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Abstract

Several fixed point theorems for four classes of mappings in complete metric

spaces are given. The results presented in this paper extend properly the Banach

contraction principle.

1 Introduction and Preliminaries

Let (X, d) be a metric space, T : X → X be a mapping, and r ∈ [0, 1) be a constant.
Let N denote the set of all positive integers. A point x0 ∈ X is called an n-periodic point

of T , if there exists n ∈ N such that x0 = Tnx0 but x0 6= T kx0 for k = 1, 2, 3, ..., n− 1.
For x ∈ X, the set OT (x) = {Tnx : n ≥ 0} is said to be the orbit of T at x. Let Φ be
the set of φ : [0,∞) → [0,∞) which is nondecreasing and φ(t) < t and

∑∞

n=1
φn(t) < ∞

for all t > 0.

It is easy to see that φ(t) = rt ∈ Φ for any constant r ∈ (0, 1). Rhoades [1] provided
some fixed point theorems for various contractive mappings.

In this paper, we will discuss the existence of fixed points for mappings T that
satisfy

d(Tx, Ty) + d(Ty, Tz) ≤ φ(d(x, y) + d(y, z)) (1)

for all x, y, z ∈ X with x 6= y 6= z 6= x, where φ ∈ Φ; or

d(Tx, Ty) + d(Ty, Tz) + d(Tz, Tx) ≤ φ(d(x, y) + d(y, z) + d(z, x)) (2)

for all x, y, z ∈ X with x 6= y 6= z 6= x, where φ ∈ Φ; or

max{d(Tx, Ty), d(Ty, Tz)} ≤ φ(max{d(x, y), d(y, z)}) (3)

for all x, y, z ∈ X with x 6= y 6= z 6= x, where φ ∈ Φ; or

max{d(Tx, Ty), d(Ty, Tz), d(Tz, Tx)} ≤ φ(max{d(x, y), d(y, z), d(z, x)}) (4)
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for all x, y, z ∈ X with x 6= y 6= z 6= x, where φ ∈ Φ.

It follows from the definition of n-periodic point that

LEMMA 1. Let T be a mapping from a metric space (X, d) into itself. If x0 ∈ X

is an n-periodic point of T , then T ix0 6= T jx0 for all 0 ≤ i < j ≤ n − 1.

2 Main Results

Our first main result is the following.

THEOREM 1. Let (X, d) be a complete metric space and T : X → X satisfy (1).
Then

(a) T has at most two distinct fixed points in X;
(b) if T has 2-periodic points in X, then they are exactly two;
(c) T has no any n-periodic points in X for n ≥ 3;
(d) T has a fixed point in X provided that T has an orbit without 2-periodic points.

PROOF. First, we assert that T has at most two distinct fixed points in X. Oth-
erwise T has (at least) three different fixed points a, b, c in X. In the light of (1), we
infer that

d(a, c) + d(c, b) = d(Ta, Tc) + d(Tc, T b)

≤ φ(d(a, c) + d(c, b))

< d(a, c) + d(c, b),

which is a contradiction.
Suppose that there exists a point b ∈ X which is a 2-periodic point of T . Then Tb

is also a 2-periodic point of T different from b. Now we claim that T has the only two
2-periodic points b and Tb. Otherwise there is a point c ∈ X which is also a 2-periodic
point of T with b 6= c 6= Tb. It is easy to show that Tb 6= Tc 6= T 2b 6= Tb. By (3) we
have

d(b, c) + d(c, T b) = d(T 2b, T 2c) + d(T 2c, T 3b)

≤ φ(d(Tb, T c) + d(Tc, T 2b))

= φ(d(T 3b, T 3c) + d(T 3c, T 2b))

≤ φ2(d(T 2b, T 2c) + d(T 2c, T b))

< d(b, c) + d(c, T b),

which is a contradiction. Thus T has only 2-periodic points b and Tb.
Now we exclude the presence of n-periodic point for n ≥ 3. Suppose that a0 ∈ X

is an n-periodic point of T for n ≥ 3. Let ak = T ka0, dk = d(ak, ak+1) + d(ak+1, ak+2)
for all 0 ≤ k ≤ n. From Lemma 1 and (1), we have

dk = d(Tak−1, Tak) + d(Tak, Tak+1)

≤ φ(d(ak−1, ak) + d(ak, ak+1))

= φ(dk−1) < dk−1 (5)
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for all 1 ≤ k ≤ n. In view of (3) and (5), we get that

d0 = dn ≤ φ(dn−1) < dn−1 ≤ · · · < d0,

which is a contradiction.

