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Abstract
Using a new mean value Theorem for the remainder in Taylor’s formula, some
estimates of difference and sum of two integral means on [a, b], [c,d] with (a, b) N
(¢,d) = @ are obtained. These results are used to obtain complements of two well
known generalizations of Ostrowski’s inequality for n-time differentiable functions.

1 Introduction

In 1938, Ostrowski proved the following inequality [6]:

THEOREM 1. Let f : [a,b] — R be continuous on [a, b] and differentiable on (a, b)
and assume that |f’ (z)] < M for all z € (a,b). Then

< i—i—ﬂ](b—a)M (1)

(b—a)*

for all z € [a, b]. The constant + is the best possible.

b
f@ - [ 0

For some related results we refer to [4], [5] and [7].

G. V. Milovanovic and J. E. Pecaric (see for example [5, p. 468]), and P. Cerone,
S. S. Dragomir and J. Roumeliotis (see [2]) proved respectively the following general-
izations of Ostrowski’s inequality for n-time differentiable functions:

THEOREM 2. Let f : [a,b] — R be a n-time differentiable function, n > 1, such
that || f(")]| _ < co. Then for all z € [a,b],
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90 Complements of Ostrowski Type Inequalities

In [1] N. S. Barnet, P. Cerone, S. S. Dragomir and A. M. Fink estimated the
difference of two integral means:

THEOREM 3. Let f : [a,b] — R be an absolutely continuous mapping with the
property that f’ € Lo [a,b]. Then for [¢,d] C [a, b], we have the inequality

b d
bia/ f(t)dt—ﬁ/ £t dt

The constant % is the best possible.

1
< Z
-2

(bt+c—a—d)|f - (4)

For ¢ = d = z we can assume that —— fcd f(z)dx = f(x), as a limit case, so that
(4) reduces to the Ostrowski inequality (1). So inequality (4) can be regarded as a
generalization of (1).

In the recent paper [3], a complement of inequality (4) is obtained:

THEOREM 4. Let ¢ < d < a < b and F be a continuous function on [a, b] with
bounded derivative on (a,b). Then,

1 , , 1 1
Z Ce— < _
2(a+b c d)xel&f:b)F () < b—a/aF(t)dt d—c/c F(t)dt
1
< —(a+b—c—d) sup F'(z). (5)
2 z€(a,b)

The constant £ in (5) is the best possible.

A limit case of inequality (5) leads to the following complement of Ostrowski’s
inequality (see [3]):

THEOREM 5. Let f be a differentiable mapping with bounded f’ on the interior
T of an interval I © R and let a,b € I with b > a. Then for all z € I — (a, b),

b
[t

The constant % in (6) is the best possible.

In this paper, we combine a new mean value Theorem for the remainder in Taylor’s
formula with an integral identity involving the difference of two Taylor’s remainder
in order to generalize inequality (5) for n-time differentiable mappings. These results
are used to obtain sharp complements of the inequalities (2) and (3), which are also
generalizations of inequality (6).

|b+ a — 2z
< f Hf/”oo7 (min{a,z},max{b,z}) * (6)

|f(33)—

2 Estimates of Difference and Sum of Two Integral
Means

Let {.} be a finite subset of R. Then we denote by ({.}) the open interval (min {.}, max {.})
and by [{.}] the closed interval [min{.}, max{.}].
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As usual, R, (f;a,x) denotes the remainder in Taylor’s formula, that is,
R, (f;a,2) Z o) ) o), (7)
=0

LEMMA 1. Let a,b be any two distinct real numbers. Let f € C™[{a,b}] be a
mapping, which is (n + 1)-time differentiable on ({a,b}). Then for any ¢ € [{a,b}]
there exist a number £ € ({a,b}) such that

(b—a)"™ = (t —a)"
(n+ 1)

PROOF. Consider the mappings R, h : [{a,b}] — R defined by R (z) = R,, (f; a,x)
and h (z) = (z — a)"" . Then we have

Ry (f;a,0) = R (f;a,t) = Fo(g). (8)

R (@)= 1'(2) = 30 S 1 @,
k=1
which by £ — 1 =i can be rewritten as
n—1 i
R@=1 @ -3 "0 @ = R (0,0). ©)
1=0

Further, from the condition ¢ € [{a, b}] we havea ¢ ({t,b}). So, b () = (n + 1) (z — a)" #
0 for all = € ({t,b}). Therefore we can apply the Cauchy’s mean value theorem for the
functions R, h on [{t, b}] to obtain

R(b)~R(t) _ R (p)
R~ hit) W (p)

for some p € ({t,b}), which, by using (9), can be rewritten as

R (f;a,0) = B (fia,t) _ Rna (f50,p)
b—a)" —(t—a)"" (n+1)(p—a)"

(10)

Now, using the Taylor-Lagrange formula we have that for some ¢ € ({a, p}) C ({a,b})
holds

Ruoa(f50,p) = Lo gy (1)

Finally, setting (11) in (10), we get (8).

