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Abstract

This work is concerned with the problem

∂tu − c
2(t)∂2

xu= f, u|∂Ω\ΓT
= 0

posed in the domain Ω =
˘

(t, x) ∈ R
2 : 0 < t < T, ϕ1(t) < x < ϕ2(t)

¯

,which is
not necessarily rectangular, and with ΓT = {(T, x) : ϕ1(T ) < x < ϕ2(T )} . Our
aim is to present a new approach to find some conditions on the coefficient c

and the functions (ϕi)i=1,2 such that the solution of this problem belongs to the
Sobolev space

H
1,2(Ω) =

˘

u ∈ L
2(Ω) : ∂tu ∈ L

2(Ω), ∂xu ∈ L
2(Ω), ∂

2

xu ∈ L
2(Ω)

¯

.

The method makes use of the so-called Schur’s Lemma and gives the same result
proved in Sadallah [8] by another technique.

1 Introduction

In the domain Ω =
{
(t, x) ∈ R

2 : 0 < t < T, ϕ1(t) < x < ϕ2(t)
}
, consider the problem

(P )

{
∂tu− c2(t)∂2

xu = f

u|∂Ω\ΓT
= 0

where

(i) ΓT = {(T, x) : ϕ1(T ) < x < ϕ2(T )} if T < +∞ and ΓT = ∅ if T = +∞,

(ii) c is a coefficient depending on time such that 0 < α ≤ c ≤ β, where α and β are
two constants,

(iii) (ϕi)i=1,2 are functions defined on ]0, T [ and satisfy some assumptions to be made
more precise later on,

(iv) f ∈ L2(Ω) (usual Lebesgue space).
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264 Parabolic Problem in a Sectorial Domain

We look for a solution u of Problem (P ) in the anisotropic Sobolev space

H1,2(Ω) =
{
u ∈ L2(Ω) : ∂tu, ∂xu, ∂

2
xu ∈ L2(Ω)

}
.

The study of this kind of problems has been treated in [2-4,6,7,8]. The present work
is concerned with the singular case where ϕ1(0) = ϕ2(0). Observe that the techniques
used, for instance, in [5] do not apply here because the domain is not cylindrical. This
explains why the change of variables which we will perform leads to some degenerate
coefficients in the equations.

The following is the main result proved in [8].

THEOREM 1. Suppose that the following conditions are satisfied (T = +∞):

(a) (ϕi)i=1,2 and c are continuous functions on [0,+∞[, differentiable on ] 0,+∞[
and ϕ1(0) = ϕ2(0).

(b) |ϕ′
i| (ϕ2 − ϕ1) is small enough in a neighborhood of 0 for i = 1, 2.

(c) (ϕ′
i)i=1,2 and c are bounded in a neighborhood of +∞.

(d) ϕ2 − ϕ1 is increasing in a neighborhood of +∞ or

∃M > 0, |ϕ′
1(t) − ϕ′

2(t)| (ϕ2(t) − ϕ1(t)) ≤Mc(t).

Then Problem (P ) admits a (unique) solution u ∈ H1,2(Ω).

To prove this theorem, we have used some a priori estimates and divided the proof
in four steps:

1) case of a bounded domain which can be transformed into a rectangle,
2) case of a bounded triangular domain,
3) case of an unbounded domain which can be transformed into a half strip,
4) case of a sectorial domain.

The aim of this work is to prove that we can combine the first two cases and study
them using a new approach based on the so-called Schur’s Lemma (see, for example [1]).
This method consists in performing a change of variables conserving the spaces L2(Ω)
and H1,2(Ω), and transforming Problem (P ) into a degenerate parabolic problem in a
cylindrical domain, and then conclude using Schur’s Lemma.

2 Change of Variables

Assume that ϕ1(0) = ϕ2(0) and T < +∞. The change of variables

Ω → R

(t, x) 7−→
(
t,

x−ϕ1(t)
ϕ2(t)−ϕ1(t)

)
= (t, y)

transforms Ω into R = ]0, T [× ]0, 1[ and Problem (P ) becomes

(P ′)

{
∂tv + a(t, y)∂yv − 1

b2(t)∂
2
yv = f̃

v|∂R\ΓT
= 0
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where
f̃(t, y) = f(t, x),

a(t, y) = −y
“

ϕ
′

2(t)−ϕ
′

1(t)
”

+ϕ
′

1(t)

ϕ2(t)−ϕ1(t)
,

b(t) = ϕ2(t)−ϕ1(t)
c(t) ≥ 0.