Suppose that there exists a point x0 ∈ X such that T has no 2-periodic points in
OT (x0). Set xn = Tnx0, dn = d(xn, xn+1) + d(xn+1, xn+2) for any n ≥ 0. If there
exists some n ≥ 0 with xn = xn+1, then xn is a fixed point of T ; if xn 6= xn+1 for any
n ≥ 0, from (1) we have

dn ≤ φ(dn−1) ≤ φ2(dn−2) ≤ · · · ≤ φn(d0). (6)

For each r, s, m ∈ N with r > s ≥ m, by the triangular inequality and (6), we get that

d(xr, xs) ≤

r−1∑

n=m

dn ≤

r−1∑

n=m

φn(d0). (7)

Since φ ∈ Φ, (7) ensures that {xn}n≥0 is a Cauchy sequence in X. It follows from
completeness of (X, d) that there exists a point a ∈ X such that limn→∞ xn = a.
Obviously, there exists some integer k ∈ N with xn 6= a for all n ≥ k. From (c) and (5)
we obtain that

d(xn+1, Ta) + d(Ta, Txn+2) ≤ φ(d(xn, a) + d(a, xn+2))

< d(xn, a) + d(a, xn+2)

→ 0

as n → ∞, which implies that limn→∞ xn = Ta. Hence Ta = a. This completes the
proof.

The proof of the next result is similar to that of Theorem 1 and is omitted.

THEOREM 2. Let (X, d) be a complete metric space and T : X → X satisfy (2).
Then the conclusions of Theorem 1 hold.

THEOREM 3. Let (X, d) be a complete metric space and T : X → X satisfy (3).
Then the conclusions of Theorem 1 hold.

PROOF. We first assert that T has at most two distinct fixed points in X. Otherwise
T has three different fixed points a, b, c in X. From (3), we obtain that

max{d(a, b), d(b, c)} = max{d(Ta, Tb), d(Tb, T c)}

≤ φ(max{d(a, b), d(b, c)})

< max{d(a, b), d(b, c)},

which is a contradiction.

Suppose that T has a 2-periodic point b ∈ X. Then Tb is also a 2-periodic point
of T different from b. We point out that b and Tb are the only two 2-periodic points
of T in X. Otherwise there exists c in X which is also a 2-periodic point of T and
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b 6= c 6= Tb. By (3) we get that

max{d(Tb, T c), d(Tc, b)} = max{d(Tb, T c), d(Tc, T 2b)}

≤ φ(max{d(b, c), d(c, T b)})

= φ(max{d(T 2b, T 2c), d(T 2c, T 3b)})

≤ φ2(max{d(Tb, T c), d(Tc, b)})

< max{d(Tb, T c), d(Tc, b)},

which is impossible.
We next conclude that T has no n-periodic point for n ≥ 3. Suppose that T has

an n-periodic point a0 for n ≥ 3. Set ak = T ka0, dk = d(ak, ak+1) for all 0 ≤ k ≤ n.
According to Lemma 1 and (3), we get that

max{d0, d1} = max{dn, dn+1}

= max{d(Tan−1, Tan), d(Tan, Tan+1)}

≤ φ(max{d(an−1, an), d(an, an+1)})

= φ(max{dn−1, dn}) ≤ φn(max{d0, d1})

< max{d0, d1},

which is a contradiction.
Lastly, we prove that T has a fixed point in X provided that T has an orbit without

2-periodic points in X. Assume that there exists a point x0 ∈ X such that T has no
2-periodic points in OT (x0). Let xn = Tnx0, dn = d(xn, xn+1) for all n ≥ 0. We
consider two cases:

Case 1. There exists some n ≥ 0 with xn = xn+1. Then xn is a fixed point of T in
X.

