On Nonunique Fixed Point Theorems*

Zeqing Liu^{\dagger}, $\mathrm{Li} \mathrm{Wang}^{\ddagger}$, Shin Min Kang ${ }^{\S}$, Yong Soo Kim^{\S}

Received 9 April 2007

Abstract

Several fixed point theorems for four classes of mappings in complete metric spaces are given. The results presented in this paper extend properly the Banach contraction principle.

1 Introduction and Preliminaries

Let (X, d) be a metric space, $T: X \rightarrow X$ be a mapping, and $r \in[0,1)$ be a constant. Let \mathbb{N} denote the set of all positive integers. A point $x_{0} \in X$ is called an n-periodic point of T, if there exists $n \in \mathbb{N}$ such that $x_{0}=T^{n} x_{0}$ but $x_{0} \neq T^{k} x_{0}$ for $k=1,2,3, \ldots, n-1$. For $x \in X$, the set $O_{T}(x)=\left\{T^{n} x: n \geq 0\right\}$ is said to be the orbit of T at x. Let Φ be the set of $\phi:[0, \infty) \rightarrow[0, \infty)$ which is nondecreasing and $\phi(t)<t$ and $\sum_{n=1}^{\infty} \phi^{n}(t)<\infty$ for all $t>0$.

It is easy to see that $\phi(t)=r t \in \Phi$ for any constant $r \in(0,1)$. Rhoades [1] provided some fixed point theorems for various contractive mappings.

In this paper, we will discuss the existence of fixed points for mappings T that satisfy

$$
\begin{equation*}
d(T x, T y)+d(T y, T z) \leq \phi(d(x, y)+d(y, z)) \tag{1}
\end{equation*}
$$

for all $x, y, z \in X$ with $x \neq y \neq z \neq x$, where $\phi \in \Phi$; or

$$
\begin{equation*}
d(T x, T y)+d(T y, T z)+d(T z, T x) \leq \phi(d(x, y)+d(y, z)+d(z, x)) \tag{2}
\end{equation*}
$$

for all $x, y, z \in X$ with $x \neq y \neq z \neq x$, where $\phi \in \Phi$; or

$$
\begin{equation*}
\max \{d(T x, T y), d(T y, T z)\} \leq \phi(\max \{d(x, y), d(y, z)\}) \tag{3}
\end{equation*}
$$

for all $x, y, z \in X$ with $x \neq y \neq z \neq x$, where $\phi \in \Phi$; or

$$
\begin{equation*}
\max \{d(T x, T y), d(T y, T z), d(T z, T x)\} \leq \phi(\max \{d(x, y), d(y, z), d(z, x)\}) \tag{4}
\end{equation*}
$$

[^0]for all $x, y, z \in X$ with $x \neq y \neq z \neq x$, where $\phi \in \Phi$.
It follows from the definition of n-periodic point that
LEMMA 1. Let T be a mapping from a metric space (X, d) into itself. If $x_{0} \in X$ is an n-periodic point of T, then $T^{i} x_{0} \neq T^{j} x_{0}$ for all $0 \leq i<j \leq n-1$.

2 Main Results

Our first main result is the following.
THEOREM 1. Let (X, d) be a complete metric space and $T: X \rightarrow X$ satisfy (1). Then
(a) T has at most two distinct fixed points in X;
(b) if T has 2-periodic points in X, then they are exactly two;
(c) T has no any n-periodic points in X for $n \geq 3$;
(d) T has a fixed point in X provided that T has an orbit without 2-periodic points.

PROOF. First, we assert that T has at most two distinct fixed points in X. Otherwise T has (at least) three different fixed points a, b, c in X. In the light of (1), we infer that

$$
\begin{aligned}
d(a, c)+d(c, b) & =d(T a, T c)+d(T c, T b) \\
& \leq \phi(d(a, c)+d(c, b)) \\
& <d(a, c)+d(c, b)
\end{aligned}
$$

which is a contradiction.
Suppose that there exists a point $b \in X$ which is a 2-periodic point of T. Then $T b$ is also a 2-periodic point of T different from b. Now we claim that T has the only two 2-periodic points b and $T b$. Otherwise there is a point $c \in X$ which is also a 2-periodic point of T with $b \neq c \neq T b$. It is easy to show that $T b \neq T c \neq T^{2} b \neq T b$. By (3) we have

