π and nqj2 = 2k2+1

2
π for

some k1, k2 ∈ {0, 1, 2, ...}. Since gcd(n, m) = 1, then j1 =
2k′

1+1
2 m and j2 =

2k′

2+1
2 m for

some k′

1, k
′

2 ∈ {0, 1, 2, ...}. Since 0 < j1, j2 < m, then k′

1 = k′

2 = 0 and j1 = j2, which is
a contradiction. Among the derivatives dx1

dy1
(q1),

dx1

dy1
(q3), ...,

dx1

dy1
(qm−1), we let qj∗ ∈ Q

where j∗ ∈ {1, 3, ..., m− 1} such that

dx1

dy1
(qj∗) = max

{
dx1

dy1
(q1),

dx1

dy1
(q3), ...,

dx1

dy1
(qm−1)

}
. (39)

Since qj∗ = ξk for some ξk ∈ P ∪ Q∪ W and j∗ ∈ {1, 3, ..., m− 1}, by Lemma 2, there
are pi∗ and pi∗+1 in P which are closest to qj∗ and pi∗ = ξk−1 < ξk < ξk+1 = pi∗+1. If
i∗ is even, by Lemma 5 and Lemma 7”, the parametric function (x1(t), y1(t)) over the
interval (ξk−1, ξk) traces out a (directed) curve in the interior of the second quadrant
with initial point (0, 1) and endpoint (−1, 0). Similarly, if i∗ is odd, then the parametric
function (x1(t), y1(t)) over the interval (ξk, ξk+1) traces out a (directed) curve in the
interior of the second quadrant of the plane with initial point (−1, 0) and endpoint
(0, 1). We will now let J be either (ξk−1, ξk) or (ξk, ξk+1) defined above. We will also
let Ω∗ be the set of points strictly inside the second quadrant and bounded by the
x-axis, y-axis and the curve traced out by (x1(t), y1(t)) over the interval J.
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LEMMA 9”. Let

J =

{
(pi∗ , qj∗) if i∗ is even
(qj∗ , pi∗+1) if i∗ is odd

,

where j∗ ∈ {1, 3, ...,m−1} is determined by (39) and pi∗ , pi∗+1 are points in P that are
closest to qj∗, and let S be the curve of the parametric function (x1(t), y1(t)) over the
interval J. Then the set of points Ω∗ in the interior of the second quadrant bounded

by the x-axis, the y-axis and the curve S cannot contain any points of L
(1)
1 , L

(1)
2 , S

(1)
0 ,

S
(1)
1 , ..., S

(1)
n−m−2 or S

(1)
n−m−1.

The proof of the above result is similar to that of Lemma 9 and hence is omitted.

Lemma 10 is formally unchanged if the assumption (H2) is replaced by (H4).

Next, we observe that the stability region Ω(n, m) is symmetric with respect to the
x-axis, that is,

(a, b) ∈ Ω(n, m) ⇔ (a,−b) ∈ Ω(n, m).

Indeed, this follows from the fact that when n and m are odd ,

P (−λ|a, b) = (−λ)n − a(−λ)n−m − b = −λn + aλn−m − b = −P (λ|a,−b).

Therefore, we only need to characterize Ω(n, m) in the upper half plane. For this pur-
pose, we break the up half plane into five mutually exclusive and exhaustive subregions:

A′′ = {(x, y) ∈ R2 : y ≥ 1 − x, y ≥ 0},

B′′ = {(0, y) ∈ R2 : 0 < y < 1},

C ′′ = {(x, 0) ∈ R2 : x < 1},

D′′ = {(x, y) ∈ R2 : y < 1 − x, x > 0, y > 0},

and
E′′ = {(x, y) ∈ R2 : y < 1 − x, x < 0, y > 0}.

Let
C̃ ′′ = {(x, 0) ∈ R2 : |x| < 1}

be a subset of C ′′. Then B′′, C̃ ′′ and D′′ are parts of Ω(n, m) but A′′ is in the comple-
ment of Ω(n, m).

Under the above preparatory results (together with Lemma 4’), the following main
result is proved in a manner similar to that of Theorem 1.

THEOREM 3. Suppose (H1) and (H4) hold. Let

J =

{
(pi∗ , qj∗) if i∗ is even
(qj∗ , pi∗+1) if i∗ is odd

,

where j∗ ∈ {1, 3, ..., m− 1} is determined by (39) and pi∗ , pi∗+1 are points in P that
are closest to qj∗ , and let S be the curve of the parametric function (x1(t), y1(t)) over

the interval J. Let S̃ be the curve which is the symmetric image of S with respect to
the x-axis. Then Ω(n, m) is the set of points in the interior of the (bounded) region

bounded by L
(1)
1 , L

(1)
2 and the curve S ∪ {(0, 0)} ∪ S̃.
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Figure 7: n = 9, m = 4

For illustration, let us consider the case where n = 9 and m = 4. Since qj = jπ/4
for j = 0, 1, 2, 3, 4, we see that

cos(9q1) = 0.7071...

cos(9q3) = −0.7071...

so that j∗ = 1. In view of (5), we see that p2 and p3 are closest to q1 and p2 < q1 < p3.
Since 2 is even, we see that J = (p2, q1) = (2π/9, π/4). Thus

S = {(x1(θ), y1(θ)) : θ ∈ J}

which together with S̃ and the stability region Ω(9, 4) are depicted in Figure 7.
As our final remark, let us also consider the case where n = 7 and m = 6. Since

qj = jπ/6 for j = 0, 1, 2, 3, 4, 5, 6, we see that

cos(7q1) = −0.8660...

cos(7q3) = 0

cos(7q5) = 0.8660...

so that j∗ = 5. In view of (5), we see that p5 and p6 are closest to q5 and p5 < q5 < p6.
It is of interest to note that cos(7q3) = 0 so that we use dx1/dy1 in (39) instead of
dy1/dx1 to avoid a minor technicality.