Case 2. For all n ≥ 0, xn 6= xn+1. It follows that xn 6= xm for n > m ≥ 0. In view
of (3) we have

max{dn, dn+1} = max{d(Txn−1, Txn), d(Txn, Txn+1)}

≤ φ(max{d(xn−1, xn), d(xn, xn+1)})

= φ(max{dn−1, dn}) ≤ φ2(max{dn−2, dn−1})

≤ · · · ≤ φn(max{d0, d1}).

For each n ∈ N and p ∈ N, using the triangular inequality and (3), we obtain that

d(xn, xn+p) ≤

n+p−1∑

i=n

di ≤

n+p−1∑

i=n

φi(max{d0, d1}),

which yields that {xn}n≥0 is a Cauchy sequence. It follows from the completeness of
(X, d) that limn→∞ xn = a for some point a ∈ X. It is easy to check that there exists
some integer k ≥ 1 with xn 6= a for all n ≥ k. Using again (3) we have

max{d(xn+1, Ta), d(Ta, xn+2)} ≤ φ(max{d(xn, a), d(a, xn+1)})

< max{d(xn, a), d(a, xn+1)}

→ 0
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as n → ∞, that is, Ta = a. This completes the proof.

REMARK 1. In Theorem 3, the presence of 2-periodic points excludes the presence
of fixed points and vice verse. Otherwise there exist two points a, b ∈ X such that
a = Ta, b = T 2b with a 6= Tb 6= b. In view of (3), we obtain that

max{d(a, b), d(b, T b)} = max{d(T 2a, T 2b), d(T 2b, T 3b)}

≤ φ(max{d(Ta, Tb), d(Tb, T 2b)})

≤ φ2(max{d(a, b), d(b, T b)})

< max{d(a, b), d(b, T b)},

which is a contradiction.

REMARK 2. Theorem 3 extends properly the Banach contraction principle.

Now we give the following examples for Remarks 1 and 2.

EXAMPLE 1. Let X = {1, 2, 3, 4}, T : X → X be a mapping defined by T1 = 1,

T2 = 2, T3 = 4, T4 = 2 and d : X × X → [0,∞) be a function defined by d(1, 2) = 1,

d(2, 3) = 3, d(1, 3) = 4, d(2, 4) = 2, d(1, 4) = 2.5, d(3, 4) = 3.5, d(x, x) = 0 and
d(x, y) = d(y, x) for all x, y ∈ X. Take φ(t) = 3

4
t for t ≥ 0. It is easy to check that the

conditions of Theorem 3 are satisfied, and T has two fixed points 1 and 2 in X. But
the Banach contraction principle is not available and T has no 2-periodic points in X.

EXAMPLE 2. Let X = {1, 2, 3}, T : X → X be a mapping defined by T1 = 2,

T2 = 1, T3 = 2 and d : X×X → [0,∞) be a function defined by d(1, 2) = 3, d(1, 3) = 4,

d(2, 3) = 5, d(x, x) = 0 and d(x, y) = d(y, x) for all x, y ∈ X. Put φ(t) = 4

5
t for t ≥ 0.

Clearly, the conditions of Theorem 3 are satisfied and T has two 2-periodic points 1
and 2 in X, but T has no fixed points in X.

THEOREM 4. Let (X, d) be a complete metric space and T : X → X satisfy (4).
Then the conclusions of Theorem 1 hold.