$$
\begin{aligned}
d(b, c)+d(c, T b) & =d\left(T^{2} b, T^{2} c\right)+d\left(T^{2} c, T^{3} b\right) \\
& \leq \phi\left(d(T b, T c)+d\left(T c, T^{2} b\right)\right) \\
& =\phi\left(d\left(T^{3} b, T^{3} c\right)+d\left(T^{3} c, T^{2} b\right)\right) \\
& \leq \phi^{2}\left(d\left(T^{2} b, T^{2} c\right)+d\left(T^{2} c, T b\right)\right) \\
& <d(b, c)+d(c, T b)
\end{aligned}
$$

which is a contradiction. Thus T has only 2-periodic points b and $T b$.
Now we exclude the presence of n-periodic point for $n \geq 3$. Suppose that $a_{0} \in X$ is an n-periodic point of T for $n \geq 3$. Let $a_{k}=T^{k} a_{0}, d_{k}=\bar{d}\left(a_{k}, a_{k+1}\right)+d\left(a_{k+1}, a_{k+2}\right)$ for all $0 \leq k \leq n$. From Lemma 1 and (1), we have

$$
\begin{align*}
d_{k} & =d\left(T a_{k-1}, T a_{k}\right)+d\left(T a_{k}, T a_{k+1}\right) \\
& \leq \phi\left(d\left(a_{k-1}, a_{k}\right)+d\left(a_{k}, a_{k+1}\right)\right) \\
& =\phi\left(d_{k-1}\right)<d_{k-1} \tag{5}
\end{align*}
$$

for all $1 \leq k \leq n$. In view of (3) and (5), we get that

$$
d_{0}=d_{n} \leq \phi\left(d_{n-1}\right)<d_{n-1} \leq \cdots<d_{0}
$$

which is a contradiction.
Suppose that there exists a point $x_{0} \in X$ such that T has no 2-periodic points in $O_{T}\left(x_{0}\right)$. Set $x_{n}=T^{n} x_{0}, d_{n}=d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)$ for any $n \geq 0$. If there exists some $n \geq 0$ with $x_{n}=x_{n+1}$, then x_{n} is a fixed point of T; if $x_{n} \neq x_{n+1}$ for any $n \geq 0$, from (1) we have

$$
\begin{equation*}
d_{n} \leq \phi\left(d_{n-1}\right) \leq \phi^{2}\left(d_{n-2}\right) \leq \cdots \leq \phi^{n}\left(d_{0}\right) \tag{6}
\end{equation*}
$$

For each $r, s, m \in \mathbb{N}$ with $r>s \geq m$, by the triangular inequality and (6), we get that

$$
\begin{equation*}
d\left(x_{r}, x_{s}\right) \leq \sum_{n=m}^{r-1} d_{n} \leq \sum_{n=m}^{r-1} \phi^{n}\left(d_{0}\right) \tag{7}
\end{equation*}
$$

Since $\phi \in \Phi,(7)$ ensures that $\left\{x_{n}\right\}_{n \geq 0}$ is a Cauchy sequence in X. It follows from completeness of (X, d) that there exists a point $a \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=a$. Obviously, there exists some integer $k \in \mathbb{N}$ with $x_{n} \neq a$ for all $n \geq k$. From (c) and (5) we obtain that

$$
\begin{aligned}
d\left(x_{n+1}, T a\right)+d\left(T a, T x_{n+2}\right) & \leq \phi\left(d\left(x_{n}, a\right)+d\left(a, x_{n+2}\right)\right) \\
& <d\left(x_{n}, a\right)+d\left(a, x_{n+2}\right) \\
& \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$, which implies that $\lim _{n \rightarrow \infty} x_{n}=T a$. Hence $T a=a$. This completes the proof.

The proof of the next result is similar to that of Theorem 1 and is omitted.
THEOREM 2. Let (X, d) be a complete metric space and $T: X \rightarrow X$ satisfy (2). Then the conclusions of Theorem 1 hold.

THEOREM 3. Let (X, d) be a complete metric space and $T: X \rightarrow X$ satisfy (3). Then the conclusions of Theorem 1 hold.

PROOF. We first assert that T has at most two distinct fixed points in X. Otherwise T has three different fixed points a, b, c in X. From (3), we obtain that

$$
\begin{aligned}
\max \{d(a, b), d(b, c)\} & =\max \{d(T a, T b), d(T b, T c)\} \\
& \leq \phi(\max \{d(a, b), d(b, c)\}) \\
& <\max \{d(a, b), d(b, c)\}
\end{aligned}
$$

which is a contradiction.
Suppose that T has a 2-periodic point $b \in X$. Then $T b$ is also a 2-periodic point of T different from b. We point out that b and $T b$ are the only two 2-periodic points of T in X. Otherwise there exists c in X which is also a 2-periodic point of T and
$b \neq c \neq T b$. By (3) we get that

