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Abstract

The authors previously provided an algorithm and program for generating

4× 4 correlation matrices. In this note, the algorithm is refined and extended to

the generation of n× n correlation matrices for n > 4.

1 Introduction

A common problem encountered by many researchers in statistics is the generation of
valid correlation matrices for use in Monte Carlo studies. While the generation of 3×3
correlation matrices is rather straight-forward, statisticians are often left to construct
possible n×n correlation matrices (when n > 3) that must then be checked for positive
semidefiniteness. In the case of 4× 4 correlation matrices, approximately 18.3% of the
possible “guesses” turn out to be valid and the likelihood decreases as the size of the
matrices increases. This percentage was noted by Rousseeuw and Molenberghs (see [4],
§ 3) and was determined by randomly generating millions of possible 4× 4 correlation
matrices that were checked for positive semidefiniteness. Recent studies [2, 3] by Mishra
have used a global optimization method known as differential evolution to create valid
correlation matrices. Mishra has been able to complete correlation matrices of arbitrary
size when faced with an incomplete matrix.

The authors [1] have provided an algorithm for generating valid 4 × 4 correlation
matrices that allows one to randomly pick three of the correlations, and then provides
successive bounds for each of the remaining correlations that insure positive semidef-
initeness. In this article, we explain how the algorithm of [1] can be simplified and
extended to the generation of n × n correlation matrices, relying solely on bounds
provided by the determinants of the matrices.

2 The Structure of Correlation Matrices

Let x1, x2, . . . , xn be random variables with rij denoting the correlation coefficient
between xi and xj. Then a correlation matrix is a matrix of the form (rij). Such a
matrix is clearly symmetric, has 1’s along the diagonal, and all of its entries lie within
the interval [−1, 1]. However, not every matrix satisfying these three properties is a
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correlation matrix. It is well-known that a necessary and sufficient condition for such
a matrix to be a correlation matrix is the positive semidefiniteness of the matrix. This
is a property that is relatively simple to verify, but not easily constructed.

For the remainder of this article, we will assume that all correlations between dis-
tinct random variables lie within (−1, 1) since the values ±1 indicate a redundancy in
the data and hence, a potential reduction in the number of random variables. In the
case of 2 random variables, every matrix of the form

(

1 r12

r12 1

)

, where r12 ∈ (−1, 1),

is positive definite (and therefore, positive semidefinite).
The construction of 3×3 correlation matrices has been considered by many authors

(for example, see Stanley and Wang [5]). If r12 and r13 are randomly chosen from the
interval (−1, 1) and r23 is chosen so that

r12r13 −
√

(1 − r2
12)(1 − r2

13) ≤ r23 ≤ r12r13 +
√

(1 − r2
12)(1 − r2

13), (1)

then

A123 =





1 r12 r13

r12 1 r23

r13 r23 1





is a valid correlation matrix. Any value of r23 chosen outside of the given range results
in a matrix that is not positive semidefinite.

Until recently, there were no necessary and sufficient conditions on the bounds of the
correlations in an n × n correlation matrix that would insure positive semidefiniteness
when n ≥ 4. In [1], the authors provided an algorithm for the generation of 4 × 4
correlation matrices that provided both necessary and sufficient bounds. This result
utilized the fact that a symmetric matrix is positive semidefinite if and only if the
determinants of the matrix and all of its principal minor matrices are nonnegative.

In the next section, we provide an algorithm for the generation of n × n matrices
for n ≥ 4. The algorithm not only extends the work in [1], but simplifies the algorithm
in the 4 × 4 case. The basis of the algorithm is the observation that given an n × n

correlation matrix, removing the last column and the last row results in an (n − 1) ×
(n − 1) correlation matrix and that every (n − 1) × (n − 1) correlation matrix can be
extended to form an n× n correlation matrix. The first part of this statement is clear
as it follows from positive semidefiniteness. The second part follows since one only
needs to include the correlations related to the introduction of an nth random variable
in a manner that assures that the determinant of the n × n matrix is greater than or
equal to zero.