PROOF. First we claim that T has at most two distinct fixed points in X. Otherwise
there are three different points a, b, c in X, which are all fixed points of T . By (4) we
get that

max{d(a, b), d(b, c), d(c, a)} = max{d(Ta, Tb), d(Tb, T c), d(Tc, Ta)}

≤ φ(max{d(a, b), d(b, c), d(c, a)})

< max{d(a, b), d(b, c), d(c, a)},

which is a contradiction.
We next assert that if T has 2-periodic point b ∈ X, then b and Tb are all 2-periodic

points of T . Otherwise, there exists a point c in X which is a 2-periodic point with
b 6= c 6= Tb. By (4) we have

max{d(b, T b), d(Tb, c), d(c, b)}= max{d(T 2b, T 3b), d(T 3b, T 2c), d(T 2c, T 2b)}

≤ φ(max{d(Tb, T 2b), d(T 2b, T c), d(Tc, T b)})

≤ φ2(max{d(b, T b), d(Tb, c), d(c, b)}),

< max{d(b, T b), d(Tb, c), d(c, b)},
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which is impossible.
We now exclude the presence of n-periodic point for n ≥ 3. Suppose that T has an

n-periodic point a0 ∈ X for n ≥ 3. Set ak = T ka for all 0 ≤ k ≤ n. According to (4),
we know that

max{d(a0, a1), d(a1, a2), d(a2, d0)}

= φ(max{d(Tan−1, Tan), d(Tan, Tan+1), d(Tan+1, Tan−1)})

≤ φ(max{d(an−1, an), d(an, an+1), d(an+1, an−1)})

≤ φ2(max{d(an−2, an−1), d(an−1, an), d(an, an−2)})

≤ · · ·

≤ φn(max{d(a0, a1), d(a1, a2), d(a2, a0)})

< max{d(a0, a1), d(a1, a2), d(a2, a0)},

which is a contradiction.
Finally we assert that T has a fixed point in X provided that T has an orbit without

2-periodic points. Suppose that there exists a point x0 ∈ X and OT (x0) is such an
orbit that T has no 2-periodic points in it. Let xn = Tnx0 for all n ≥ 0. We have to
consider the following two cases:

Case 1.There exists some n ≥ 0 with xn = xn+1. Then xn is a fixed point of T in
X.

Case 2. For all n ≥ 0, xn 6= xn+1. Then xn 6= xm for all n > m ≥ 0. In view of (4),
we have

max{d(xn, xn+1), d(xn+1, xn+2), d(xn+2, xn)}

= max{d(Txn−1, Txn), d(Txn, Txn+1), d(Txn+1, Txn−1)}

≤ φ(max{d(xn−1, xn), d(xn, xn+1), d(xn+1, xn−1)})

≤ φ2(max{d(xn−2, xn−1), d(xn−1, xn), d(xn, xn−2)})

≤ · · ·

≤ φn(max{d(x0, x1), d(x1, x2), d(x2, x0)}),

which implies that

d(xn, xn+1) ≤ φn(max{d(x0, x1), d(x1, x2), d(x2, x0)}).

By the triangular inequality and (4), we obtain that

d(xn, xn+p) ≤

n+p−1∑

i=n

d(xi, xi+1)

≤

n+p−1∑

i=n

φi(max{d(x0, x1), d(x1, x2), d(x2, x0)})

for all n, p ∈ N. Clearly, {xn}n≥0 is a Cauchy sequence and hence limn→∞ xn = a for
some a ∈ X since (X, d) is complete. Obviously, there exists some integer k ≥ 1 with
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xn 6= a for all n ≥ k. Hence we have

max{d(Ta, xn+1), d(xn+1, xn+2), d(xn+2, Ta)}

≤ φ(max{d(a, xn), d(xn, xn+1), d(xn+1, a)})

< max{d(a, xn), d(xn, xn+1), d(xn+1, a)}

→ 0

as n → ∞. That is, limn→∞ xn = Ta. Thus Ta = a. This completes the proof.

REMARK 3. The following example reveals that Theorem 4 extends indeed the
Banach contraction principle.

EXAMPLE 3. Let X, T and d be as in Example 1. Put φ(t) = 2

3
t. Then it is easy

to verify that the conditions of Theorem 4 are fulfilled, and T has two fixed points 1
and 2. But the Banach contraction principle is not applicable.
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