$$
\begin{aligned}
\max \{d(T b, T c), d(T c, b)\} & =\max \left\{d(T b, T c), d\left(T c, T^{2} b\right)\right\} \\
& \leq \phi(\max \{d(b, c), d(c, T b)\}) \\
& =\phi\left(\max \left\{d\left(T^{2} b, T^{2} c\right), d\left(T^{2} c, T^{3} b\right)\right\}\right) \\
& \leq \phi^{2}(\max \{d(T b, T c), d(T c, b)\}) \\
& <\max \{d(T b, T c), d(T c, b)\},
\end{aligned}
$$

which is impossible.
We next conclude that T has no n-periodic point for $n \geq 3$. Suppose that T has an n-periodic point a_{0} for $n \geq 3$. Set $a_{k}=T^{k} a_{0}, d_{k}=d\left(a_{k}, a_{k+1}\right)$ for all $0 \leq k \leq n$. According to Lemma 1 and (3), we get that

$$
\begin{aligned}
\max \left\{d_{0}, d_{1}\right\} & =\max \left\{d_{n}, d_{n+1}\right\} \\
& =\max \left\{d\left(T a_{n-1}, T a_{n}\right), d\left(T a_{n}, T a_{n+1}\right)\right\} \\
& \leq \phi\left(\max \left\{d\left(a_{n-1}, a_{n}\right), d\left(a_{n}, a_{n+1}\right)\right\}\right) \\
& =\phi\left(\max \left\{d_{n-1}, d_{n}\right\}\right) \leq \phi^{n}\left(\max \left\{d_{0}, d_{1}\right\}\right) \\
& <\max \left\{d_{0}, d_{1}\right\}
\end{aligned}
$$

which is a contradiction.
Lastly, we prove that T has a fixed point in X provided that T has an orbit without 2-periodic points in X. Assume that there exists a point $x_{0} \in X$ such that T has no 2-periodic points in $O_{T}\left(x_{0}\right)$. Let $x_{n}=T^{n} x_{0}, d_{n}=d\left(x_{n}, x_{n+1}\right)$ for all $n \geq 0$. We consider two cases:

Case 1. There exists some $n \geq 0$ with $x_{n}=x_{n+1}$. Then x_{n} is a fixed point of T in X.

Case 2. For all $n \geq 0, x_{n} \neq x_{n+1}$. It follows that $x_{n} \neq x_{m}$ for $n>m \geq 0$. In view of (3) we have

$$
\begin{aligned}
\max \left\{d_{n}, d_{n+1}\right\} & =\max \left\{d\left(T x_{n-1}, T x_{n}\right), d\left(T x_{n}, T x_{n+1}\right)\right\} \\
& \leq \phi\left(\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}\right) \\
& =\phi\left(\max \left\{d_{n-1}, d_{n}\right\}\right) \leq \phi^{2}\left(\max \left\{d_{n-2}, d_{n-1}\right\}\right) \\
& \leq \cdots \leq \phi^{n}\left(\max \left\{d_{0}, d_{1}\right\}\right)
\end{aligned}
$$

For each $n \in \mathbb{N}$ and $p \in \mathbb{N}$, using the triangular inequality and (3), we obtain that

$$
d\left(x_{n}, x_{n+p}\right) \leq \sum_{i=n}^{n+p-1} d_{i} \leq \sum_{i=n}^{n+p-1} \phi^{i}\left(\max \left\{d_{0}, d_{1}\right\}\right)
$$

which yields that $\left\{x_{n}\right\}_{n \geq 0}$ is a Cauchy sequence. It follows from the completeness of (X, d) that $\lim _{n \rightarrow \infty} x_{n}=a$ for some point $a \in X$. It is easy to check that there exists some integer $k \geq 1$ with $x_{n} \neq a$ for all $n \geq k$. Using again (3) we have

$$
\begin{aligned}
\max \left\{d\left(x_{n+1}, T a\right), d\left(T a, x_{n+2}\right)\right\} & \leq \phi\left(\max \left\{d\left(x_{n}, a\right), d\left(a, x_{n+1}\right)\right\}\right) \\
& <\max \left\{d\left(x_{n}, a\right), d\left(a, x_{n+1}\right)\right\} \\
& \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$, that is, $T a=a$. This completes the proof.
REMARK 1. In Theorem 3, the presence of 2-periodic points excludes the presence of fixed points and vice verse. Otherwise there exist two points $a, b \in X$ such that $a=T a, b=T^{2} b$ with $a \neq T b \neq b$. In view of (3), we obtain that