LEMMA 2. Let f be a (n+ 1) —time differentiable mapping on (a, b) with £+
integrable on (a,b). Then for any u, w,y, z € [a, b] with w # u and z # y the following
identity holds:

o
(w—u)(z-y)

f(Z)—f(y)_nf( "i: n—k (12)

Lk f,Z,y,’LU u)
Z—UY -

/ (Ru (fi0,2) = Ro (fi,y)) do

,_.
N‘
+
—
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where L (., .,.;.,.), k> 1, is defined by
Lk (g5 o, 35, 0)
((@=2"" = (B="") g D (3) = ((a= )" = (8- 9)"") g (9)
B (@=B)(7-9) |

PROOF. From the definition of R, (f;z, z) by (7), we have

/ C(Ru (fi0,2) = Ro (fi,y)) do

v . (z—2)" — y—x)k (k)
Z U (x) | dx
u k=1
= (w—u)(f(Z)—f(y))—ZIk, (13)
k=1

where

w k k

For k > 1, by using integration by parts we obtain

Tpy1 — Iy,

(G =) = (g =w)*) 1O () = (2= )™ = (g =) 5O ()
- (k+1)!
= %Lk (f', z,y;w,u).

Therefore we have

n

n—1
ZIk = nIl + Z (TL - k) (IkJrl — Ik)
k=1
n—=k

= e () =)+ X Gy (0 =) (=) D (i, 04)

Putting (14) in (13) and dividing the resulting identity by (w — u) (z — y) we get iden-
tity (12).

THEOREM 6. Let w,w,y,z be real numbers such that u < w < y < z. Let
f € C" u,2] be a n-time differentiable mapping on the interval (u,z) with f™
bounded and integrable on (u, z). Then we have the inequalities,

Trta (2,950, u) Y

( —u/ f(s ds——/ f(s)ds—kzl(;z%f)!l)k(f,w,u;z,y)>

Tn+2 (Z;yawau) Fna (15)

IN

IN
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and

Tn+2 (Za Y w, u) Tn

1 z n w n—1
< z—y/y f(s)ds—w_uA f(s)d kz k—i—l k (f, 2, y; w,u)

S Tn+2 (Zayawau) Fn; (16)

where 7y, := infye(u ) [ (), T = SUD ¢ (u,2) f@)(t) and

=) ——w)""? - -+ y—w)"
(n+2)!(z—vy) (w—u)

Tn+2 (Za Y w, ’LL) =

The inequalities (15) and (16) are sharp.
PROOF. Let F': [u, 2] — R be a function defined by

z) = /x F(t)dt. (17)

Clearly we have that F' € C™ [u, 2], F'is (n + 1)-time differentiable on the interval (u, z)
with F»*+1) bounded and integrable on (u, z) .

Let s be any number in (y, z) . Then we have that w € (u,s). Therefore we can
apply Lemma 1 for F' by choosing a = s, b = u, t = w, to obtain that for some

p € (u,s) C (u,2),

(w— S)nﬂ (n+1)
R (F;5,u) = Ry (Fss,w) = FOH (p)

which by using (17) can be rewritten as

(=1)" (Rn (Fs5,w) — Ry (F; 5,u)) = £ (o). (18)

Now from s > y > w > u we have that (s —u)"T" — (s —w)"*" > 0 for all s € [y, 2].
Thus, for s € [y, z] we have

_unJrl_S_wnJrl S_unJrl_S_wnJrl
. )(n+§)! L, <! )(n+§)! L (o)
(S_u)n+l_(s_w)n+l

which combined with (18) gives,

(S _ u)nJrl _ (S _ w)nJrl
(n+ 1)

Yo < (=1D)" (R, (F;s,w) — Ry, (F;s,u))

(S _ u)nJrl _ (S _ w)nJrl

= CESY

Iy



94 Complements of Ostrowski Type Inequalities

for all s € [y, 2].

Integrating this latter estimation with respect to s from y to z and using the identity
(12) of Lemma 2, and taking into account that from (17) we have F’ = f, we get the
first conclusion (15). Let now s be any number in (u,w). Since y € (s, z), similar to
above, by using Lemma 1, there is a £ € (s, z) C (u, z) such that

(=9 — (="

Y 19,

and since (z — )"t — (y —s)"™" > 0 for all s € [u,w], we conclude, that for all

s € [u,w] the following estimation holds

(z=9)"" —(y—9""
(n+1)!