Observe that Problem (P ) is equivalent to

(P1)

{
b2(t).∂tv − ϕ(t)(yϕ′(t)+ϕ′

1(t))
c2(t) ∂yv − ∂2

yv = h

v|∂R\ΓT
= 0

where b2(t).f̃ = h and ϕ = ϕ2 − ϕ1. Let H(R) and H1,2(R) be the spaces defined by

H(R) =

{
f ∈ L2(R) :

f

ϕ
3
2

∈ L2(R)

}
,

H1,2(R) =
{
v ∈ H(R) : ∂yv, ∂

2
yv, ϕ∂tv ∈ H(R), v|∂R\ΓT

= 0
}
.

Then, consider the degenerate problem

(P2)

{
b2(t).∂tv − ∂2

yv = h ∈ H(R)
v|∂R\ΓT

= 0
.

3 Degenerate Problem

We have the following result.

PROPOSITION 2. Assume that the function bb′ is bounded and 2
3
π2 > sup |bb′| .

Then for all h ∈ H(R), (P2) admits a (unique) solution v ∈ H1,2(R).

PROOF. It is easy to check the uniqueness of the solution. Let us prove the ex-
istence. It is well known that the sequence (ψn) defined by ψn(x) =

√
2 sinnπx in

the interval ]0, 1[ is an orthonormal basis in L2(0, 1) formed by eigenfunctions of the
operator −∂2

x. Denote by λn = n2π2 the eigenvalue corresponding to ψn. Let

h(t, x) =
∑

n>0

hn(t)ψn(x),

v(t, x) =
∑

n>0

vn(t)ψn(x),

fn =
hn

b
3
2

.

The function v is a solution of (P1) if

∀n ∈ N, b2(t)v′n + λnvn = hn.

So

vn(t) =

∫ t

0

hn(s)b−2(s).e
−λn

R

t

s

dr

b2(r) ds. (1)
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Observe that h ∈ H(R) if and only if

∑

n>0

‖fn‖2
L2(0,T ) < +∞, (2)

and v ∈ H1,2(R) is equivalent to

∑
n>0

∥∥∥
√
bvn

∥∥∥
2

L2(0,T )
+

∑
n>0

∥∥∥
√
λn

b
3
2
vn

∥∥∥
2

L2(0,T )

+
∑
n>0

∥∥∥ λn

b
3
2
vn

∥∥∥
2

L2(0,T )
+

∑
n>0

∥∥∥b 1
2 v′n

∥∥∥
2

L2(0,T )
< +∞.

(3)

It is not difficult to see that the function b is bounded because ϕ is. Then (3) means

∑

n>0

∥∥∥∥
λn

b
3
2

vn

∥∥∥∥
2

L2(0,T )

+
∑

n>0

∥∥∥b
1
2 v′n

∥∥∥
2

L2(0,T )
< +∞. (4)

In addition, vn defined by (1) is a solution of b2v′n + λnvn = hn. This shows that the

condition
∑
n>0

∥∥∥b 1
2 v′n

∥∥∥
2

L2(0,T )
< +∞ appearing in (4) follows from (1) and the condition

∑

n>0

∥∥∥∥
λn

b
3
2

vn

∥∥∥∥
2

L2(0,T )

< +∞. (5)

To complete the proof of Proposition 1, it suffices to prove that (2) leads to (5). To
this end, denote by K(t, s, λn) the following kernel

K(t, s, λn) =

{
0 : s ≥ t

b−
1
2 (s).e

−λn

R

t

s

dr

b2(r) : s < t.

Then, relationship (1) can be written as vn(t) =
∫ T
0
fn(s)K(t, s, λn)ds.

We need the following classical result, the so-called Schur’s Lemma.

LEMMA 3. If there exists a constant C such that

a)
∣∣∣
∫ T
0 λnb

− 3
2K(t, s, λn)ds

∣∣∣ ≤ C for almost every t ∈ ]0, T [ ,

b)
∣∣∣
∫ T
0
λnb

−3
2K(t, s, λn)dt

∣∣∣ ≤ C for almost every s ∈ ]0, T [ ,

then ∥∥∥b−
3
2 λnvn

∥∥∥
L2(0,T )

≤ C ‖fn‖ .

Now, we have to check that the conditions a) and b) are satisfied.

• Condition a)
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Let ψ be an antiderivative of 1
b2
. Notice that ψ is then an increasing function.