$$
\begin{aligned}
\max \{d(a, b), d(b, T b)\} & =\max \left\{d\left(T^{2} a, T^{2} b\right), d\left(T^{2} b, T^{3} b\right)\right\} \\
& \leq \phi\left(\max \left\{d(T a, T b), d\left(T b, T^{2} b\right)\right\}\right) \\
& \leq \phi^{2}(\max \{d(a, b), d(b, T b)\}) \\
& <\max \{d(a, b), d(b, T b)\}
\end{aligned}
$$

which is a contradiction.
REMARK 2. Theorem 3 extends properly the Banach contraction principle.
Now we give the following examples for Remarks 1 and 2.
EXAMPLE 1. Let $X=\{1,2,3,4\}, T: X \rightarrow X$ be a mapping defined by $T 1=1$, $T 2=2, T 3=4, T 4=2$ and $d: X \times X \rightarrow[0, \infty)$ be a function defined by $d(1,2)=1$, $d(2,3)=3, d(1,3)=4, d(2,4)=2, d(1,4)=2.5, d(3,4)=3.5, d(x, x)=0$ and $d(x, y)=d(y, x)$ for all $x, y \in X$. Take $\phi(t)=\frac{3}{4} t$ for $t \geq 0$. It is easy to check that the conditions of Theorem 3 are satisfied, and T has two fixed points 1 and 2 in X. But the Banach contraction principle is not available and T has no 2-periodic points in X.

EXAMPLE 2. Let $X=\{1,2,3\}, T: X \rightarrow X$ be a mapping defined by $T 1=2$, $T 2=1, T 3=2$ and $d: X \times X \rightarrow[0, \infty)$ be a function defined by $d(1,2)=3, d(1,3)=4$, $d(2,3)=5, d(x, x)=0$ and $d(x, y)=d(y, x)$ for all $x, y \in X$. Put $\phi(t)=\frac{4}{5} t$ for $t \geq 0$. Clearly, the conditions of Theorem 3 are satisfied and T has two 2-periodic points 1 and 2 in X, but T has no fixed points in X.

THEOREM 4. Let (X, d) be a complete metric space and $T: X \rightarrow X$ satisfy (4). Then the conclusions of Theorem 1 hold.

PROOF. First we claim that T has at most two distinct fixed points in X. Otherwise there are three different points a, b, c in X, which are all fixed points of T. By (4) we get that

$$
\begin{aligned}
\max \{d(a, b), d(b, c), d(c, a)\} & =\max \{d(T a, T b), d(T b, T c), d(T c, T a)\} \\
& \leq \phi(\max \{d(a, b), d(b, c), d(c, a)\}) \\
& <\max \{d(a, b), d(b, c), d(c, a)\}
\end{aligned}
$$

which is a contradiction.
We next assert that if T has 2-periodic point $b \in X$, then b and $T b$ are all 2-periodic points of T. Otherwise, there exists a point c in X which is a 2-periodic point with $b \neq c \neq T b$. By (4) we have

$$
\begin{aligned}
\max \{d(b, T b), d(T b, c), d(c, b)\} & =\max \left\{d\left(T^{2} b, T^{3} b\right), d\left(T^{3} b, T^{2} c\right), d\left(T^{2} c, T^{2} b\right)\right\} \\
& \leq \phi\left(\max \left\{d\left(T b, T^{2} b\right), d\left(T^{2} b, T c\right), d(T c, T b)\right\}\right) \\
& \leq \phi^{2}(\max \{d(b, T b), d(T b, c), d(c, b)\}), \\
& <\max \{d(b, T b), d(T b, c), d(c, b)\}
\end{aligned}
$$

which is impossible.
We now exclude the presence of n-periodic point for $n \geq 3$. Suppose that T has an n-periodic point $a_{0} \in X$ for $n \geq 3$. Set $a_{k}=T^{k} a$ for all $0 \leq k \leq n$. According to (4), we know that