3 The Algorithm

Suppose that A12···(n−1) = (rij) is an (n− 1)× (n− 1) correlation matrix that we wish
to extend to an n × n correlation matrix A12···n. We begin by picking r1n ∈ (−1, 1).
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This range is justified as none of the correlations in A12···(n−1) involve the random
variable xn. To determine the possible ranges for the remaining correlations rjn, where
j ∈ {2, 3, . . . , n − 1}, we note that all of the proper principal minor matrices have
nonnegative determinant. Thus, we only need to ensure that the determinant of A12···n

is nonnegative.
We complete the generation of an n × n correlation matrix by successively picking

correlations r2n, r3n, . . . , r(n−1)n based upon the correlations that have already been
chosen. This is done by first noting that each correlation rjn is subject to the bounds

L
(1)
jn ≤ rjn ≤ U

(1)
jn ,

where

L
(1)
jn = r1jr1n −

√

(1 − r2
1j)(1 − r2

1n)

and

U
(1)
jn = r1jr1n +

√

(1 − r2
1j)(1 − r2

1n).

The second set of conditions on each correlation is not quite as easy to describe.
Assume that r2n, r3n, . . . , r(j−1)n have already been chosen. To determine the range

of values for rjn, we must be sure that a correlation chosen from the range can occur in
some n × n correlation matrix that has all of the previously chosen correlations. This
leads to the determinant of A12···n, which we consider as a quadratic in rjn. Of course,
the coefficients of this quadratic contain the “variables” r(j+1)n, r(j+2)n, . . . , r(n−1)n.
For each choice of these variables, the quadratic det(A12···n) opens downward and has
real roots, which are easily determined. The smaller of the two roots (which we denote
by R1(r(j+1)n, r(j+2)n, . . . , r(n−1)n)) gives a lower bound for rjn that ensures positive
semidefiniteness, while the larger root (denoted R2(r(j+1)n, r(j+2)n, . . . , r(n−1)n)) gives
an upper bound.

Let L
(2)
jn be given by

min{R1(r(j+1)n, r(j+2)n, . . . , r(n−1)n) | L
(1)
kn ≤ rkn ≤ U

(1)
kn for each j + 1 ≤ k ≤ n − 1}

and U
(2)
jn be given by

max{R2(r(j+1)n, r(j+2)n, . . . , r(n−1)n) | L
(1)
kn ≤ rkn ≤ U

(1)
kn for each j + 1 ≤ k ≤ n − 1}.

Optimization of multivariable functions over closed regions is achieved using commands
such as the Maximize and Minimize commands new to version 5 of Mathematica.
Picking rjn from the interval

max{L
(1)
jn , L

(2)
jn } ≤ rjn ≤ min{U

(1)
jn , U

(2)
jn }

guarantees the existence of an n × n correlation matrix with the chosen correlations.
In the pseudocode below, we provide a formal description of the process. In this

manner, any arbitrarily-sized correlation matrix can be generated. This algorithm uses
the matrix size as the only input, a random number generator for selecting correlations,
and Mathematica for the optimization in the second set of bounds. In the absence of
such software, a grid search over the appropriate hypercube would be necessary.
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algorithm validcor;
begin

input size, n;
randomly select r12 from (−1, 1);
for k = 3 to n do

begin

randomly select r1k from (−1, 1);
for j = 2 to k − 1 do

begin

lower = max{L
(1)
jk , L

(2)
jk };

upper = min{U
(1)
jk , U

(2)
jk };

randomly select rjk from (lower, upper);
end;

end;
end;

In conclusion, we have shown that it is possible to generate any correlation matrix
by successively adding variables up to the size of the desired matrix. We note here
that this program is flexible as to the end-user’s needs, as it could be extended to
generate a specified number of correlation matrices for a particular size or, if a certain
matrix was required, the random selection could be replaced with the user prompted to
enter a correlation within the specified range. Overall, this method simplifies previous
efforts in the 4×4 case and provides a straight-forward approach to randomly generate
matrices of arbitrary size.
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