8 Remarks

The interval J in Theorems 1, 2 and 3 are not difficult to construct by means of a simple
algorithm. For the sake of convenience, we present the output from this program in
three self explanatory tables depicted in Figures 8, 9 and 10.
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Figure 8: H2, pi = iπ/n, qj = jπ/m

Figure 9: H3, pi = iπ/n, qj = jπ/m

A quick look at these three tables reveal certain regular patterns, some of which
are listed as follows:

• If ((H1) holds and) m = n − 1, then J = (qm−1, pn−1).

• If (H1) and (H3) hold, n > 5 and m = n − 2, then J = (pn−2,qm−1).

• If (H1) and (H4) hold and m = 2, then

J =

{
(p1, q2k) if n = 4k − 1 for some integer k
(q2k, p1) if n = 4k + 1 for some integer k

.

• If (H1) and (H4) hold and m = 4, then

J =





(pk, q1) if n = 4k + 1 for some even integer k
(q3, p3k+1) if n = 4k + 1 for some odd integer k

(q1, pk) if n = 4k − 1 for some even integer k
(p3k−1, q3) if n = 4k − 1 for some odd integer k

.
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Figure 10: H4, pi = iπ/n, qj = jπ/m

• If (H1) holds and m = 3, then

J =

{
(q2, p2(n−1

3
)+1) if n = 1 mod 3

(p2(n−2

3
)+1, q2) if n = 2 mod 3

.

These observations can be proved quite easily. For instance, suppose (H1) holds
and m = n − 1. If n is even, then J = (0, p1) = (qm−1, pn−1). If n > 2, then

dy1

dx1
(qj) =

−1

cos jπ/(n − 1)
, j = 2, 4, ...,m− 1.

Since 2π
n−1 < 4π

n−1 < · · · < (n−2)π
n−1 < π and π/2 < (n − 2)π/(n − 1) for n > 3. Hence

Γ 6= ∅ and
dy1

dx1
(qn−2) = minΓ.

Therefore by the definition of J , we pick J = (qn−2, pn−1) = (qm−1, pn−1).

The other observations can similarly be proved.

We have assumed that n and m are positive integers. However, the equation

fk = afk−m + bfk−n

still makes sense if n or m are negative integers. For instance, in the equation

fk = afk+1 + bfk+2,

fk may be interpreted as the expected net present value (NPV) in the time period k of
a cooperation and it is speculated that it depends on the respective expected NPV of
the coming two time periods. The same question then arises as whether fk will tend
to 0 or not. This question can be answered by our previous results. Indeed, we may
assume without loss of generality that n̄ and m̄ are integers such that gcd(n̄, m̄) = 1.
The pair (a, b) is said to be a point of stability (for the equation)

fk = afk−m̄ + bfk−n̄, (40)
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if all solutions tend to 0. Let Ω(n, m) be the region of stability of (1) found in Theorems
1, 2 and 3.

The case where n̄ > m̄ > 0 has already been handled. For the case where m̄ > n̄ > 0,
since the corresponding characteristic polynomial is λm̄ − bλm̄−n̄ − a = 0, we see that
(a, b) is a point of stability (for (40)) if, and only if, (a, b) ∈ Ω(m̄, n̄).

Suppose n̄ < m̄ < 0. If (a, b) = (0, 0), then (40) takes the form fk = 0. Thus the
point (a, b) = (0, 0) is clearly a point of stability. If b = 0 and a 6= 0, then (40) can be
written in the form fi = 1

afi+m̄ by letting i = k − m̄. Thus (a, b) is a point of stability
if, and only if, ( 1

a
, 0) ∈ Ω(−n̄,−m̄). If b 6= 0, let i = k − n̄, then (40) can be written

in the form fi = 1
b
fi+n̄ − a

b
fi+(n̄−m̄). Thus (a, b) is a point of stability if, and only if,

(−a
b
, 1

b
) ∈ Ω(−n̄, m̄− n̄).

Suppose m̄ < n̄ < 0. The point (a, b) = (0, 0) is a point of stability. If a = 0 and
b 6= 0, then (a, b) is a point of stability if, and only if, (0, 1

b
) ∈ Ω(−m̄,−n̄, ). If b 6= 0,

then (a, b) is a point of stability if, and only if, (− b
a
, 1

a
) ∈ Ω(−m̄, n̄ − m̄).

Suppose n̄ > 0 > m̄. The point (a, b) = (0, 0) is a point of stability. If a = 0 and
b 6= 0, then (a, b) is a point of stability if, and only if,

{
(b, 0) ∈ Ω(−m̄, n̄) if − m̄ > n̄
(0, b) ∈ Ω(n,−m̄) if − m̄ < n̄

.

If a 6= 0, then (a, b) is a point of stability if, and only if, ( 1
a ,− b

a ) ∈ Ω(n̄ − m̄,−m̄).
Suppose m̄ > 0 > n̄. The point (a, b) = (0, 0) is a point of stability. If b = 0 and

a 6= 0, then (a, b) is a point of stability if, and only if,

{
(a, 0) ∈ Ω(m̄,−n̄) if m̄ > −n̄
(0, a) ∈ Ω(−n, m) if m̄ < −n̄

.

If b 6= 0, then (a, b) is a point of stability if, and only if, (1
b
,−a

b
) ∈ Ω(m̄− n̄,−n̄).
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