(z=9)"" —(y—9""
= CES]

T,. (19)

Integrating inequality (19) with respect to s from u to w, we get the second conclusion
(16). Choosing f(z) = z™ in (15) and (16), we see that the equalities hold. So
inequalities (15) and (16) are sharp.

REMARK 1. Forn =1 and u = ¢, w = d, y = a, z = b, both inequalities (15) and
(16) are reduced to (5).

COROLLARY 1. Let w, w, , y, f, Vn, I'n as in Theorem 6. Then we have the
estimations:

Mraewa)nn < (1 —n) (2 /ff@)dwﬂ/;f(s)ds)

w—u z—y
-k n
_Zm((_l) Ly (fawau;zay)_Lk (f,z,y;w,u))
k=1 '

S 2Tn+2 (Zayawau) Fna

(n+ (—1)") (ziy/;f@ms—j;—ii/jf(sms)

n—1
o Z (Z%lk)l ((_1)" Lk (fa 2, ya w, u) - Lk (f, w, u; z, y))
k=1 '

< Tn+2 (Zay;wau) (Fn _Fyn) )

and the first estimation is sharp.

Indeed, adding inequalities (15) and (16), we get the first conclusion, while multi-
plying inequality (15) by —1 and adding the resulting estimation with (16), we readily
get the second conclusion.
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3 Complements of Ostrowski’s Inequality

We have the following result.
THEOREM 7. Let f be a continuous function on an interval I C R such that f(") €
Lo 7 and let a,b el (a < b). Then for all x € I — (a,b) the following inequality holds:

n kln -~ b—a
k=1

fl@) Sn—k @0 fF V0 —(@—a)f fFD(a
b—a/f

Hf(n)Hoo7 [min{a,z},max{z,b}] (b o x)nJrl o (CL o x)nJrl

- (n+1)n b—a

; (20)
and inequality (20) is sharp.

PROOQOF. If ¢ > b, then by choosing t € I such that a < b <z < t and applying
inequality (16) of Theorem 6 for uw=a, w =b, y =, z =t, we get

t_x/f ds——/f (”H) v (3,256, 0)

< Tapa(tasba) |10

0, [a,t]

Now letting t — x+, and dividing the resulting estimation with n we readily get (20),
and we will omit the details.

If x < a, then by choosing ¢t € I such that z <t < a < b and applying inequality
(15) of Theorem 6 for u =z, w=1t, y =a, z ="b, we get

t_x/f ds——/ f (s (”+’“) o (tiha)

< Thia(bat,x Hf(")

o, [z,b]

Now letting t — x4+, and dividing the resulting estimation with n we also get (20).
Finally, an easy calculation yields that for f (x) = 2™ the equality in (20) holds. So
inequality (20) is sharp.

THEOREM 8. Let f be as in Theorem 7. Then for all z € I — (a,b) we have:

/b Floyds ni:l (b— )" 4 (=1)F (2 — a)F !

b—a Gt b—a) I (@)

’(b_x)nJrl (a_ T nJrl

(n+1)1(b—a)

00, [min{a,z},max{z,b}] ’

and inequality (21) is sharp.
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PROOF. If > b, then by choosing ¢t € I such that a < b < x < t and applying
inequality (15) for uw=a, w =b, y =z, z = t, we clearly get the following inequality:

[ reas— i [ reas f+ﬂ (fibyast, )

< Tz (tasba) [ £

0, [a,t]

Now letting ¢ — x+, and taking into account, that Ly (f;b, a;t, ) can be rewritten as

(b- t)k+1 — (a— t)k+1 f(kfl) (t) — f(kfl) (z)

Ly (f;b,a5t,2) = b—a t—x
b 0 (g — (b — )R (g — ) —1
+( t) (a—1) ((b ) (a —z) )f<k >(g;),
t—x b—a
we get,
it =) (0= 2 = (a0
b—a /‘f Jdsmn E; (k+ 10— a) @

n1(n— k) ((b —o)f —(a— x)k)

(x—a)"™ = (@ —b)"

+k§ kK (b—a) fE (@) < (n+ 1) (b—a) Hf(n) oo, [aya]
(22)

Further, replacing k — 1 by k in the second sum of (22), we have

n—1(n— —2)f —(a—2)"

-k (- ")
k!'(b—a)

k=1

2=k =1 (0" — (e - o)) FO ()

_kZ:O (k+ 1! (6—a)

2=k =1) (60— = (@) S0 @)
:(”_Uf(kaZ:l G DIG—a) '

Finally, using this later relation in (22), we get the desired estimation (21).

If < a, then we choose t € I such that © < t < a < b and apply inequality (16)
for w=a,w =",y =x, z=t, similarly to above we may prove that inequality (21)
also holds and we will omit the details.

Now, an easy calculation yields that for f (z) = 2™ the equality in (21) holds. So
inequality (21) is sharp.
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