Setting σ = ψ(s) and η(σ) = b
3
2 (s) we obtain

0 ≤
∫ t

0

b−
1
2 (s)eλnψ(s)ds =

∫ ψ(t)

ψ(0)

eλnση(σ)dσ

≤ eλnψ(t)b
3
2 (t)

λn
− 1

λn

∫ ψ(t)

ψ(0)

eλnση′(σ)dσ

≤ eλnψ(t)b
3
2 (t)

λn
+

3L

2λn

∫ ψ(t)

ψ(0)

eλnση(σ)dσ

because η′(σ) = 3
2 b

′(s)b(s).η(σ) and |η′(σ)| ≤ 3L
2 η(σ). Hence

∫ t

0

b−
1
2 (s)eλnψ(s)ds ≤ 2

2λn − 3L
eλnψ(t)b

3
2 (t). (6)

Since the condition π2 > 3L
2

leads to λn > λ1 = π2 > 3L
2
, there exists a constant C > 0

such that
2λn

2λn − 3L
≤ 2λ1

2λ1 − 3L
= C.

So, relationship (6) leads us to

∣∣∣∣∣

∫ T

0

λnb
− 3

2K(t, s, λn)ds

∣∣∣∣∣ = λnb
− 3

2 (t)e−λnψ(t)

∫ t

0

b−
1
2 (s)eλnψ(s)ds

≤ 2λn
2λn − 3L

≤ C.

This shows that Condition a) of Lemma 1 holds true.

• Condition b)

Setting σ = ψ(t) and ξ(σ) = b
1
2 (t), we obtain

ξ′(σ) =
b(t)b

′

(t)

2
ξ(σ) ≤ L

2
ξ(σ).

Consequently
∣∣∣∣∣

∫ T

0

λnb
− 3

2 (t)K(t, s, λn)dt

∣∣∣∣∣ = λnb
− 1

2 (s)eλnψ(s)

∫ T

s

b−
3
2 (t)e−λnψ(t)dt

= λnb
− 1

2 (s)eλnψ(s)

∫ ψ(T )

ψ(s)

e−λnσξ(σ)dσ

≤ 1 +
L

2
b−

1
2 (s).eλnψ(s)

∫ ψ(T )

ψ(s)

e−λnσξ(σ)dσ.
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It is easy to see that Condition b) is valid thanks to the inequality ξ′(σ) ≤ L
2 ξ(σ).

Then, Schur’s Lemma is proved, that is

∥∥∥b−
3
2 λnvn

∥∥∥
L2(0,T )

≤ C ‖fn‖ .

This estimate shows that relationship (5) follows from (2). This ends the proof of
Proposition 1.

PROPOSITION 4. Assume that there exists ε > 0 such that the functions
(
ϕ1−εϕ′

i

)
i=1,2

are bounded. Then the operator

b2(t)a(t, y)∂y : H1,2(R) → H(R)

is compact.

PROOF. Observe that

b2(t)a(t, y) = −ϕyϕ
′ + ϕ′

1

c2
= −ϕε

(
yϕ1−εϕ′ + ϕ1−εϕ′

1

c2

)
.

So, the hypothesis shows that the expression
yϕ1−εϕ′+ϕ1−εϕ′

1

c2
is bounded for c lying

between two positive constants. Consequently, it is enough to prove that the operator

ϕε.∂y : H1,2(R) → H(R)

is compact. To this end, consider the following spaces, equipped with the natural norms

M =
{
w ∈ H1,2(R) : ϕ−2w, ϕ−2∂yw, ϕ

−2∂2
yw ∈ L2(R)

}
,

N =
{
u ∈ H

1
2 ,1(R) : ϕ−2u, ϕ−2∂yu ∈ L2(R)

}
,

where H
1
2 ,1(R) is the Sobolev space defined, for instance, in [5]. It is important to

know that if w ∈ H1,2(R) then ∂yw ∈ H
1
2 ,1(R). Let us consider the mapping

H1,2(R) → M → N → L2(R),

v ↪→ ϕ
1
2 v ↪→ ϕ

1
2 ∂yv ↪→ ϕ

1
2 ∂yv.

If a sequence (vn)n is weakly convergent to 0 in H1,2(R) then, thanks to the con-

tinuity of the mapping v ↪→ ϕ
1
2 v from H1,2(R) into M, the sequence (ϕ

1
2 vn)n ∈ M

is also weakly convergent to 0 in M. In addition, the properties of the anisotropic
Sobolev spaces show that the sequence (ϕ

1
2 ∂yvn)n ∈ N and converges weakly to 0 (in

fact the application ϕ
1
2 v ↪→ ϕ

1
2 ∂yv from M into N is continuous).