$$
\begin{aligned}
& \max \left\{d\left(a_{0}, a_{1}\right), d\left(a_{1}, a_{2}\right), d\left(a_{2}, d_{0}\right)\right\} \\
& =\phi\left(\max \left\{d\left(T a_{n-1}, T a_{n}\right), d\left(T a_{n}, T a_{n+1}\right), d\left(T a_{n+1}, T a_{n-1}\right)\right\}\right) \\
& \leq \phi\left(\max \left\{d\left(a_{n-1}, a_{n}\right), d\left(a_{n}, a_{n+1}\right), d\left(a_{n+1}, a_{n-1}\right)\right\}\right) \\
& \leq \phi^{2}\left(\max \left\{d\left(a_{n-2}, a_{n-1}\right), d\left(a_{n-1}, a_{n}\right), d\left(a_{n}, a_{n-2}\right)\right\}\right) \\
& \leq \cdots \\
& \leq \phi^{n}\left(\max \left\{d\left(a_{0}, a_{1}\right), d\left(a_{1}, a_{2}\right), d\left(a_{2}, a_{0}\right)\right\}\right) \\
& <\max \left\{d\left(a_{0}, a_{1}\right), d\left(a_{1}, a_{2}\right), d\left(a_{2}, a_{0}\right)\right\},
\end{aligned}
$$

which is a contradiction.
Finally we assert that T has a fixed point in X provided that T has an orbit without 2-periodic points. Suppose that there exists a point $x_{0} \in X$ and $O_{T}\left(x_{0}\right)$ is such an orbit that T has no 2-periodic points in it. Let $x_{n}=T^{n} x_{0}$ for all $n \geq 0$. We have to consider the following two cases:

Case 1.There exists some $n \geq 0$ with $x_{n}=x_{n+1}$. Then x_{n} is a fixed point of T in X.

Case 2. For all $n \geq 0, x_{n} \neq x_{n+1}$. Then $x_{n} \neq x_{m}$ for all $n>m \geq 0$. In view of (4), we have

$$
\begin{aligned}
& \max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right), d\left(x_{n+2}, x_{n}\right)\right\} \\
& =\max \left\{d\left(T x_{n-1}, T x_{n}\right), d\left(T x_{n}, T x_{n+1}\right), d\left(T x_{n+1}, T x_{n-1}\right)\right\} \\
& \leq \phi\left(\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n-1}\right)\right\}\right) \\
& \leq \phi^{2}\left(\max \left\{d\left(x_{n-2}, x_{n-1}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n-2}\right)\right\}\right) \\
& \leq \cdots \\
& \leq \phi^{n}\left(\max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{1}, x_{2}\right), d\left(x_{2}, x_{0}\right)\right\}\right)
\end{aligned}
$$

which implies that

$$
d\left(x_{n}, x_{n+1}\right) \leq \phi^{n}\left(\max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{1}, x_{2}\right), d\left(x_{2}, x_{0}\right)\right\}\right)
$$

By the triangular inequality and (4), we obtain that

$$
\begin{aligned}
d\left(x_{n}, x_{n+p}\right) & \leq \sum_{i=n}^{n+p-1} d\left(x_{i}, x_{i+1}\right) \\
& \leq \sum_{i=n}^{n+p-1} \phi^{i}\left(\max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{1}, x_{2}\right), d\left(x_{2}, x_{0}\right)\right\}\right)
\end{aligned}
$$

for all $n, p \in \mathbb{N}$. Clearly, $\left\{x_{n}\right\}_{n \geq 0}$ is a Cauchy sequence and hence $\lim _{n \rightarrow \infty} x_{n}=a$ for some $a \in X$ since (X, d) is complete. Obviously, there exists some integer $k \geq 1$ with
$x_{n} \neq a$ for all $n \geq k$. Hence we have

$$
\begin{aligned}
& \max \left\{d\left(T a, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right), d\left(x_{n+2}, T a\right)\right\} \\
& \leq \phi\left(\max \left\{d\left(a, x_{n}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, a\right)\right\}\right) \\
& <\max \left\{d\left(a, x_{n}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, a\right)\right\} \\
& \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. That is, $\lim _{n \rightarrow \infty} x_{n}=T a$. Thus $T a=a$. This completes the proof.
REMARK 3. The following example reveals that Theorem 4 extends indeed the Banach contraction principle.

EXAMPLE 3. Let X, T and d be as in Example 1. Put $\phi(t)=\frac{2}{3} t$. Then it is easy to verify that the conditions of Theorem 4 are fulfilled, and T has two fixed points 1 and 2. But the Banach contraction principle is not applicable.

References

[1] B. E. Rhoades, A comparison of various definitions of contraction mappings, Trans. Amer. Math. Soc., 226(1997), 257-289.

[^0]: *Mathematics Subject Classifications: 54H25
 \dagger Department of Mathematics, Liaoning Normal University, P. O. Box 200, Dalian, Liaoning 116029, P. R. China
 ${ }^{\ddagger}$ Department of Science, Shenyang Institute of Aeronautical Engineering, Shenyang, Liaoning 110034, P. R. China
 §Department of Mathematics and the Research Institute of Natural Science, Gyeongsang National University, Jinju 660-701, Korea