On the other hand, we know that the canonical injection H
1
2 ,1(R) ↪→ L2(R) is

compact (recall that the domain R satisfies the continuation property of Besov). Then,
the same holds for the canonical injection N ↪→ L2(R). This leads to the strong

convergence of the sequence (ϕ
1
2 ∂yvn)n in L2(R).
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Consequently

lim
n

∥∥∥ϕ
1
2 ∂yvn

∥∥∥
L2(R)

= 0. (7)

By the weak convergence of (ϕ
1
2 ∂yvn)n in N , there exists a constant C > 0 such that

∥∥∥∥
1

ϕ
3
2

∂yvn

∥∥∥∥
L2(R)

≤ C. (8)

Hence, Cauchy-Schwarz inequality proves that the relationships (7) and (8) give the

strong convergence of the sequence (ϕ− 1
2 ∂yvn)n to 0 in L2(R). Using again (8), we

deduce the convergence of the sequence (ϕ−1∂yvn)n to 0 in L2(R). By iteration, we

obtain the strong convergence of (ϕ− 3
2+ε∂yvn)n to 0 in L2(R) for all ε > 0. Therefore,

the sequence (ϕε∂yvn)n is strongly convergent to 0 in H(R) for all ε > 0. The proof of
Proposition 2 is complete.

THEOREM 5. Assume that
1) ϕ2c′ bounded,
2) There exists ε > 0 such that ϕ1−εϕ′

i is bounded for i = 1, 2,
3) π2 > 3L

2 (where L = sup |bb′|).
Then Problem (P2) admits a (unique) solution v ∈ H1,2(R).

PROOF. Let H1,2(R) be the space defined by

H1,2(R) =
{
v ∈ H1,2(R) : v|∂R\ΓT

= 0
}
,

and observe that the hypotheses of Theorem 2 lead to those of Proposition 1 and 2.
Then the operator

b2(t).∂t −
ϕ(t) (yϕ′(t) + ϕ′

1(t))

c2(t)
∂y − ∂2

y : H1,2(R) → H(R)

is an isomorphism because it is the sum of an isomorphism and a compact perturbation
(see, for example, [1]).

4 The Initial Problem

We now return to our original problem.

PROPOSITION 6. Under the hypotheses of Theorem. 2, for all f ∈ L2(Ω), Problem
(P ) admits a (unique) solution in H1,2(Ω).

PROOF. The uniqueness of the solution is easy to check (see [8]). The existence of
the solution follows from Theorem 2 thanks to the relationship between Problems (P )

and (P1). Recall that y = x−ϕ1(t)
ϕ

and f ∈ L2(Ω); then the function h defined on R

by h(t, y) = b2(t)f̃(t, y) is an element of H(R) (the converse also holds true). So, by
Theorem 2, there exists a solution v ∈ H1,2(R) to Problem (P1) when the right-hand
side of the equation in (P1) is equal to h. Let u(t, x) = v(t, y). Then it is easy to check
:

v ∈ H(R) ⇒ ϕ2v ∈ H(R) ⇐⇒ u ∈ L2(Ω),
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∂yv ∈ H(R) ⇒ ϕ∂yv ∈ H(R) ⇐⇒ ∂xu ∈ L2(Ω),

∂2
yv ∈ H(R) ⇐⇒ ∂2

xu ∈ L2(Ω),

ϕ2∂tv ∈ H(R) ⇐⇒ ϕ
1
2 ∂tu ∈ L2(Ω),

∂tu = ∂tv −
yϕ′ + ϕ′

1

ϕ
∂yv =: w(t, y),

∂tu ∈ L2(Ω) ⇔ ϕ
1
2w ∈ L2(R),

and

ϕ
1
2w = ∂tv −

yϕ′ + ϕ′
1

ϕ
1
2

∂yv.

Regarding the last equality, observe that ∂tv and
yϕ′+ϕ′

1

ϕ
1
2

∂yv belong to L2(R) when

v ∈ H1,2(R). Hence u ∈ H1,2(Ω).
We remark that Schur’s Lemma allows us to treat the same problem in Sobolev

spaces built on general Lebesgue spaces Lp because it does not use the inner product
of the Hilbert-Lebesgue space L2 by contrast to the method used in [8]. This question
will be developed in a forthcoming work.
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